University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

Size: px
Start display at page:

Download "University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014"

Transcription

1 Lecture 11 07/18/14 University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 A. he Helmholt Free Energy and Reversible Work he entropy change S provides an absolutely general criterion for assessing the spontaneous direction for physical processes. However the Second Law specifies that S universe 0 so a entropy calculation must include S system and S surr. Suppose a system is isolated meaning it cannot exchange energy or matter with its surroundings. If this system is not at equilibrium it must undergo transport processes which are irreversible process that establish equilibrium. ransport occurs until equilibrium is established and an indication that an isolated system is at equilibrium is that it s entropy is maximum. his isolated system cannot decreases its entropy because to do so would be to violate the Second Law. Suppose a system is closed meaning it cannot matter with its surroundings but it can exchange energy in the forms of heat and work. If the system and the surroundings are not at equilibrium again irreversible transport processes must establish equilibrium. ransport occurs until equilibrium is established and an indication that the entropy of the surroundings and the system is maximum. he universe cannot decrease its entropy because to do so would be to violate the Second Law. Suppose a closed system is not at equilibrium. It exchanges heat and work with the surroundings. Now the surroundings are massive compared to the system and thus any exchange of energy with the system will not perturb the surroundings much from equilibrium. herefore the surrounding exchange heat reversibly or dssurr =. But the system is not at equilibrium and does not exchange heat reversibly. his irrev means that dssys because = irrev. he best we can say is dssys > because qrev > qirrev Once the system reaches equilibrium any slight perturbation from equilibrium results rev in an entropy change dssys =. What is always true is ds. From the First Law dusys = + dw. From the Second Law ds. Combining the two du ds + dw. For a reversible exchange of heat and P-V work du = rev + dwrev = ds PdV Now consider the state function U-S. he differential change in this state function is d ( U S ) = du ds Sd = δ q PdV ds Sd (11.1)

2 If the process is reversible then =ds. If the process is irreversible <ds. herefore is it always safe to say that d ( U S ) Sd PdV (11.2). And at constant V and (i.e. d=dv=0) equatyion 11.2 reduces to d( U S) 0 (11.3) his means that the state function A=U-S decreases via irreversible processes until it reaches a minimum when equilibrium is reached. Note that although A the Helmholt energy has units of Joules A is not a conserved quantity. he Helmholt energy is also called the work function or the reversible work because for a reversible change at constant temperature (d=0) da = Sd + δ wrev = dwrev B. Gibbs Energy: non-pv Work and Applications at Constant P and For calculating the spontaneous direction of processes occurring at constant P and the Gibbs Free energy G is used : G=H-S=U+PV-S Analogous behavior to A: dg = d( U + PV ) d( S) = du + PdV + VdP ds Sd = δ q PdV + PdV + VdP ds Sd (11.4) = δ q + VdP ds Sd If the process is reversible then δ qrev = ds and so dg = ds + VdP ds Sd = Sd + VdP (11.5) At constant P and for reversible changes with only PV work: dg=0 If the change is irreversible δ qirrev < δ qrev = ds and then dg < Sd + VdP (11.6) Similarly at constant P and dg<0. It is therefore certain that for both irreversible and reversible changes at constant P and : dg 0 (11.7) Equation 11.7 is basically the criteria for a system being at equilibrium or undergoing an irreversible change. he Gibbs energy or Gibbs function is also used to quantify reversible work at constant P and. Assume in addition to PV there are other work terms including electrical work (to move charge in a potential gradient) osmotic work (to move mass in a concentration gradient) etc. dg = dh d ( S ) = d ( U + PV ) d ( S ) = δqrev + δwrev + PdV + VdP Sd ds (11.8) = ds + δ wother PdV + PdV + VdP Sd ds = δ w + VdP Sd other Note at constant P and (i.e. dp=d=0) dg = dw other (11.9)

3 G = w other means the Gibbs free energy change G measures the amount of non-p-v work that a physical process can produce if it is conducted reversibly. Because the reversible work is the maximum work that can be produced G measures the upper limit of work that can be obtained from a spontaneous process at constant P and. Example for a electrochemical cell G = welec = ni Ε where w elec is the reversible electrical work n is the number of moles of electrons transported by the electrochemical cell I is Faraday s constant and Ε is the potential difference between the half cell. If no work other than P-V work is performed then dg = VdP Sd At constant (i.e. d=0) dg=vdp. Example: Calculate the free energy change when 1 mole of an ideal gas changes its pressure from 1 atm to 10 atm. P 2 2 dg = VdP dg = G2 G1 = G = VdP 1 = 10atm = 10atm nr F = = = H G P dp nr dp nr ln P = 1atm = 1atm = b gb. / gb gln =. 1mole 8 31J mole K 300K kJ he absolute standard free energy of a gas with a pressure of one atmosphere is designated G 0. 0 F P G = G + nr H G I 0 ln G nr P atm K J = + lnb g 1 Standard Free Energy Changes Definition: he standard molar free energy of formation G 0 f is the free energy change required to form one mole of a pure compound in its standard state from its constituent elements all in their standard states Gf = H f S f Example: Cbsgr g+ O2bgg CO2 bgg 0 0 H = b1moleg H f bco2g = kj S = S CO g S O g S O s gr b g fc 2 h fc 2b gh fc 2b g b gb g = 1mole J / mole K = 2. 86J / K G = H S = kj 298K 2. 86J / K = kJ f b gb g he Gibbs Equations All thermodynamic relationships can be derived from six basic equations h I KJ

4 du = ds PdV H = U + PV A = U S U H (11.10) G = H S CVm = CPm = applicable to closed system reversible PV work only. he Gibbs equations are expressions for dh da and dg that are analogous to du = ds PdV for closed systems undergoing reversible changes and PV work only. hey are: du = ds PdV; dh = ds + VdP (11.11) da = Sd PdV; dg = Sd + VdP It is the basic strategy of thermodynamics to provide any change in any state function U H G A or S resulting from a change in any state variable V or P in terms of a few easily measured properties. As it turns out all state functions S U changes as a result of changes in state variables (e.g. etc. ) can be P expressed in terms of P V and only three properties: H 1 V 1 V C Pm β κ = = = (11.12) V V P he first property C P m is just the heat capacity at constant pressure. he second property β is called the thermal expansivity which measures the degree to which the volume of a material changes with temperature. he third property κ is called the isothermal compressibility and measures the degree to which the volume of a material changes with pressure. he Gibbs equations are combined with the exact differential expressions for du dh da and dg to give the Maxwell relations. he exact differential expressions are U U du = ds PdV = ds + dv S S (11.13) P = S S and similarly using dh da and dg we get the three other Maxwell relations V S P S V = = = (11.14) P S S P.Only the last two relations S P S V = = (11.15) P are of practical use.

5 U Example: Determine the differential in terms of state variables P V and/or H 1 V 1 V and the three properties: C Pm β κ = = = V V P. Solution: U S V du = ds PdV = P S P du = P = P Given We have already shown that V P V P β = 1 = = V V P κ P U P β = P= P κ H Similarly for example = V β + V P

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality Entropy distinguishes between irreversible and reversible processes. irrev S > 0 rev In a spontaneous process, there should be a net increase in the entropy of the system

More information

du = δq + δw = δq rev + δw rev = δq rev + 0

du = δq + δw = δq rev + δw rev = δq rev + 0 Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 6 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 6-6. Paraphrase: Compute

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality We know: Heat flows from higher temperature to lower temperature. T A V A U A + U B = constant V A, V B constant S = S A + S B T B V B Diathermic The wall insulating, impermeable

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Thermodynamic Variables and Relations

Thermodynamic Variables and Relations MME 231: Lecture 10 Thermodynamic Variables and Relations A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Thermodynamic relations derived from the Laws of Thermodynamics Definitions

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

VI. Entropy. VI. Entropy

VI. Entropy. VI. Entropy A. Introduction ( is an alternative way of looking at entropy). Observation shows that isolated systems spontaneously change to a state of equilibrium. a. wo blocks of iron with A > B. Bring the blocks

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant 1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v lnt + RlnV + cons tant (1) p, V, T change Reversible isothermal process (const. T) TdS=du-!W"!S = # "Q r = Q r T T Q r = $W = # pdv =

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these Q 1. Q 2. Q 3. Q 4. Q 5. Q 6. Q 7. The incorrect option in the following table is: H S Nature of reaction (a) negative positive spontaneous at all temperatures (b) positive negative non-spontaneous regardless

More information

δs > 0 predicts spontaneous processes. U A + U B = constant U A = U B ds = ds A + ds B Case 1: TB > TA (-) (-) (+)(+) ds = C v(t )

δs > 0 predicts spontaneous processes. U A + U B = constant U A = U B ds = ds A + ds B Case 1: TB > TA (-) (-) (+)(+) ds = C v(t ) ---onight: Lecture 5 July 23 δs > 0 predicts spontaneous processes. ---Assignment 2 (do not include 1-3 done in-class): Due Friday July 30: Class time ---Assignment 3 posted ater class tonight. Whatever

More information

Entropy A measure of molecular disorder

Entropy A measure of molecular disorder Entropy A measure of molecular disorder Second Law uses Entropy, S, to identify spontaneous change. Restatement of Second Law: The entropy of the universe tends always towards a maximum (S universe > 0

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Lecture 6 Free Energy

Lecture 6 Free Energy Lecture 6 Free Energy James Chou BCMP21 Spring 28 A quick review of the last lecture I. Principle of Maximum Entropy Equilibrium = A system reaching a state of maximum entropy. Equilibrium = All microstates

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Lecture 3 Clausius Inequality

Lecture 3 Clausius Inequality Lecture 3 Clausius Inequality Rudolf Julius Emanuel Clausius 2 January 1822 24 August 1888 Defined Entropy Greek, en+tropein content transformative or transformation content The energy of the universe

More information

Pressure Volume Work 2

Pressure Volume Work 2 ressure olume Work Multi-stage Expansion 1 3 w= 4 5 ( ) + 3( 3 ) + 4( 4 3) + ( ) 1 5 5 4 Reversible Expansion Make steps so small that hen d 0, d 0 δ w= d ( ) = + d d int d int w= dw= d path 1 int For

More information

Concentrating on the system

Concentrating on the system Concentrating on the system Entropy is the basic concept for discussing the direction of natural change, but to use it we have to analyze changes in both the system and its surroundings. We have seen that

More information

even at constant T and P, many reversible and irreversible changes of thermodynamic state may

even at constant T and P, many reversible and irreversible changes of thermodynamic state may Chapter 5 Spontaneity and Equilibrium: Free Energy 5.1 Spontaneity and Equilibrium Let us consider that a system is at a constant temperature, T and a constant pressure (P). Note, even at constant T and

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

Thermodynamic Laws, Gibbs Free Energy & pe/ph

Thermodynamic Laws, Gibbs Free Energy & pe/ph Thermodynamic Laws, Gibbs Free Energy & pe/ph or how to predict chemical reactions without doing experiments OCN 623 Chemical Oceanography Definitions Extensive properties Depend on the amount of material

More information

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous?

From what we know now (i.e, ΔH and ΔS) How do we determine whether a reaction is spontaneous? pontaneous Rxns A&G-1 From what we know now (i.e, Δ and Δ) ow do we determine whether a reaction is spontaneous? But Δ and Δ are not enough... here is competition between lowering energy and raising entropy!

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2008

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2008 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 008 Midterm Examination Key July 5 008 Blue books are required. Answer only the number of questions requested. Chose wisely!

More information

Thermodynamics and Phase Transitions in Minerals

Thermodynamics and Phase Transitions in Minerals Studiengang Geowissenschaften M.Sc. Wintersemester 2004/05 Thermodynamics and Phase Transitions in Minerals Victor Vinograd & Andrew Putnis Basic thermodynamic concepts One of the central themes in Mineralogy

More information

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Name: Quiz 2: Chapters 3, 4, and 5 September 26, 2013 Constants and Conversion Factors Gas Constants: 8.314 J mol 1 K 1 8.314 Pa m 3 mol 1

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. However, the first law cannot explain certain facts about thermal

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

You MUST sign the honor pledge:

You MUST sign the honor pledge: CHEM 3411 MWF 9:00AM Fall 2010 Physical Chemistry I Exam #2, Version B (Dated: October 15, 2010) Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the correct

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

Part1B(Advanced Physics) Statistical Physics

Part1B(Advanced Physics) Statistical Physics PartB(Advanced Physics) Statistical Physics Course Overview: 6 Lectures: uesday, hursday only 2 problem sheets, Lecture overheads + handouts. Lent erm (mainly): Brief review of Classical hermodynamics:

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 2017 Spring Semester MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 Byungha Shin ( 신병하 ) Dept. of MSE, KAIST Largely based on lecture notes of Prof. Hyuck-Mo Lee and Prof. WooChul

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i 1. (20 oints) For each statement or question in the left column, find the appropriate response in the right column and place the letter of the response in the blank line provided in the left column. 1.

More information

Physical Chemistry I Exam points

Physical Chemistry I Exam points Chemistry 360 Fall 2018 Dr. Jean M. tandard October 17, 2018 Name Physical Chemistry I Exam 2 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Exam 1 Solutions 100 points

Exam 1 Solutions 100 points Chemistry 360 Fall 018 Dr. Jean M. Standard September 19, 018 Name KEY Exam 1 Solutions 100 points 1.) (14 points) A chunk of gold metal weighing 100.0 g at 800 K is dropped into 100.0 g of liquid water

More information

Part 1: (18 points) Define or explain three out of the 6 terms or phrases, below. Limit definitions to 200 words or less.

Part 1: (18 points) Define or explain three out of the 6 terms or phrases, below. Limit definitions to 200 words or less. Chemistry 452/456 23 July 24 Midterm Examination Key rofessor G. Drobny Boltzmann s constant=k B =1.38x1-23 J/K=R/N A, where N A is Avagadro s number and R is the Universal Gas Constant. Universal gas

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

The Chemical Potential

The Chemical Potential CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential Here we complete our pivot towards chemical thermodynamics with the introduction of the Chemical Potential ( ). This concept was first introduced

More information

CHEMICAL THERMODYNAMICS

CHEMICAL THERMODYNAMICS DEPARTMENT OF APPLIED CHEMISTRY LECTURE NOTES 6151- ENGINEERING CHEMISTRY-II UNIT II CHEMICAL THERMODYNAMICS Unit syllabus: Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal

More information

Summary of last part of lecture 2

Summary of last part of lecture 2 Summary of last part of lecture 2 Because the lecture became somewhat chaotic towards the end, I rederive the expressions for the Helmhlotz and Gibbs free energies from the Clausius inequality: S 0 (1)

More information

HOMOGENEOUS CLOSED SYSTEM

HOMOGENEOUS CLOSED SYSTEM CHAE II A closed system is one that does not exchange matter with its surroundings, although it may exchange energy. W n in = 0 HOMOGENEOUS CLOSED SYSEM System n out = 0 Q dn i = 0 (2.1) i = 1, 2, 3,...

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 9 Heat Engines

More information

Lecture 5. PHYC 161 Fall 2016

Lecture 5. PHYC 161 Fall 2016 Lecture 5 PHYC 161 Fall 2016 Ch. 19 First Law of Thermodynamics In a thermodynamic process, changes occur in the state of the system. Careful of signs! Q is positive when heat flows into a system. W is

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions.

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions. Chemical Thermodynamics S.Y.BSc. Concept of Gibb s free energy and Helmholtz free energy a) Gibb s free energy: 1) It was introduced by J.Willard Gibb s to account for the work of expansion due to volume

More information

3.20 Exam 1 Fall 2003 SOLUTIONS

3.20 Exam 1 Fall 2003 SOLUTIONS 3.0 Exam 1 Fall 003 SOLUIONS Question 1 You need to decide whether to work at constant volume or constant pressure. Since F is given, a natural choice is constant volume. Option 1: At constant and V :

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: The Second Law: The Concepts Section 4.4-4.7 Third Law of Thermodynamics Nernst Heat Theorem Third- Law Entropies Reaching Very Low Temperatures Helmholtz

More information

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM 13 CHAPER SPONANEOUS PROCESSES AND HERMODYNAMIC EQUILIBRIUM 13.1 he Nature of Spontaneous Processes 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 13.3 Entropy and Heat: Macroscopic

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities

Phys 160 Thermodynamics and Statistical Physics. Lecture 4 Isothermal and Adiabatic Work Heat Capacities Phys 160 Thermodynamics and Statistical Physics Lecture 4 Isothermal and Adiabatic Work Heat Capacities Heat and Work Much of thermodynamics deals with three closely - related concepts; temperature, energy,

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

Challa Vijaya Kumar University of Connecticut Module 4. Physical Chemistry 1 (Thermodynamics) Module 4. Open Source Textbook. Challa Vijaya Kumar

Challa Vijaya Kumar University of Connecticut Module 4. Physical Chemistry 1 (Thermodynamics) Module 4. Open Source Textbook. Challa Vijaya Kumar Challa Vijaya Kumar University of Connecticut Module 4 Physical Chemistry 1 (Thermodynamics) Module 4 Open Source Textbook Challa Vijaya Kumar Department of Chemistry University of Connecticut Storrs CT

More information

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: CHATER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: Fig. 3. (a) Isothermal expansion from ( 1, 1,T h ) to (,,T h ), (b) Adiabatic

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Lecture Ch. 2a. Lord Kelvin (a.k.a William Thomson) James P. Joule. Other Kinds of Energy What is the difference between E and U? Exact Differentials

Lecture Ch. 2a. Lord Kelvin (a.k.a William Thomson) James P. Joule. Other Kinds of Energy What is the difference between E and U? Exact Differentials Lecture Ch. a Energy and heat capacity State functions or exact differentials Internal energy vs. enthalpy st Law of thermodynamics Relate heat, work, energy Heat/work cycles (and path integrals) Energy

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. he second law deals with direction of thermodynamic processes

More information

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy hermochemistry opic 6. hermochemistry hermochemistry Outline. Getting Started: Some terminology. State functions 3. Pressure-Volume Work 4. he First Law of hermodynamics: Heat, work and enthalpy 5. Heat

More information

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required?

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required? THE SECOND LAW Chapter 3 Outline HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required? 1. The Dispersal of Energy YES 2. Entropy YES We won

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemistry 163B Absolute Entropies and Entropy of Mixing 1 APPENDIX A: H f, G f, BUT S (no Δ, no sub f ) Hº f Gº f Sº 2 Third Law of Thermodynamics The entropy of any perfect crystalline substance approaches

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

3.012 PS Issued: Fall 2004 Due: pm

3.012 PS Issued: Fall 2004 Due: pm 3.012 PS 2 3.012 Issued: 09.15.04 Fall 2004 Due: 09.22.04 5pm Graded problems: 1. In discussing coordination numbers and deriving the permitted range of radius ratio, R A / R B, allowed for each ( where

More information

TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use)

TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use) 361 Lec 7 Fri 9sep15 TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use) 2. Heats of Chemical Reactions: r H (mechanics of obtaining from

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

Chemistry 163B Winter Lectures 2-3. Heat and Work

Chemistry 163B Winter Lectures 2-3. Heat and Work Chemistry 163B Winter 2014 Lectures 2-3 Heat and Work Chemistry 163B reserve books 2014 (S&E Library) handout #7 heat capacity (E&R section 2.5) -d q C heat capacity 1 J K dt the amount of heat requires

More information

The Laws of Thermodynamics

The Laws of Thermodynamics MME 231: Lecture 06 he Laws of hermodynamics he Second Law of hermodynamics. A. K. M. B. Rashid Professor, Department of MME BUE, Dhaka oday s opics Relation between entropy transfer and heat Entropy change

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2010

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2010 Lecture 6/5/0 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 00 A. Reversible and Irersible Work Reversible Process: A process that occurs through a series of equilibrium

More information

Lecture 4. The Second Law of Thermodynamics

Lecture 4. The Second Law of Thermodynamics Lecture 4. The Second Law of Thermodynamics LIMITATION OF THE FIRST LAW: -Does not address whether a particular process is spontaneous or not. -Deals only with changes in energy. Consider this examples:

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV ...Thermodynamics Entropy: The state function for the Second Law Entropy ds = d Q T Central Equation du = TdS PdV Ideal gas entropy s = c v ln T /T 0 + R ln v/v 0 Boltzmann entropy S = klogw Statistical

More information

Chapter 2 Gibbs and Helmholtz Energies

Chapter 2 Gibbs and Helmholtz Energies Chapter 2 Gibbs and Helmholtz Energies Abstract Some properties of the Gibbs and Helmholtz energies, two thermodynamic functions of utmost importance in chemistry especially for the study of the notion

More information

Chem 75 Winter, 2017 Practice Exam 1

Chem 75 Winter, 2017 Practice Exam 1 This was Exam 1 last year. It is presented here with, first, just the problems and then with the problems and their solutions. YOU WILL BENEFIT MOST if you attempt first just the problems as if you were

More information

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation.

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. The Euler Equation Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. Let us differentiate this extensivity condition with respect to

More information

Final Examination. Multiple Choice Questions. 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is:

Final Examination. Multiple Choice Questions. 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is: CHEM 331 Physical Chemistry I Fall 2013 Name: Final Examination Multiple Choice Questions 1. The Virial expansion of the Compressibility Factor for a van der Waals gas is: Z = 1 + + The Boyle Temperature

More information

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory

Week 5. Energy Analysis of Closed Systems. GENESYS Laboratory Week 5. Energy Analysis of Closed Systems Objectives 1. Examine the moving boundary work or PdV work commonly encountered in reciprocating devices such as automotive engines and compressors 2. Identify

More information

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007)

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007) The mathematical description of the motion of Atoms, Molecules Other Particles Particle Dynamics Mixture of gases are made of different entities: atoms, molecules, ions, electrons. In principle, the knowledge

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information