Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton)

Size: px
Start display at page:

Download "Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton)"

Transcription

1 314 Arrow Pushing practice/eauchamp 1 Electrophile = electron loving = any general electron pair acceptor = Lewis acid, (often an acidic proton) ucleophile = nucleus/positive loving = any general electron pair donor = Lewis base, (often donated to an acidic proton) Problems - n the following reactions each step has been written without the formal charge or lone pairs of electrons and curved arrows. Assume each atom follows the normal octet rule, except hydrogen (duet rule). upply the lone pairs, formal charge and the curved arrows to show how the electrons move for each step of the reaction mechanism. dentify any obvious nucleophiles and electrophiles in each of the steps of the reactions below (on the left side of each reaction arrow). A separate answer file will be created, as get to it. Let me know when you find errors. reactions Examples of important patterns to know from our starting points (plus a few extras). methyl and primary secondary tertiary special 3 very good 2 patterns very poor 2,E2, 1,E1 allylic vinyl benzylic phenyl There are many variations. 1 o neopentyl 1. 2 and 2 a b 2. 2 and E2 a b 3. 2 and 2 a a b a a a Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

2 314 Arrow Pushing practice/eauchamp and acyl substitution a make alkyl imide a further reaction with a 2 acyl substitution primary amine mech. - not shown make imidate nucleophile a a 5. E2 and 2 a 2 b E2 > 2 2 > E2 6. E2 reactions a 2 b E2 >> 2 E2 >> 2 7. E2 and 2 a K K b K K E2 >> make potassium t-butoxide K potassium hydride (always a base) 8. ucleophilic hydride = sodium borohydride (a 4 ) and lithium aluminum hydride (Al 4 = LA), [deuterium is used below to show reaction site] 2 reaction a b Al a Al a K Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

3 314 Arrow Pushing practice/eauchamp 3 9. Alkyl carbanions (lithium and magnesium) are poor nucleophiles with compounds, [cuprates work well] a b poor yields, too 2 many side reactions E2 and E2 and acid/base 11. E2 and E2 and acid/base 3 a 2 a and E1 possibilities (1. rearrangement, 2. add nucleophile, 3. lose beta proton) a a a poor yields, too many side reactions a E/Z E/Z 2 / Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

4 314 Arrow Pushing practice/eauchamp 4 Alcohol eactions Examples of important patterns to know in our course (plus a few others). methyl and primary secondary tertiary special 3 allylic vinyl - enol is unstable, keto tautomer preferred benzylic phenyl There are many variations. 1 o neopentyl ( 2 at methyl and primary and 1 at secondary, tertiary, allylic and benzylic in our course) , and E1 are possible here, but not shown. E1 + 1 no / Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

5 314 Arrow Pushing practice/eauchamp Thionyl chloride = acyl-like substitution, then 2 synthesis of an alkyl chloride from an alcohol + thionyl chloride (l 2 ) [can also make from 2 ] l l 2 l l 2 l l 2 at methyl and primary alcohols l 2 l o rearrangement because no +. l 2 l l 15. Thionyl chloride = acyl substitution, then 1 synthesis of an alkyl chloride from an alcohol + thionyl chloride (l 2 ) [can also make from 2 ] l l l l l l 1 at secondary and tertiary alcohols / l l l l 16. Phosphorous tribromide (P 3 ) = 2, then 2 (at methyl and primary ) P P P reacts twice more 17. Phosphorous tribromide (P 3 ) = 2, then 1 (at secondary, tertiary, allylic and benzylid ) P P P reacts twice more, Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

6 314 Arrow Pushing practice/eauchamp r= addition, acid/base and E2 to form = (aldehydes and ketones) 3 2 primary alcohols r 3 2 r 3 2 r P = pyridinium chlorochromate oxidation of primary alcohol to an aldehyde (no water to hydrate the carbonyl group) 3 2 r aldehydes 19. r= addition, acid/base and E2 to form = (aldehydes and ketones) secondary alcohols r 3 2 r r 3 P = pyridinium chlorochromate oxidation of primary alcohol to an aldehyde (no water to hydrate the carbonyl group) r ketones Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

7 314 Arrow Pushing practice/eauchamp r= addition, acid/base and E2 to form =, then hydration of = and repeat reactions primary alcohols 2 r 3 2 Jones = r 3 / 2 / acid primary alcohols oxidize to carboxylic acids (water hydrates the carbonyl group, which oxidizes a second time ) 3 2 r hydration of the aldehyde r r 2 aldehydes (cont. in water) r 3 second oxidation of the carbonyl hydrate 2 r r r 3 2 carboxylic acids Formation of alkoxide from + a or K (acid/base reaction) a a a Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

8 314 Arrow Pushing practice/eauchamp ehydration to alkene (E1) from / (possibility of rearrangements) Water ends up as 3 + in 2 4. Water ends up as 3 + in 2 4. nly the major alkene is shown. 23. Formation of esters from + acid chlorides l l l There are many variations of and 2 joined together by oxygen. l Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

9 314 Arrow Pushing practice/eauchamp Formation of tosylates from + Tsl (toluenesulfonyl chloride = tosyl chloride), /E chemistry is possible l l l l l, (racemic) compare 1. Tsl/pyridine 2. al (prevents + formation and any rearrangement) l separate step l a l alkyl tosylate = compound Epoxide reactions Examples of important patterns to know from our starting materials. 25. We can make epoxides from alkenes using 1. 2 / 2, 2. a. (Later from mpa too.) step 1 - make bromohydrin bromohydrin step 2 - make epoxide by reacting with epoxide synthesis from bromohydrin mild base bromohydrins epoxides Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

10 314 Arrow Pushing practice/eauchamp like attack at less hindered epoxide carbon, and workup (overall addition) a a 2 hydroxide 2 a a 2 alkoxides (ethoxide) 2 a terminal acetylide a 2 2 a cyanide a n-butyl lithium ucleophilic hydride = sodium borohydride (a 4 ) and lithium aluminum hydride (Al 4 = LA), [deuterium is used below to show reaction site] a 2 a sodium borodeuteride sodium borhydride 2 Al lithium aluminium deuteride lithium aluminium hydride (LA) 2 2 Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

11 314 Arrow Pushing practice/eauchamp Epoxide reactions in acid conditions. (compare to base reaction) ur only E2 reaction for epoxides. Uses very basic, sterically bulky LA (always a base). 3 3 (compare to base reaction) LA = lithium diisopropylamine (always a base) allylic alcohols Aldehyde and Ketone reactions Examples of important patterns to know. methanal (formaldehyde) We can make aldehydes and ketones from alcohols and alkynes (for now). 30. = addition with organolithium reagent, and workup aldehyde n-butyl lithium / 2 2 o alcohol 2 Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

12 314 Arrow Pushing practice/eauchamp 12 2 aldehydes or ketones 3 organolithium or organomagnesium reagents 3 l 2 2 o or 3 o alcohols 3 l 31. = addition with cyanide forming cyanohydrin aldehyde or ketone a terminal acetylide a 2 l propargylic alcohols 2 l 32. = addition with cyanide forming cyanohydrin aldehyde or ketone a a l 2 cyanohydrins 33. ucleophilic hydride = sodium borohydride (a 4 ) and lithium aluminum hydride (Al 4 = LA), [deuterium is used below to show reaction site] aldehyde a sodium borodeuteride sodium borhydride a 2 2 l 2 1 o alcohol otice: was nucleophilic hydrogen and (on ) was electrophilic hydrogen ketone a sodium borodeuteride sodium borhydride a / o alcohol otice: was nucleophilic hydrogen and (on ) was electrophilic hydrogen Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

13 314 Arrow Pushing practice/eauchamp ydration of = in acid or base conditions (also tautomerization conditions, competing reactions) ydration of = is similar to making acetals and ketals and hydrolysis of esters acid conditions base conditions 35. Ketone to hemi-ketal to ketal and aldehyde to hemi-acetal to acetal (protects = as ether during other reactions conditions) Making a ketal (acetals are similar) Ts Ts functional group = ketone Ts common name = hemi-ketal common name = water controls the direction of equilibrium emove 2 shifts equilibrium to the Adding 2 shifts equilibrium to the 36. eprotection of ketal (acetal) to regenerate ketone or aldehyde, 1 reaction, then E1 reaction to form = (deprotection of a ketone or aldehyde) Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

14 314 Arrow Pushing practice/eauchamp 14 Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc common name = emove 2 shifts equilibrium to the Adding 2 shifts equilibrium to the functional group = ydrolysis of a ketal back to a ketone and ethylene glycol (acetals are similar and go back to aldehydes and ethylene glycol) l ( 2 4 / 2 )

15 314 Arrow Pushing practice/eauchamp 15 arboxylic acids and derivatives reactions Examples of important patterns to know. methanoic acid (formic acid) Ph Ph methanoate esters (formic esters) Ph Ph Ph methanamides (formamides) Ph methanoyl chloride is not stable l l l l Ph l Ph l We can make carboxylic acids from alcohols, aldehydes and nitriles (for now). 37. ase hydrolysis of esters ester base hydrolysis = saponification ester a a a carboxylic acid (neutralize carboxylate) alcohol a Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

16 314 Arrow Pushing practice/eauchamp acid chloride + = esters (notice two different groups joined together by an oxygen) ester synthesis from acyl substition at an acid chloride with an alcohol l acid chloride l l 39. acid chloride + 2 = 2 o amides (notice two different groups joined together by a nitrogen) secondary amide synthesis from acyl substition at an acid chloride with a primary amine l acid chloride l l ynthesis of acid chlorides, acyl substitution, twice synthesis of an acid chloride from an acid + thionyl chloride (l 2 ) l l l l l l l l ase l l l acylium ion l l ase l Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

17 314 Arrow Pushing practice/eauchamp acyl substitution, then two elimination reactions synthesis of a nitrile from an 1 o amide + thionyl chloride (l 2 ) l l l l l l l l l l l l ase l l ase Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

18 314 Arrow Pushing practice/eauchamp 18 Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc 42. addition reaction (hydration) to imidate, tautomers to amide, acyl substitution to carboxylic acid l / 2 hydrolysis of a nitrile to an amide (in 2 4 / 2 hydrolysis continues on to a carboxylic acid) 3 3 stop here in l/ 2 (continue on in 2 4 / 2 ) 3 see structures directly above most stable cation drives equilibrium to completion hydroxamic acid 1 o amides carboxylic acids (in 2 4 / )

19 314 Arrow Pushing practice/eauchamp 19 Alkene and Alkyne reactions Examples of important patterns to know. other patterns showing regioselectivity and stereoselectivity alkynes We can make alkenes from and and alkynes from 2 (for now). 43. = addition reaction with -l (- and - are similar), Markovnikov addition forms most stable carbocation l 3 l 3 l = aqueous acid hydration reaction, goes via top/bottom addition (hydration of an alkene) There isn't any lone pair, so you have to use the pi electrons as the nucleophile hydration of an alkene with aqueous acid form most stable carbocation ( rearrangements are possible ) Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

20 314 Arrow Pushing practice/eauchamp = addition reaction (hydration of an alkene), with rearrangement There isn't any lone pair, so you have to use the pi electrons as the nucleophile hydration of an alkene with aqueous acid form most stable carbocation ( rearrangements are possible ) = addition reaction (ether synthesis from an alkene by addition of alcohols) There isn't any lone pair, so you have to use the pi electrons as the nucleophile ( 3 / Ts) 3 hydration of an alkene with aqueous acid form most stable carbocation ( rearrangements are possible ) = addition reaction (ether synthesis from an alkene by addition of alcohols), with rearrangement There isn't any lone pair, so you have to use the pi electrons as the nucleophile ( 3 / Ts) 3 3 ether synthesis from an alkene with alcoholic acid form most stable carbocation ( rearrangements are possible ) Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

21 314 Arrow Pushing practice/eauchamp ydration of alkynes (Markovnikov addition forms most stable carbocation), enol intermediate tautomerizes to keto tamtomer. There isn't any lone pair, so you have to use the pi electrons as the nucleophile omination of alkenes, goes via anti addition a little tricky, requires 3 arrows to make bridge bridging cation prevents rearrangement, attack at more partial positive carbon = addition reaction 3 3 no rearrangement alkenes / alkynes because of bridging cation 50. omhydrin formation from alkenes, goes via anti addition bromide attacks at more partial positive carbon 3 stereoselective = anti addition regioselective = none a little tricky, requires 3 arrows bridging cation prevents rearrangement, attack at more partial positive carbon water attacks at more partial positive carbon 2 bromohydrins form epoxides in mild base Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

22 314 Arrow Pushing practice/eauchamp 22 = addition reaction stereoselective = anti addition regioselective = Markovnikov alkenes / alkynes no rearrangement because of bridging water attacks at more cation partial positive carbon ydroboration of alkenes = anti-markovnikov addition (opposite regioselectivity to normal hydration conditions) anti-markovnikov addition to = (hydration makes alcohols), two steps: / step 1 = concerted addition to = by borane alkenes twice more trialkylborane step 2 = oxidation by hydrogen peroxide and rearrangement to anti-markovnikov alcohol trialkylborane anti-markovnikov alcohol twice more Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

23 314 Arrow Pushing practice/eauchamp ydroboration of alkynes = anti-markovnikov addition (opposite regioselectivity to normal conditions) anti-markovnikov addition to (hydration makes aldehydes), two steps: / step 1 = concerted addition to by dialkylborane alkenes = sterically large group so addition only occurs once step 2 = oxidation by hydrogen peroxide and rearrangement to anti-markovnikov aldehyde trialkylborane enolate = anti-markovnikov aldehyde Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

24 314 Arrow Pushing practice/eauchamp Z:\classes\315\315 andouts\arrow pushing mechs, probs.doc

These same reaction schemes are available without the mechanistic details, so you can practice filling in those details.

These same reaction schemes are available without the mechanistic details, so you can practice filling in those details. 314/315 reactions and mechanisms through topic 11 and some of topic 12 1 These same reaction schemes are available without the mechanistic details, so you can practice filling in those details. Problems

More information

S N 2 and E2 Mechanisms (strong base/nucleophile competition reacting at a carbon or reacting at a proton)

S N 2 and E2 Mechanisms (strong base/nucleophile competition reacting at a carbon or reacting at a proton) Electrophile (Lewis Acid) = electron loving = any general electron pair acceptor (can also be an acidic proton = onsted acid) ucleophile (Lewis Base) = nucleus/positive loving = any general electron pair

More information

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions.

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ucleophilic ubstitution & Elimination Chemistry Beauchamp 1 Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions. ources of

More information

Nucleophilic Substitution & Elimination Chemistry 1

Nucleophilic Substitution & Elimination Chemistry 1 ucleophilic Substitution & Elimination hemistry 1 What kind of mechanisms are possible? What is the major mechanism occuring? Write in ALL mechanism details (lone pairs, formal charge, curved arrows, etc.).

More information

Chem 315/316 Reactions. Bromo organic compounds C1 & C2 carbon skeletons C3 carbon skeletons C4 carbon skeletons. Alcohols. Chem 316 / Beauchamp 1

Chem 315/316 Reactions. Bromo organic compounds C1 & C2 carbon skeletons C3 carbon skeletons C4 carbon skeletons. Alcohols. Chem 316 / Beauchamp 1 hem 316 / Beauchamp 1 hem 315/316 eactions Name available sources of carbon 4 3 NaN methyl 3 2 ethyl 3 2 2 n-propyl 3 3 isopropyl 2 3 2 3 3 2 2 3 3 3 n-butyl sec butyl t-butyl phenyl available until topic

More information

Products from reactions of carbon nucleophiles and carbon electrophiles used in the 14 C Game and our course:

Products from reactions of carbon nucleophiles and carbon electrophiles used in the 14 C Game and our course: synthesis strategies, hem / / Beauchamp roducts from reactions of carbon nucleophiles and carbon electrophiles used in the Game and our course: arbon electrophiles methyl primary organolithium reagents

More information

Chapter 17: Alcohols and Phenols

Chapter 17: Alcohols and Phenols hapter 17: Alcohols and Phenols sp 3 alcohol phenol (aromatic alcohol) pka~ 16-18 pka~ 10 Alcohols contain an group connected to a saturated carbon (sp 3 ) Phenols contain an group connected to a carbon

More information

acetaldehyde (ethanal)

acetaldehyde (ethanal) hem 263 Nov 2, 2010 Preparation of Ketones and Aldehydes from Alkenes zonolysis 1. 3 2. Zn acetone 1. 3 2. Zn acetone acetaldehyde (ethanal) Mechanism: 3 3 3 + - oncerted reaction 3 3 3 + ozonide (explosive)

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Alcohol Synthesis. Dr. Sapna Gupta

Alcohol Synthesis. Dr. Sapna Gupta Alcohol Synthesis Dr. Sapna Gupta Synthesis of Alcohols Alcohols can be synthesized from several functional groups. Nucleophilic substitution of O - on alkyl halide ydration of alkenes water in acid solution

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols.

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols. hapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols Alkanes arbon - arbon Multiple Bonds arbon-heteroatom single bonds basic Alkenes X X= F, l,, I Alkyl alide amines hapter 23 nitro

More information

ζ ε δ γ β α α β γ δ ε ζ

ζ ε δ γ β α α β γ δ ε ζ hem 263 Nov 17, 2016 eactions at the α-arbon The alpha carbon is the carbon adjacent to the carbonyl carbon. Beta is the next one, followed by gamma, delta, epsilon, and so on. 2 ε 2 δ 2 γ 2 2 β α The

More information

Chapter 20: Carboxylic Acids

Chapter 20: Carboxylic Acids 1 Chapter 20: Carboxylic Acids I. Introduction: Carboxylic acid structure: Classification of carboxylic acids: A carboxylic acid donates protons by the heterocyclic cleavage of the O-H bond, generating

More information

Four new mechanisms to learn: S N 2 vs E2 and S N 1 vs E1

Four new mechanisms to learn: S N 2 vs E2 and S N 1 vs E1 cleophilic ubstitution & Elimination hemistry 1 Four new mechanisms to learn: vs E2 and 1 vs E1 = substitution = a leaving group () is lost from a carbon atom () and replaced by nucleophile (:) = nucleophilic

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 19 eview: Aldehydes and Ketones CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 Beginning with this chapter, we re looking at a very important functional group: the carbonyl. We ve seen

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Nucleophilic Substitution & Elimination Chemistry Beauchamp 1

Nucleophilic Substitution & Elimination Chemistry Beauchamp 1 ucleophilic ubstitution & Elimination hemistry Beauchamp 1 Problem 1 - ow can you tell whether the 2 reaction occurs with front side attack, backside attack or front and backside attack? Use the two molecules

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course: hem 263 Nov 7, 2013 Preparation of Ketones and Aldehydes from Alcohols xidation of Alcohols [] must have at least 1 E elimination reaction [] = oxidation; removal of electrons [] = reduction; addition

More information

Chapter 12: Carbonyl Compounds II

Chapter 12: Carbonyl Compounds II Chapter 12: Carbonyl Compounds II Learning bjectives: 1. Recognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Chapter 18: Ketones and Aldehydes. I. Introduction

Chapter 18: Ketones and Aldehydes. I. Introduction 1 Chapter 18: Ketones and Aldehydes I. Introduction We have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The three-dimensional

More information

Synthetic possibilities Chem 315 Beauchamp 1

Synthetic possibilities Chem 315 Beauchamp 1 Synthetic possibilities hem Beauchamp Propose reasonable syntheses f the following target molecules (TM-#). You can use the given starting materials and any typical ganic reagents studied in our course

More information

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION

CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols by various reactions Structure of the Carbonyl

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

Four new mechanisms to learn: S N 2 vs E2 and S N 1 vs E1

Four new mechanisms to learn: S N 2 vs E2 and S N 1 vs E1 ucleophilic ubstitution & Elimination hemistry 1 Four new mechanisms to learn: 2 vs E2 and 1 vs E1 = substitution = a leaving group () is lost from a carbon atom () and replaced by nucleophile (u:) = nucleophilic

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds The Acidity of the Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons to carbonyls are unusually acidic

More information

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Química rgânica I Ciências Farmacêuticas Bioquímica Química AFB Q I 2007/08 1 alcohols Adaptado de rganic Chemistry, 6th Edition; Wade rganic Chemistry, 6 th Edition; McMurry AFB Q I 2007/08 2 Typical

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group: Next Up: Addition of, : The next two reactions are the Markovnikov and non-markovnikov additions of and to an alkyne But you will not see alcohols form in this reaction! When and add to the alkyne, an

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 17: Alcohols and Phenols. Based on McMurry s Organic Chemistry, 7 th edition Chapter 17: Alcohols and Phenols Based on McMurry s Organic Chemistry, 7 th edition Alcohols and Phenols Alcohols contain an OH group connected to a a saturated C (sp 3 ) They are important solvents and

More information

Nucleophilic Substitution & Elimination Chemistry Beauchamp 1

Nucleophilic Substitution & Elimination Chemistry Beauchamp 1 cleophilic ubstitution & Elimination hemistry Beauchamp 1 Four mechanisms to learn: vs E2 and 1 vs E1 = substitution = a leaving group () is lost from a carbon atom () and replaced by nucleophile (:) =

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution ucleophilic Acyl Substitution hapter 20 arboxylic Acid Derivatives ucleophilic Acyl Substitution Y (1) need to have Y as a u Y u u + Y (2) could not happen with aldehydes or ketones as : and : are poor

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes hapter 8 Alkenes and Alkynes II: Addition eactions Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The carbocation

More information

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol Chapter 10: Structure and Synthesis of Alcohols 100 Physical Properties Alcohols can be: CH 3 CH 3 CH CH 2 OH * Primary alcohol CH 3 OH CH * CH 2 CH 3 Secondary alcohol CH 3 CH 3 * C OH CH 3 Tertiary alcohol

More information

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Nomenclature: In carboxylic acid chlorides, anhydrides, esters and amides, the parent is the carboxylic acid. In each case be sure

More information

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds Introduction Several functional groups contain the carbonyl group Carbonyl groups can be converted into alcohols

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

Nomenclature Question

Nomenclature Question Topic 13: i-licker Slides Beauchamp 1 omenclature Question 2 2 a. 1,2-diamino-5,11-dioxo-6-isopropoxy-7-hydroxy-9-cyanoundec-3E-en-1-one b. 3-cyano-5-hydroxy-6-isopropoxy-7,11-dioxo-10,11-diaminoundec-8E-enal

More information

Acid/Base stuff Beauchamp 1

Acid/Base stuff Beauchamp 1 cid/base stuff Beauchamp 1 Problems You should be able to match a pk a value with its acid in each group below and explain the differences. You should be able to draw an arrow-pushing mechanism with general

More information

Basic Organic Chemistry

Basic Organic Chemistry Basic rganic hemistry ourse code: EM 12162 (Pre-requisites : EM 11122) hapter 06 hemistry of Aldehydes & Ketones Dr. Dinesh R. Pandithavidana ffice: B1 222/3 Phone: (+94)777-745-720 (Mobile) Email: dinesh@kln.ac.lk

More information

Chem 263 Nov 3, 2016

Chem 263 Nov 3, 2016 hem 263 Nov 3, 2016 Preparation of Aldehydes from Acid alides? + l l acid chloride aka acyl chloride aldehyde Needed: 2 Actual eagents: 2 /Pd Al This is lithium tri-t-butoxy aluminum hydride, a very sterically

More information

Chem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below.

Chem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below. hem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below. TP l Et step 8 4 5 eagents used in synthesis A B D E F a DMF (solvent) 1. (i-pr) 2 Li (LDA)/TF

More information

2Dstructuredrawing Chem314 Beauchamp

2Dstructuredrawing Chem314 Beauchamp 2Dstructuredrawing hem314 Beauchamp 3 2 3 3 2 2 3 2 2 3 2 2 (neutral) (cation) (anion) (free radical) use zig-zag drawing for sp 3 chains 1 o carbocation 1 o carbanion 1 o free radical 3 3 3 3 3 3 (cation)

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions "

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The π

More information

Loudon Chapter 10 Review: Alcohols & Thiols Jacquie Richardson, CU Boulder Last updated 4/26/2016

Loudon Chapter 10 Review: Alcohols & Thiols Jacquie Richardson, CU Boulder Last updated 4/26/2016 Alcohols (R) and thiols (RS) have many reactions in common with alkyl halides, but they don t do everything exactly the same. The main difference between this and alkyl halide chemistry is that unlike

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018 An alkyne is any molecule with a triple bond between two carbon atoms. This triple bond consists of one σ bond and two π bonds: the σ bond exists on a straight line between carbon atoms, while one π bond

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Introduction: Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds The π electrons of

More information

an axial "X" is necessary for a succesful E2 reaction and also works better for S N 2

an axial X is necessary for a succesful E2 reaction and also works better for S N 2 cleophilic Substitution & Elimination hemistry 1 Templates for predicting S2 and E2 reactions primary - β α α β two different perspectives secondary - β β α β β α two different perspectives tertiary -

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes Chapter 8 Alkenes and Alkynes II: Addition Reactions Generally the reaction is exothermic because one p and one s bond are converted to two s bonds Alkenes are electron rich The carbocation

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hem A225 Notes Page 67 I. Introduction hapter 20: Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group (=) with no other heteroatoms attached. An aldehyde has at least one hydrogen attached;

More information

Dr. Mohamed El-Newehy

Dr. Mohamed El-Newehy By Dr. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy Aldehydes and Ketones 1 Structure of Aldehydes and Ketones - Aldehydes and ketones

More information

Chapter 13: Alcohols and Phenols

Chapter 13: Alcohols and Phenols Chapter 13: Alcohols and Phenols [ Chapter 9 Sections: 9.10; Chapter 13 Sections: 13.1-13.3, 13.9-13.10] 1. Nomenclature of Alcohols simple alcohols C3 C3C2 Eddie Sachs 1927-1964 larger alcohols find the

More information

p Bonds as Electrophiles

p Bonds as Electrophiles Chapter 7 p Bonds as Electrophiles REACTIONS OF CARBONYLS AND RELATED FUNCTIONAL GROUPS Copyright 2018 by Nelson Education Limited 1 7.2.1 Orbital structure of the carbonyl group Because oxygen is more

More information

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium 18.8 Oxidation Oxidation by silver ion requires an alkaline medium Test for detecting aldehydes Tollens reagent to prevent precipitation of the insoluble silver oxide, a complexing agent is added: ammonia

More information

Loudon Chapter 20 & 21 Review: Carboxylic Acids & Derivatives CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 20 & 21 Review: Carboxylic Acids & Derivatives CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 20 & 21 eview: Carboxylic Acids & Derivatives CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 These two chapters cover compounds which are all at the three bonds to more electronegative

More information

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water.

Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Synthesis and Structure of Alcohols Alcohols can be considered organic analogues of water. Alcohols are usually classified as primary, secondary and tertiary. Alcohols with the hydroxyl bound directly

More information

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution Alpha Substitution and ondensations of Enols and Enolate Ions hap 23 W: 27, 28, 30, 31, 37, 39, 42-44, 47, 51, 54-56 Alpha Substitution Replacement of a hydrogen on the carbon adjacent to the carbonyl,

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

Chapter 9 Alkynes. Introduction

Chapter 9 Alkynes. Introduction hapter 9 Alkynes Introduction Alkynes contain a triple bond. General formula is n 2n-2. Two elements of unsaturation for each triple bond. MST reactions are like alkenes: addition and oxidation. Some reactions

More information

Chapter 19 Substitutions at the Carbonyl Group

Chapter 19 Substitutions at the Carbonyl Group Chapter 19 Substitutions at the Carbonyl Group In Chapter 18 Additions to the Carbonyl Groups In Chapter 19 Substitutions at the Carbonyl Group O O - - O - O R Y R C+ Y R Y Nu -Ȳ R N u + Y=goodleavinggroup

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information

Double and Triple Bonds. The addition of an electrophile and a

Double and Triple Bonds. The addition of an electrophile and a Chapter 11 Additions to Carbon-Carbon Double and Triple Bonds The addition of an electrophile and a nucleophile to a C-C C double or triple bonds 11.1 The General Mechanism Pi electrons of the double bond

More information

Aldehydes and Ketones

Aldehydes and Ketones Aldehydes and Ketones Preparation of Aldehydes xidation of Primary Alcohols --- 2 P 1o alcohol ydroboration of a Terminal Alkyne, followed by Tautomerization --- 1. B 3, TF 2. 2 2, K 2 terminal alkyne

More information

Aldehydes and Ketones

Aldehydes and Ketones 9 Aldehydes and Ketones hapter Summary The carbonyl group, =, is present in both aldehydes (=) and ketones ( 2 =). The IUPA ending for naming aldehydes is -al, and numbering begins with the carbonyl carbon.

More information

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!!

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!! CHEM 345 Problem Set 4 Key Grignard (RMgX) Problem Set You will be using Grignard reagents throughout this course to make carbon-carbon bonds. To use them effectively, it will require some knowledge from

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

PAPER No. : Paper-9, Organic Chemistry-III (Reaction Mechanism-2) MODULE No. : Module-10, Hydroboration Reaction CHEMISTRY

PAPER No. : Paper-9, Organic Chemistry-III (Reaction Mechanism-2) MODULE No. : Module-10, Hydroboration Reaction CHEMISTRY Subject Chemistry Paper No and Title Module No and Title Module Tag Paper-9, Organic Chemistry-III (Reaction Mechanism-2) Module-10, Hydroboration Reaction CHE_P9_M10 TABLE OF CONTENTS 1. Learning Outcomes

More information

20.3 Alkylation of Enolate Anions

20.3 Alkylation of Enolate Anions 864 APTER 20 ELATE AD TER ARB ULEPILES which precipitates as a yellow solid, provides a positive test for the presence of a methyl ketone The reaction can also be used in synthesis to convert a methyl

More information

Mechanical Approach to Drawing 2D, 3D and Resonance Structures from a condensed line formula.

Mechanical Approach to Drawing 2D, 3D and Resonance Structures from a condensed line formula. 2D structure drawing hem 314 Beauchamp Mechanical Approach to Drawing 2D, 3D and esonance tructures from a condensed line formula. 1. Draw a 2D structure based on given arrangement shown in condensed line

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

Ethers. Synthesis of Ethers. Chemical Properties of Ethers Page 1 of 6 like alcohols are organic derivatives of water, but lack the labile -OH group. As a result, ethers, except for epoxides, are usually not very reactive and are often used as solvents for organic

More information

Ch 22 Carbonyl Alpha ( ) Substitution

Ch 22 Carbonyl Alpha ( ) Substitution Ch 22 Carbonyl Alpha () Substitution The overall reaction replaces an H with an E + The acid-catalyzed reaction has an enol intermediate The base-catalyzed reaction has an enolate intermediate Keto-Enol

More information

Electrophilic Addition

Electrophilic Addition . Reactivity of = Electrons in pi bond are loosely held. Electrophiles are attracted to the pi electrons. arbocation intermediate forms. Nucleophile adds to the carbocation. Net result is addition to the

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

CH 3 CHCH 3 CH 3 CHCH 3 Isopropyl cation. Oxomium ion intermediate. intermediate (an electrophile)

CH 3 CHCH 3 CH 3 CHCH 3 Isopropyl cation. Oxomium ion intermediate. intermediate (an electrophile) Understanding (as opposed to memorizing) mechanisms is critical to mastering organic chemistry. Although the mechanisms you encounter throughout the course may seem entirely different, they are actually

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

Aldehydes and Ketones: Nucleophilic Addition Reactions

Aldehydes and Ketones: Nucleophilic Addition Reactions Aldehydes and Ketones: Nucleophilic Addition Reactions Why this Chapter? Much of organic chemistry involves the chemistry of carbonyl compounds Aldehydes/ketones are intermediates in synthesis of pharmaceutical

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information