Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Size: px
Start display at page:

Download "Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013"

Transcription

1 Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Name: Quiz 2: Chapters 3, 4, and 5 September 26, 2013 Constants and Conversion Factors Gas Constants: J mol 1 K Pa m 3 mol 1 K L orr mol 1 K L atm mol 1 K L bar mol 1 K 1 cubic meters to liters: 1 m 3 = 10 3 L Equations Ideal Gas Law: P = nr van der Waals Equation: P = R a m b m 2 Work: w = Pd First Law of hermodynamics: U ( = q +w U as a function of and constant : ) = ( ) P P Enthalpy: H = U + (P) Enthalpy of Reaction: Hreaction = ν products Hf Entropy: products S = qrev hemochemical Data Substance Hf (kj mol 1 ) CH 4 (g) C 2 H 6 (g) C 2 H 4 (g) 52.4 C(g) H(g) reactants ν reactants H f

2 1. For the internal energy U = U(,), (a) Derive the differential du as a function of and du = d + d (b) Evaluate ( ) for an ideal gas, and modify the equation for du accordingly, showing that, for an ideal gas, U is a function of only. ( ) = 0 for an ideal gas, and ( ) = C. hus, U = C ( 2 1 ) (c) Evaluate ( ) for the van der Waals equation of state. P = R m b a = ( ) P 2 m P = a 2 m (d) Derive an expression for the change in internal energy in compressing a van der Waals gas from an initial molar volume, m,i to a final molar volume, m,f at constant temperature. U,m = m,f m,i m,f U,m = d m m,i [ ] m,f [ a 1 1 d m 2 m = a = a 1 ] m m,i m,i m,f (e) By comparing parts (b) and (d), explain whether or not U,m will be zero for a gas and why? At constant temperature, U = 0 for an ideal gas because U,m = C 0 ( 2 1 ) but that will not be true for the van der Waals gas because U,m is a function of volume.

3 2. Given the thermochemical data in the table on the cover page, calculate the bond enthalpy and bond energy for the following cases. Use the results from part (a) to solve parts (b) and (c). a. he C-H bond in CH 4. CH 4 (g) C(g)+4H(g) H reaction = 4 H f(h, g)+ H f(c, g) H f(ch 4, g) H reaction = kj mol kj mol kj mol 1 = 1663 kj mol 1 he average C-H bond enthalpy in CH 4 = 1663 kj mol 1 4 = 416 kj mol 1 U = H nr = 1663 kj mol 1 4 (8.314 J mol 1 K 1 ) ( K) = 1654 kj mol 1 he average C-H bond energy in CH 4 = b. he C-C single bond in C 2 H 6. C 2 H 6 (g) 2C(g)+6H(g) 1654 kj mol 1 4 = 413 kj mol 1 H reaction = 6 H f(h, g)+2 H f(c, g) H f(c 2 H 6, g) H reaction = kj mol kj mol kj mol 1 = 2825 kj mol 1 H reaction = 6 x C-H bond enthalpy + C-C bond enthalpy C-C bond enthalpy = 2825 kj mol 1-6 x 416 kj mol 1 = 329 kj mol 1 U = H nr = 2825 kj mol 1 7 (8.314 J mol 1 K 1 ) ( K) = 2808 kj mol 1 U = 6 x C-H bond energy + C-C bond energy C-C bond energy = 2808 kj mol 1-6 x 413 kj mol 1 = 329 kj mol 1 c. he C=C double bond in C 2 H 4. C 2 H 4 (g) 2C(g)+4H(g) H reaction = 4 H f(h, g)+2 H f(c, g) H f(c 2 H 4, g) H reaction = kj mol kj mol kj mol 1 = 2253 kj mol 1 H reaction = 4 C-H bond enthalpy+c=c bond enthalpy C=C bond enthalpy = 2253 kj mol kj mol 1 = 589 kj mol 1 U = H nr = 2254 kj mol 1 5 (8.314 J mol 1 K 1 ) ( K) = 2240 kj mol 1 U = 4 C-H bond enthalpy+c=c bond enthalpy C=C bond energy = 2240 kj mol kj mol 1 = 588 kj mol 1

4 3. (a) One mole of an ideal gas at is reversibly and isothermally compressed from a volume of 25.0 L to a volume of 10.0 L. Because it is very large, the temperature of the thermal water bath resevoir in the surroundings remains essentially constant at during the process. Calculate S, S surroundings, and S total. Because this is an isothermal and reversible process: U = 0, and q reversible = w q reversible = w = nr f i d = nr ln f i q reversible = 1.00 mol J mol 1 K 1 ln 10.0 L 25.0 L = J he entropy change of the system is given by: S = dqreversible = q reversible = J = J K 1 he entropy change of the surroundings is given by: S surroundings = q surroundings = q system = J = 7.62 J K 1 he total change in entropy is given by S total = S + S surroundings = J K J K 1 = 0

5 (b) One mole of an ideal gas at is isothermally compressed at constant external pressure equal to the final pressure in Part (a). At the end of the process, P = P external, and because of this, the process is irreversibe at all but the final state. he initial and final volumes are, respectively, 25.0 L and 10.0 L, and the temperature of the surroundings is. Calculate S, S surroundings, and S total. Determine the direction of spontaneous change, i.e. either compression or expansion, and provide a reason for your answer. First calculate the external pressure P external = nr = 1 mol J mol 1 K 1 10 L 1 m L = Pa and the initial pressure of the system P initial = nr = 1 mol J mol 1 K 1 25 L 1 m L = Pa Because P external > P initial, the direction of spontaneous change will be the compression of the gas to smaller volume. Because this is an isothermal and irreversible process: U = 0, and q = w and q = w = P external ( f i ) = Pa ( m m 3 ) = J he entropy change of the system must be calculated by a reversible path and has the same value as obtained in part (a): S = dqreversible = q reversible = J = J K 1 he entropy change of the surroundings is given by S surroundings = q surroundings = q = J = J K 1 S total = S + S surroundings = J K J K 1 = 4.85 J K 1 It can be seen that S < 0 and S surroundings > 0 confirming that the entropy of an isolated system always increases.

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Mierm Examination: Thermodynamics and Kinetics Name: October 10, 2013 Constants and Conversion Factors Gas Constants: 8.314 J mol 1 K 1 ; 8.314

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S UNIERSIY OF ORONO Please mark X to indicate your tutorial section. Failure to do so will result in a deduction of 3 marks. U 0 U 0 FACULY OF APPLIED SCIENCE AND ENGINEERING ERM ES 7 MARCH 05 U 03 U 04

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information

Adiabatic Expansion/Compression

Adiabatic Expansion/Compression Adiabatic Expansion/Compression Calculate the cooling in a the reversible adiabatic expansion of an ideal gas. P P 1, 1, T 1 A du q w First Law: Since the process is adiabatic, q = 0. Also w = -p ex d

More information

C a h p a t p er 3 The Importance of State Functions: Internal Energy and Enthalpy

C a h p a t p er 3 The Importance of State Functions: Internal Energy and Enthalpy Chapter 3 he Importance of State Functions: Internal Energy and Enthalpy Engel & Reid 1 Outline 3.1 he Mathematical roperties of State Functions 3.2 he Dependence of U on and 3.3 Does he Internal Energy

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use)

TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use) 361 Lec 7 Fri 9sep15 TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use) 2. Heats of Chemical Reactions: r H (mechanics of obtaining from

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

Thermodynamics (XI) Assignment(Solution)

Thermodynamics (XI) Assignment(Solution) SYLLABUS CUM COM./XI/03 4 hermodynamics (XI) Assignment(Solution) Comprehension ype Questions aragraph for Question -5 For an ideal gas, an illustration of three different paths A, (B + C) and (D + E)

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Energy Relationships in Chemical Reactions

Energy Relationships in Chemical Reactions Energy Relationships in Chemical Reactions What is heat? What is a state function? What is enthalpy? Is enthalpy a state function? What does this mean? How can we calculate this? How are the methods the

More information

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these Q 1. Q 2. Q 3. Q 4. Q 5. Q 6. Q 7. The incorrect option in the following table is: H S Nature of reaction (a) negative positive spontaneous at all temperatures (b) positive negative non-spontaneous regardless

More information

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems

Lecture 37. Heat of Reaction. 1 st Law Analysis of Combustion Systems Department of Mechanical Engineering ME 322 Mechanical Engineering hermodynamics Heat of eaction Lecture 37 1 st Law Analysis of Combustion Systems Combustion System Analysis Consider the complete combustion

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

du = δq + δw = δq rev + δw rev = δq rev + 0

du = δq + δw = δq rev + δw rev = δq rev + 0 Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 6 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 6-6. Paraphrase: Compute

More information

Physical Chemistry I Exam points

Physical Chemistry I Exam points Chemistry 360 Fall 2018 Dr. Jean M. tandard October 17, 2018 Name Physical Chemistry I Exam 2 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must

More information

18:00-21:00, 13 January, 2017 (Total Score: 118 points)

18:00-21:00, 13 January, 2017 (Total Score: 118 points) Chemistry I Final Exam 18:00-21:00, 13 January, 2017 (Total Score: 118 points) R = 8.314 J K -1 mol -1 1. The ionic character of the bond in a diatomic molecule can be estimated by the formula: ( /ed )

More information

Thermodynamic Processes and Thermochemistry

Thermodynamic Processes and Thermochemistry General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

More information

Ideal Gas Law. Deduced from Combination of Gas Relationships: PV = nrt. where R = universal gas constant

Ideal Gas Law. Deduced from Combination of Gas Relationships: PV = nrt. where R = universal gas constant Ideal Gas Law Deduced from Combination of Gas Relationships: V 1/P, Boyle's Law V T, Charles's Law V n, Avogadro's Law Therefore, V nt/p or PV nt PV = nrt where R = universal gas constant The empirical

More information

Lecture 7 Enthalpy. NC State University

Lecture 7 Enthalpy. NC State University Chemistry 431 Lecture 7 Enthalpy NC State University Motivation The enthalpy change ΔH is the change in energy at constant pressure. When a change takes place in a system that is open to the atmosphere,

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Downloaded from

Downloaded from THERMODYNAMICS Thermodynamics: is the branch of science which deals with deals with the study of different forms of energy and the quantitative relationship between them. Significance of Thermodynamics:

More information

Gaseous States of Matter

Gaseous States of Matter Gaseous States of Matter Semester-1 : ICY-101: CHEMISTRY-I, Unit III Dr. Tapta Kanchan Roy Assistant Professor Department of Chemistry & Chemical Sciences Central University of Jammu 1 The simplest state

More information

Answers to Assigned Problems from Chapter 2

Answers to Assigned Problems from Chapter 2 Answers to Assigned Problems from Chapter 2 2.2. 1 mol of ice has a volume of 18.01 g/0.9168 g cm 3 = 19.64 cm 3 1 mol of water has a volume of 18.01 g/0.9998 g cm 3 = 18.01 cm 3 V(ice water) = 1.63 cm

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

kpa = 760 mm Hg? mm Hg P = kpa

kpa = 760 mm Hg? mm Hg P = kpa Chapter : Gasses. The atmospheric pressure of 768. mm Hg. Expressed in kilopascals (kpa) what would the value be the pressure? ( atm = 035 Pa = 760 torr = 760 mm Hg) a. 778.4 kpa b. 0.4 kpa c. 00.3 kpa

More information

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: CHATER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: Fig. 3. (a) Isothermal expansion from ( 1, 1,T h ) to (,,T h ), (b) Adiabatic

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 11 07/18/14 University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 A. he Helmholt Free Energy and Reversible Work he entropy change S provides an absolutely general

More information

CH352 Assignment 3: Due Thursday, 27 April 2017

CH352 Assignment 3: Due Thursday, 27 April 2017 CH352 Assignment 3: Due Thursday, 27 April 2017 Prof. David Coker Thursday, 20 April 2017 Q1 Adiabatic quasi-static volume and temperature changes in ideal gases In the last assignment you showed that

More information

Final Exam, Chemistry 481, 77 December 2016

Final Exam, Chemistry 481, 77 December 2016 1 Final Exam, Chemistry 481, 77 December 216 Show all work for full credit Useful constants: h = 6.626 1 34 J s; c (speed of light) = 2.998 1 8 m s 1 k B = 1.387 1 23 J K 1 ; R (molar gas constant) = 8.314

More information

Class XI Chapter 6 Thermodynamics Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii)

More information

Quiz I: Thermodynamics

Quiz I: Thermodynamics Quiz I: Thermodynamics SCH4U_2018-2019_V2 NAME: (Total Score: / 30) Multiple Choice (12) 1. What can be deduced from the following reaction profile? A. The reactants are less stable than the products and

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 2 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 2-6. Paraphrase: How

More information

= 1906J/0.872deg = 2186J/deg

= 1906J/0.872deg = 2186J/deg Physical Chemistry 2 2006 Homework assignment 2 Problem 1: he heat of combustion of caffeine was determined by first burning benzoic acid and then caffeine. In both cases the calorimeter was filled with

More information

Chemistry Slide 1 of 33

Chemistry Slide 1 of 33 Chemistry 17.2 1 of 33 17.2 Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

P(N,V,T) = NRT V. = P(N,V,T) dv

P(N,V,T) = NRT V. = P(N,V,T) dv CHEM-443, Fall 2016, Section 010 Student Name Quiz 1 09/09/2016 Directions: Please answer each question to the best of your ability. Make sure your response is legible, precise, includes relevant dimensional

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy hermochemistry opic 6. hermochemistry hermochemistry Outline. Getting Started: Some terminology. State functions 3. Pressure-Volume Work 4. he First Law of hermodynamics: Heat, work and enthalpy 5. Heat

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

Thermodynamics Unit - RAQ Consider the following CHEMICAL CHANGE:

Thermodynamics Unit - RAQ Consider the following CHEMICAL CHANGE: Thermodynamics Unit - RAQ Consider the following CHEMICAL CHANGE: Acetylene (C 2 ) combusts in oxygen to form carbon dioxide and water. 1. Estimate the enthalpy of combustion of acetylene using bond energies

More information

P340: Thermodynamics and Statistical Physics, Exam#2 Any answer without showing your work will be counted as zero

P340: Thermodynamics and Statistical Physics, Exam#2 Any answer without showing your work will be counted as zero P340: hermodynamics and Statistical Physics, Exam#2 Any answer without showing your work will be counted as zero 1. (15 points) he equation of state for the an der Waals gas (n = 1 mole) is (a) Find (

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

CH341 Test 2 Physical Chemistry Test 2 Fall 2011, Prof. Shattuck

CH341 Test 2 Physical Chemistry Test 2 Fall 2011, Prof. Shattuck Physical Chemistry Test 2 Fall 2011, Prof. Shattuck Name 1 Constants: R = 8.3145 J K -1 mol -1 = 0.083145 L bar K -1 mol -1 R = 0.08206 L atm K -1 mol -1 1 F = 96485 C mol -1 1 atm = 1.01325 bar 1 bar

More information

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm?

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm? Real Gases Thought Question: How does the volume of one mole of methane gas (CH4) at 300 Torr and 298 K compare to the volume of one mole of an ideal gas at 300 Torr and 298 K? a) the volume of methane

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCIT Fall 2017 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

Exam 2, Chemistry 481, 4 November 2016

Exam 2, Chemistry 481, 4 November 2016 1 Exam, Chemistry 481, 4 November 016 Show all work for full credit Useful constants: h = 6.66 10 34 J s; c (speed of light) =.998 10 8 m s 1 k B = 1.3807 10 3 J K 1 ; R (molar gas constant) = 8.314 J

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 when the ions each are 1 M, Zn is consumed. This means 1. 1 2. 1 3. 1 4. 1. More information needed Lecture 24 CH102 A1 (MWF 9:0 am) Monday, March 26, 2018 Cell voltage,, and electrical energy Calculating

More information

arxiv:physics/ v4 [physics.class-ph] 27 Mar 2006

arxiv:physics/ v4 [physics.class-ph] 27 Mar 2006 arxiv:physics/0601173v4 [physics.class-ph] 27 Mar 2006 Efficiency of Carnot Cycle with Arbitrary Gas Equation of State 1. Introduction. Paulus C. jiang 1 and Sylvia H. Sutanto 2 Department of Physics,

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry 1 P age Module 5: Combustion Technology Lecture 32: Fundamentals of thermochemistry 2 P age Keywords : Heat of formation, enthalpy change, stoichiometric coefficients, exothermic reaction. Thermochemistry

More information

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally.

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally. Heat and Thermodynamics. February., 0 Solution of Recitation Answer : We have given that, Initial volume of air = = 0.4 m 3 Initial pressure of air = P = 04 kpa = 04 0 3 Pa Final pressure of air = P =

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

Chapter 5 Practice Multiple Choice & Free

Chapter 5 Practice Multiple Choice & Free Name Response 1. A system has an increase in internal energy, E, of 40 kj. If 20 kj of work, w, is done on the system, what is the heat change, q? a) +60 kj d) -20 kj b) +40 kj e) -60 kj c) +20 kj 2. Which

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

δs > 0 predicts spontaneous processes. U A + U B = constant U A = U B ds = ds A + ds B Case 1: TB > TA (-) (-) (+)(+) ds = C v(t )

δs > 0 predicts spontaneous processes. U A + U B = constant U A = U B ds = ds A + ds B Case 1: TB > TA (-) (-) (+)(+) ds = C v(t ) ---onight: Lecture 5 July 23 δs > 0 predicts spontaneous processes. ---Assignment 2 (do not include 1-3 done in-class): Due Friday July 30: Class time ---Assignment 3 posted ater class tonight. Whatever

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Chapter 2 First Law Formalism

Chapter 2 First Law Formalism Chapter 2 First Law Formalism 2.1 The Special Character of State Variables A gas can be characterized by a set of state variables. Some, such as temperature, pressure, and volume, are measured directly

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Homework Week The figure below depicts the isothermal compression of an ideal gas. isothermal du=0. δq rev = δw rev = P dv

Homework Week The figure below depicts the isothermal compression of an ideal gas. isothermal du=0. δq rev = δw rev = P dv Statistical Molecular hermodynamics University of Minnesota Homework Week 6 1. he figure below depicts the isothermal compression of an ideal gas. Start from the First and Second Laws of thermodynamics

More information

ANSWER KEY. Chemistry 25 (Spring term 2016) Midterm Examination

ANSWER KEY. Chemistry 25 (Spring term 2016) Midterm Examination Name ANSWER KEY Chemistry 25 (Spring term 2016) Midterm Examination 1 Some like it hot 1a (5 pts) The Large Hadron Collider is designed to reach energies of 7 TeV (= 7 x 10 12 ev, with 1 ev = 1.602 x 10-19

More information

Thermodynamics. For the process to occur under adiabatic conditions, the correct condition is: (iii) q = 0. (iv) = 0

Thermodynamics. For the process to occur under adiabatic conditions, the correct condition is: (iii) q = 0. (iv) = 0 Thermodynamics Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii) used to determine pressure volume

More information

CHAPTER THERMODYNAMICS

CHAPTER THERMODYNAMICS 54 CHAPTER THERMODYNAMICS 1. If ΔH is the change in enthalpy and ΔE the change in internal energy accompanying a gaseous reaction, then ΔHis always greater than ΔE ΔH< ΔE only if the number of moles of

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous?

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous? pontaneous Rxns A&G-1 From what we know now (i.e, Δ and Δ) ow do we determine whether a reaction is spontaneous? But Δ and Δ are not enough... here is competition between lowering energy and raising entropy!

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

For more info visit

For more info visit Basic Terminology: Terms System Open System Closed System Isolated system Surroundings Boundary State variables State Functions Intensive properties Extensive properties Process Isothermal process Isobaric

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Thermodynamics 1. Hot Milk in a thermos flask is an example for 1) Isolated system ) Open system 3) Closed system 4) Adiabatic system. In open system, system and surroundings exchange 1) Energy only )

More information

Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics

Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics Chemistry 2000 Lecture 9: Entropy and the second law of thermodynamics Marc R. Roussel January 23, 2018 Marc R. Roussel Entropy and the second law January 23, 2018 1 / 29 States in thermodynamics The thermodynamic

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Chem 112 Exam 1 Version A Spring /16/ :00am/Odago, M. O.

Chem 112 Exam 1 Version A Spring /16/ :00am/Odago, M. O. Chem 112 Exam 1 Version A Spring 2011 02/16/2011 10:00am/Odago, M. O. 1. The pressure of a certain gas is measured to be 25.1 mmhg. What is this pressure expressed in units of pascals? (1 atm=1.0125 x10

More information

Unit 12. Thermochemistry

Unit 12. Thermochemistry Unit 12 Thermochemistry A reaction is spontaneous if it will occur without a continuous input of energy However, it may require an initial input of energy to get it started (activation energy) For Thermochemistry

More information

Concentrating on the system

Concentrating on the system Concentrating on the system Entropy is the basic concept for discussing the direction of natural change, but to use it we have to analyze changes in both the system and its surroundings. We have seen that

More information

Physical Chemistry I FINAL EXAM SOLUTIONS

Physical Chemistry I FINAL EXAM SOLUTIONS Physical Chemistry I FINAL EXAM SOLUTIONS Work any 8. Identify the 2 not to be graded! 1. In last year's final, students were asked to derive an expression for the isothermal Joule-Thompson Coefficient

More information

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions.

Thermodynamics and Equilibrium. Chemical thermodynamics is concerned with energy relationships in chemical reactions. 1 of 7 Thermodynamics and Equilibrium Chemical thermodynamics is concerned with energy relationships in chemical reactions. In addition to enthalpy (H), we must consider the change in randomness or disorder

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

Chem142 Introduction to Physical Chemistry

Chem142 Introduction to Physical Chemistry Chem4 Introduction to hysical Chemistry Exam # (50 minutes) Name 00 points September 5, 07 Units and Constants R = 8.34 J/K*mol = 0.0834 L*bar/K*mol = 0.0806 L*atm/K*mol dm 3 = L K = 73.5 + C bar = 00

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th and 9th editions Entropy of Phase ransition at the ransition emperature Expansion of the Perfect

More information

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2 UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 006 CHEMISTRY CHEM30W: PHYSICAL CHEMISTRY TIME: 180 MINUTES MARKS: 100 EXAMINER: PROF S.B. JONNALAGADDA ANSWER FIVE QUESTIONS.

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

NCERT THERMODYNAMICS SOLUTION

NCERT THERMODYNAMICS SOLUTION NCERT THERMODYNAMICS SOLUTION 1. Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii) used to determine

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information