Pressure Volume Work 2

Size: px
Start display at page:

Download "Pressure Volume Work 2"

Transcription

1 ressure olume Work Multi-stage Expansion 1 3 w= 4 5 ( ) + 3( 3 ) + 4( 4 3) + ( ) Reversible Expansion Make steps so small that hen d 0, d 0 δ w= d ( ) = + d d int d int w= dw= d path 1 int For ideal gases int = nr / 1 wrev = nrln = nrln and at fixed temperature 1 1 aul ercival

2 Heat apacity ransfer of heat to a system may result in a rise in. δ q= d path function, so depends on conditions. Define: δ q at constant volume, no work = d δ q = d at constant pressure, only work From 1 st Law, du =δ q +δ w =δq d du =δ q f o r d = 0 U = assume no other work Similarly dh = du + d d = ( δq d) + d d =δ q for d= 0 H = dh = du + d = du + nrd For ideal gases ( ) d = d + nrd = + R aul ercival

3 he Relation Between and But since H U = U U = + U U du = d + d U U U = + H = U + U = + work needed to overcome U = intermolecular forces internal pressure pansion per degree For ideal gases U nr = 0, = = nr For liquids and solids is so small that aul ercival

4 Adiabatic Expansion Reversible adiabatic pansion of ideal gases: du =δw δ q = 0 nr d = d = d ideal gases only 1 1 d = R d 1 1 ln / = Rln / ( 1) ( 1) = ( ) ln ( / 1) ( ) = ( γ ) ( ) ln / 1 ln / 1 1 = 1 1 γ 1 γ= Also, since 1 1 γ = = or = γ γ 1 1 = 1 1 ( γ 1)/ γ 1 1 γ 1 aul ercival

5 Given he lausius Inequality Substitute into the 1 st Law: All act differentials, so path independent. But Even more generally, onditions for: ds = δ q rev du = ds d ( ) d 0 surr thermal equilibrium and du =δ q +δ w =δq d ds d =δq d δq ds = + ( ) δ w = d ( ) surr dsuniv = dssurr + d d If >, d > 0; if <, d < 0 lausius Inequality ds δq rev Fundamental Equation of hermodynamics mechanical equilibrium In general, i.e. any path Equal for reversible change aul ercival

6 he Fundamental Equation of hermodynamics ombine or du =δq d with du = ds d ds = 1 ds = du + d δ q rev Reversible change but true for all paths since d act his fundamental equation generates many more relationships. U U Example 1: omparison with du = ds + d S S U U = and = S Example : onsider that du is act and cross differentiate. = S S S a Maxwell relation Example 3: S S = S S = = S cyclic rule and again! = = =α κ aul ercival

7 How Entropy Depends on and ompare with 1 ds = du + d U U U du = d + d = d + d 1 U ds = d + d + S S ds = d + d S = S 1 U = + Δ S = d 0 for ideal gases 1 Δ S = d = nr d = nrln / ( ) 1 For any substance, For ideal gases, (eqs 3.7.4, 6.1.6) = α + κ ds d d Δ S = ln + nrln 1 1 assuming is independent aul ercival

8 Entropy Depends on and (not in tt) 1 ds = du + d First problem: replace du ; second problem: replace d. Use But du = dh d d 1 ds = dh d and both are solved! H H H dh = d + d = d + d ompare with 1 H ds = d + d S S ds = d + d unnatural variables S = Δ S = d 1 Δ = = S d nr d ( ) ( ) Δ S = nrln / = nrln / S 1 H = 0 for ideal gases 1 1 aul ercival

9 Entropy of Mixing onsider the mixing of two ideal gases :,, 1 n 1,, n,, 1 + n 1 +n n Δ S = nrln = nrln = nrln χ n1+ n n Δ S = n Rln = n Rln = n Rln χ 1+ n1+ n ( ) ( ) Δ S = nrln χ n Rln χ = n + n R χ ln χ +χ ln χ mix In general Δ S = χ χ mix ntot R iln i his pression applies to the arrangement of objects (molecules) just as well as fluids (gases and liquids). For ample, arrange N identical atoms in N sites in a crystal: Ω= N!/ N! = 1 S = kln Ω= 0 ompare with the arrangement of two types of atom, A and B. Ω= N! S k( ln N! ln NA! ln NB! )!! Δ = N A N B Application of Stirling s approximation ( ) leads to Δ S = kn( χ ln χ +χ ln χ ) config A A B B i ln z! = zln z z aul ercival

10 he arnot ycle A H B D L step A B B D D A w q ΔU nr ln( / ) w 0 H B A AB ΔU 0 ( ) B H L nr ln( / ) w 0 L D D ΔU 0 ( ) DA H L otal nr( ) ln( / ) w H L A B cyc 0 w nr ( )ln( / ) ε= = = 1 q nr ln( / ) out H L A B L in H A B H ( H L) ε= H for best efficiency, maximize H minimize L aul ercival

11 How Free Energy Depends on G = H S Δ G =ΔH ΔS dg = d Sd (1) () (3) definition constant fundamental eqn. But G G H = S = G G H = ( G/ ) 1 G G = from (1) (4) (5) Gibbs-Helmholtz Equation ( G/ ) H = substitute (4) in (5) alternative form: ( G/ ) (1/ ) = H By applying the Gibbs-Helmholtz equation to both reactants and products of a chemical reaction, Δ ( G/ ) ΔH = aul ercival

12 How Free Energy Depends on G = Δ G = G G1 = d 1 For solids and liquids does not change much with, so G ( ) G ( ) + ( ) 1 1 nr For a perfect gas = Δ G = nrln( / ) where G is the standard free energy defined at =1 bar 1 G = G ( ) + nrln( / ) he chemical potential for a pure substance is the molar Gibbs energy: G μ= G = n For a perfect gas μ=μ +R ln( / ) like eq aul ercival

What is Thermo, Stat Mech, etc.?

What is Thermo, Stat Mech, etc.? What is hermo, Stat Mech, etc.? Rando om Kinetics & Mechanics Macroscopic hermo Coher rent Statistical Mechanics ic Atom Classical Microscopici Quantum Molec cular hermodynamics is a funny subject. he

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

NAME and Section No. b). A refrigerator is a Carnot cycle run backwards. That is, heat is now withdrawn from the cold reservoir at T cold

NAME and Section No. b). A refrigerator is a Carnot cycle run backwards. That is, heat is now withdrawn from the cold reservoir at T cold Chemistry 391 Fall 007 Exam II KEY 1. (30 Points) ***Do 5 out of 7***(If 6 or 7 are done only the first 5 will be graded)*** a). How does the efficiency of a reversible engine compare with that of an irreversible

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

Reversibility. Processes in nature are always irreversible: far from equilibrium

Reversibility. Processes in nature are always irreversible: far from equilibrium Reversibility Processes in nature are always irreversible: far from equilibrium Reversible process: idealized process infinitely close to thermodynamic equilibrium (quasi-equilibrium) Necessary conditions

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information

du = δq + δw = δq rev + δw rev = δq rev + 0

du = δq + δw = δq rev + δw rev = δq rev + 0 Chem 4501 Introduction to hermodynamics, 3 Credits Kinetics, and Statistical Mechanics Module Number 6 Active Learning Answers and Optional Problems/Solutions 1. McQuarrie and Simon, 6-6. Paraphrase: Compute

More information

Homework Week The figure below depicts the isothermal compression of an ideal gas. isothermal du=0. δq rev = δw rev = P dv

Homework Week The figure below depicts the isothermal compression of an ideal gas. isothermal du=0. δq rev = δw rev = P dv Statistical Molecular hermodynamics University of Minnesota Homework Week 6 1. he figure below depicts the isothermal compression of an ideal gas. Start from the First and Second Laws of thermodynamics

More information

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: CHATER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: Fig. 3. (a) Isothermal expansion from ( 1, 1,T h ) to (,,T h ), (b) Adiabatic

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Kinetic Theory, Thermodynamics OBJECTIVE QUESTIONS IIT-JAM-2005

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Kinetic Theory, Thermodynamics OBJECTIVE QUESTIONS IIT-JAM-2005 Institute for NE/JRF, GAE, II JAM, JES, IFR and GRE in HYSIAL SIENES Kinetic heory, hermodynamics OBJEIE QUESIONS II-JAM-005 5 Q. he molar specific heat of a gas as given from the kinetic theory is R.

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 11 07/18/14 University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 A. he Helmholt Free Energy and Reversible Work he entropy change S provides an absolutely general

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S UNIERSIY OF ORONO Please mark X to indicate your tutorial section. Failure to do so will result in a deduction of 3 marks. U 0 U 0 FACULY OF APPLIED SCIENCE AND ENGINEERING ERM ES 7 MARCH 05 U 03 U 04

More information

Chemistry 163B Winter 2013 Clausius Inequality and ΔS ideal gas

Chemistry 163B Winter 2013 Clausius Inequality and ΔS ideal gas Chemistry 163B q rev, Clausius Inequality and calculating ΔS for ideal gas,, changes (HW#5) Challenged enmanship Notes 1 statements of the Second Law of hermodynamics 1. Macroscopic properties of an isolated

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Ch. 19 Entropy and Free Energy: Spontaneous Change

Ch. 19 Entropy and Free Energy: Spontaneous Change Ch. 19 Entropy and Free Energy: Spontaneous Change 19-1 Spontaneity: The Meaning of Spontaneous Change 19-2 The Concept of Entropy 19-3 Evaluating Entropy and Entropy Changes 19-4 Criteria for Spontaneous

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemistry 163B Absolute Entropies and Entropy of Mixing 1 APPENDIX A: H f, G f, BU S (no Δ, no sub f ) Hº f Gº f Sº 2 1 hird Law of hermodynamics he entropy of any perfect crystalline substance approaches

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i 1. (20 oints) For each statement or question in the left column, find the appropriate response in the right column and place the letter of the response in the blank line provided in the left column. 1.

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

Heat Capacities, Absolute Zero, and the Third Law

Heat Capacities, Absolute Zero, and the Third Law Heat Capacities, Absolute Zero, and the hird Law We have already noted that heat capacity and entropy have the same units. We will explore further the relationship between heat capacity and entropy. We

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant 1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v lnt + RlnV + cons tant (1) p, V, T change Reversible isothermal process (const. T) TdS=du-!W"!S = # "Q r = Q r T T Q r = $W = # pdv =

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

We will review for the exam on Monday. Have questions ready to ask in class.

We will review for the exam on Monday. Have questions ready to ask in class. Homework #: Graded problems: a,b,c 6 points 0b-e 8 points 6b 3 points 34c 6 points otal 3 points 36 Lec Fri 5sep7 Class average = 3.6/3 = 59.0 % (fair) for HW# Solutions will be posted later today Objectives

More information

PHYSICS 214A Midterm Exam February 10, 2009

PHYSICS 214A Midterm Exam February 10, 2009 Clearly Print LAS NAME: FIRS NAME: SIGNAURE: I.D. # PHYSICS 2A Midterm Exam February 0, 2009. Do not open the exam until instructed to do so. 2. Write your answers in the spaces provided for each part

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037 onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutions to Problem Set 6 1. non- ideal gas, 1 mol 20.0 L 300 K 40.0 L 300 K isothermal, reversible Equation of state: (a)b is a constant independent of T Given du = ( U/ T) V dt + ( U/ V) T dv U = U(T,V)

More information

Concentrating on the system

Concentrating on the system Concentrating on the system Entropy is the basic concept for discussing the direction of natural change, but to use it we have to analyze changes in both the system and its surroundings. We have seen that

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

Work, heat and the first law of thermodynamics

Work, heat and the first law of thermodynamics Chapter 3 Work, heat and the first law of thermodynamics 3.1 Mechanical work Mechanical work is defined as an energy transfer to the system through the change of an external parameter. Work is the only

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment The Story of Spontaneity and Energy Dispersal You never get what you want: 100% return on investment Spontaneity Spontaneous process are those that occur naturally. Hot body cools A gas expands to fill

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemistry 163B Absolute Entropies and Entropy of Mixing 1 APPENDIX A: H f, G f, BUT S (no Δ, no sub f ) Hº f Gº f Sº 2 Third Law of Thermodynamics The entropy of any perfect crystalline substance approaches

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Thermodynamics (XI) Assignment(Solution)

Thermodynamics (XI) Assignment(Solution) SYLLABUS CUM COM./XI/03 4 hermodynamics (XI) Assignment(Solution) Comprehension ype Questions aragraph for Question -5 For an ideal gas, an illustration of three different paths A, (B + C) and (D + E)

More information

Physics is time symmetric Nature is not

Physics is time symmetric Nature is not Fundamental theories of physics don t depend on the direction of time Newtonian Physics Electromagnetism Relativity Quantum Mechanics Physics is time symmetric Nature is not II law of thermodynamics -

More information

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ]

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ] Chemistry 433 Lecture 9 Entropy and the Second Law NC State University Spontaneity of Chemical Reactions One might be tempted based on the results of thermochemistry to predict that all exothermic reactions

More information

Entropy and the second law of thermodynamics

Entropy and the second law of thermodynamics Chapter 4 Entropy and the second law of thermodynamics 4.1 Heat engines In a cyclic transformation the final state of a system is by definition identical to the initial state. he overall change of the

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

HOMOGENEOUS CLOSED SYSTEM

HOMOGENEOUS CLOSED SYSTEM CHAE II A closed system is one that does not exchange matter with its surroundings, although it may exchange energy. W n in = 0 HOMOGENEOUS CLOSED SYSEM System n out = 0 Q dn i = 0 (2.1) i = 1, 2, 3,...

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

Entropy and the Second and Third Laws of Thermodynamics

Entropy and the Second and Third Laws of Thermodynamics CHAPTER 5 Entropy and the Second and Third Laws of Thermodynamics Key Points Entropy, S, is a state function that predicts the direction of natural, or spontaneous, change. Entropy increases for a spontaneous

More information

UNIT 15: THERMODYNAMICS

UNIT 15: THERMODYNAMICS UNIT 15: THERMODYNAMICS ENTHALPY, DH ENTROPY, DS GIBBS FREE ENERGY, DG ENTHALPY, DH Energy Changes in Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures.

More information

From 1st law of thermodynamics, dq = du + PdV At constant volume, ΔQ v =ΔU Again H=U+PV so, ΔH = ΔU + PΔV + VΔP At constant pressure, ΔH = ΔQ p

From 1st law of thermodynamics, dq = du + PdV At constant volume, ΔQ v =ΔU Again H=U+PV so, ΔH = ΔU + PΔV + VΔP At constant pressure, ΔH = ΔQ p Chapter 2 HERMODYNAMICS 2.1 hermochemistry All chemical reactions and few physical changes are associated with energy change. In most cases this energy is heat energy but there are cases where this may

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Chemical Thermodynamics. Chapter 18

Chemical Thermodynamics. Chapter 18 Chemical Thermodynamics Chapter 18 Thermodynamics Spontaneous Processes Entropy and Second Law of Thermodynamics Entropy Changes Gibbs Free Energy Free Energy and Temperature Free Energy and Equilibrium

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Zeroth law temperature First law energy Second law - entropy CY1001 2010

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v.

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v. AME 54531 Intermediate hermodynamics Examination : Prof. J. M. Powers 7 November 018 1. 10) rue or False: A material with an ideal thermal equation of state must have a constant c v. False. Forsuchamaterialc

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy hermochemistry opic 6. hermochemistry hermochemistry Outline. Getting Started: Some terminology. State functions 3. Pressure-Volume Work 4. he First Law of hermodynamics: Heat, work and enthalpy 5. Heat

More information

Chapter 5. The Second Law of Thermodynamics (continued)

Chapter 5. The Second Law of Thermodynamics (continued) hapter 5 he Second Law of hermodynamics (continued) Second Law of hermodynamics Alternative statements of the second law, lausius Statement of the Second Law It is impossible for any system to operate

More information

Physical Chemistry. Chapter 3 Second Law of Thermodynamic

Physical Chemistry. Chapter 3 Second Law of Thermodynamic Physical Chemistry Chapter 3 Second Law of hermodynamic by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Develop the calculational path for property change and estimate enthalpy and

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

S = = = nrln = 10.0 mol ln = 35.9

S = = = nrln = 10.0 mol ln = 35.9 hy 212: General hysics II 1 hapter 20 orksheet (2 nd Law of hermodynamics & eat Engines) Entropy: 1. A sample of 10.0 moles of a monatomic ideal gas, held at constant temperature (1000), is expanded from

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

THE ZEROTH AND FISRT LAW OF THERMODYNAMICS. Saeda Al-Mhyawi secend Tearm 1435H

THE ZEROTH AND FISRT LAW OF THERMODYNAMICS. Saeda Al-Mhyawi secend Tearm 1435H H ZROH AND FISR LAW OF HRMODYNAMIS Saeda Al-Mhyawi secend earm 435H HAR II H ZROH AND FISR LAW OF HRMODYNAMIS Lecture () Outline Introduction he Zeroth Law of hermodynamics he First Law of hermodynamics

More information

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM 13 CHAPER SPONANEOUS PROCESSES AND HERMODYNAMIC EQUILIBRIUM 13.1 he Nature of Spontaneous Processes 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 13.3 Entropy and Heat: Macroscopic

More information

Lecture 4. The Second Law of Thermodynamics

Lecture 4. The Second Law of Thermodynamics Lecture 4. The Second Law of Thermodynamics LIMITATION OF THE FIRST LAW: -Does not address whether a particular process is spontaneous or not. -Deals only with changes in energy. Consider this examples:

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

First Law showed the equivalence of work and heat. Suggests engine can run in a cycle and convert heat into useful work.

First Law showed the equivalence of work and heat. Suggests engine can run in a cycle and convert heat into useful work. 0.0J /.77J / 5.60J hermodynamics of Biomolecular Systems 0.0/5.60 Fall 005 Lecture #6 page he Second Law First Law showed the euivalence of work and heat U = + w, du = 0 for cyclic process = w Suggests

More information

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams AME 46 Energy and ropulsion Lecture 7 Unsteady-flow (reciprocating) engines : Using - and -s diagrams Outline! Air cycles! What are they?! Why use - and -s diagrams?! Using - and -s diagrams for air cycles!!!!!!

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

Physics 207 Lecture 23

Physics 207 Lecture 23 ysics 07 Lecture ysics 07, Lecture 8, Dec. Agenda:. Finis, Start. Ideal gas at te molecular level, Internal Energy Molar Specific Heat ( = m c = n ) Ideal Molar Heat apacity (and U int = + W) onstant :

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: The Second Law: The Concepts Section 4.4-4.7 Third Law of Thermodynamics Nernst Heat Theorem Third- Law Entropies Reaching Very Low Temperatures Helmholtz

More information

3.20 Exam 1 Fall 2003 SOLUTIONS

3.20 Exam 1 Fall 2003 SOLUTIONS 3.0 Exam 1 Fall 003 SOLUIONS Question 1 You need to decide whether to work at constant volume or constant pressure. Since F is given, a natural choice is constant volume. Option 1: At constant and V :

More information

THERMODYNAMICS CONTENTS

THERMODYNAMICS CONTENTS 1. Introduction HERMODYNAMICS CONENS. Maxwell s thermodynamic equations.1 Derivation of Maxwell s equations 3. Function and derivative 3.1 Differentiation 4. Cyclic Rule artial Differentiation 5. State

More information

Statistical Thermodynamics - Fall 2009 Professor Dmitry Garanin. Thermodynamics. September 18, 2009 I. PREFACE

Statistical Thermodynamics - Fall 2009 Professor Dmitry Garanin. Thermodynamics. September 18, 2009 I. PREFACE 1 Statistical hermodynamics - Fall 2009 rofessor Dmitry Garanin hermodynamics September 18, 2009 I. REFACE he course of Statistical hermodynamics consist of two parts: hermodynamics and Statistical hysics.

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics During an interaction between a system and its surroundings, the amount of energy gained by the system must be exactly equal to the amount of energy lost by the surroundings.

More information

Statistical Thermodynamics - Fall Professor Dmitry Garanin. Thermodynamics. February 15, 2017 I. PREFACE

Statistical Thermodynamics - Fall Professor Dmitry Garanin. Thermodynamics. February 15, 2017 I. PREFACE 1 Statistical hermodynamics - Fall 2009 rofessor Dmitry Garanin hermodynamics February 15, 2017 I. REFACE he course of Statistical hermodynamics consist of two parts: hermodynamics and Statistical hysics.

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property hater-6: Entroy When the first law of thermodynamics was stated, the existence of roerty, the internal energy, was found. imilarly, econd law also leads to definition of another roerty, known as entroy.

More information

Work and Heat Definitions

Work and Heat Definitions Work and Heat Definitions FL- Surroundings: Everything outside system + q -q + System: he part of S the orld e are observing. Heat, q: transfer of energy resulting from a temperature difference Work, :

More information

Outline. 1. Work. A. First Law of Thermo. 2. Internal Energy. 1. Work continued. Category: Thermodynamics. III. The Laws of Thermodynamics.

Outline. 1. Work. A. First Law of Thermo. 2. Internal Energy. 1. Work continued. Category: Thermodynamics. III. The Laws of Thermodynamics. ategory: hermodynamics Outline III. he Laws of hermodynamics A. First Law of hermo B. Second Law of hermo (Entropy). Statistical Mechanics D. References Updated: 04jan A. First Law of hermo. Work 4 Stored

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

Thermodynamic ProperDes for Fluids

Thermodynamic ProperDes for Fluids SKF2213: CHEMICAL ENGINEERING THERMODYNAMICS Thermodynamic roperdes for Fluids Mohammad Fadil Abdul Wahab ObjecDves To develop fundamental property relations (FR) of U,H,S,G,A,V,,T from 1st and 2nd Law

More information

arxiv:physics/ v4 [physics.class-ph] 27 Mar 2006

arxiv:physics/ v4 [physics.class-ph] 27 Mar 2006 arxiv:physics/0601173v4 [physics.class-ph] 27 Mar 2006 Efficiency of Carnot Cycle with Arbitrary Gas Equation of State 1. Introduction. Paulus C. jiang 1 and Sylvia H. Sutanto 2 Department of Physics,

More information

Chemistry 163B. Lecture 5 Winter Challenged Penmanship. Notes

Chemistry 163B. Lecture 5 Winter Challenged Penmanship. Notes Chemistry 163B Lecture 5 Winter 2014 Challenged enmanship Notes 1 total differential (math handout #4; E&R ch. 3) infinitesimal change in value of state function (well behaved function) total change in

More information

Chapter 17. Spontaneity, Entropy, and Free Energy

Chapter 17. Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics Thermodynamics is the study of the relationship between heat and other forms of energy in a chemical or physical process. Thermodynamics

More information

= for reversible < for irreversible

= for reversible < for irreversible CHAPER 6 Entropy Copyright he McGraw-Hill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: δ 0 Cyclic integral his inequality is valid for all cycles, reversible

More information

Chapter 7. Entropy: A Measure of Disorder

Chapter 7. Entropy: A Measure of Disorder Chapter 7 Entropy: A Measure of Disorder Entropy and the Clausius Inequality The second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of microscopic

More information