P340: Thermodynamics and Statistical Physics, Exam#2 Any answer without showing your work will be counted as zero

Size: px
Start display at page:

Download "P340: Thermodynamics and Statistical Physics, Exam#2 Any answer without showing your work will be counted as zero"

Transcription

1 P340: hermodynamics and Statistical Physics, Exam#2 Any answer without showing your work will be counted as zero 1. (15 points) he equation of state for the an der Waals gas (n = 1 mole) is (a) Find ( C / ) ( p + a ) ( b) = R. 2 (b) Find C p C as a function of and. (c) Assuming that C is independent of, express the entropy as a function of C, and. 2. (15 points) A room is to be kept at an indoor temperature of H = 294 K. he outdoor temperature is L. Heat, that leak through the windows and doors at a rate of Q leak = a, must be replenished by a room heater at the same rate. (a) We assume that the electric radiator convert electric power Ẇ el into heat with 100% efficiency. Find Ẇel as a function of a, H, and L. (b) Now we consider the case of heating the room with an ideal electric heat pump that uses Ẇ sup of electric power to extract heat at a rate of Q L at the outdoor temperature L and convert it into heat at a rate of Q H = Q L + Ẇhp at the indoor temperature. In general the heat derived from heat pump is given by Ẇ hp = (1 b)ẇsup, where the coefficient b represents the mechanical power inefficiency of the heat pump. Express power Ẇ sup as a function of a, b, H, and L. (c) Determine the outdoor temperature range where the heat pump is more economical than the electric radiator for fixed H = 294 K, and b = 0.75 (75% loss). 3. (20 points) he equation of state and the internal energy (Stefan s law) for the black body radiation are given by p = 1 3 a 4, U(, ) = a 4, where a = 8π 5 k 4 /(15h 3 c 3 ) = Jm 3 K 4 is a constant, is the temperature, is the volume, and p is the pressure. (a) Show that the equation of state for an adiabatic process is p 4/3 = K, where K is a constant. (b) Describe the 4-steps (isothermal, adiabatic, isothermal, and adiabatic) Carnot engine for the black-body radiation in the (p ) plane (use 2 = 10 4 K, 1 = K), and calculate the efficiency of the black-body Carnot engine. (c) Find C v and κ S. (d) Determine the entropy and other thermodynamics potentials, i.e. S(, ), U(S, ), H(S, p), F(, ), and G(, p). i

2 4. (10 points) A Diesel cycle for an ideal gas with γ = C p /C v operating between 1, 2 and 3, where 1 / 2 and 3 / 2 are respectively called the compression ratio and the cut-off ratio. Find the efficiency of the engine in terms of γ, compression ratio, and cut-off ratio. 5. (10 points) An ideal mixing corresponds to mixing of molecules having the same size, same interactions. It is applicable to mixings of ideal gases, liquids, etc. Consider N A blue and N B green marbles of the same size and weight. hey are mixed in a box. What is the entropy of mixing? Please expressed it in terms of x = N A /(N A + N B ). 6. (10 points) Using the able of thermodynamics parameters at temperature 0 = 298 K and p 0 = 1 bar below. Find the Gibbs free energy per mole (or chemical potential) for water and steam as a function of temperature. Evaluate the chemical potentials at = 350 K and = 400 K, at a constant pressure p 0 = 1 bar. Here, we can assume constant C p for both steam and liquid. See able (10 points) In a hydrogen fuel cell, the steps of the chemical reactions are at electrode : H 2 + 2OH 2H 2 O + 2e, at + electrode : 1 2 O 2 + H 2 O + 2e 2OH. Calculate the voltage of the fuel cell between these two electrodes. See able (10 points) A biological cell is a water solution of sugar, amino acids, and other molecules. ypically, it contains 200 water molecules for each molecule of something else. Sea water has a salinity of 3.5%, i.e. if you boil away a kilogram of seawater you will find 35 g of NaCl left in the pot. Each mole of NaCl is g. If you drop a biological cell into sea water, what will be the osmotic pressure when the equilibrium is reached at = 300 K? We assume that the cell wall is semipermeable that only water molecules can pass through the cell wall. able 1: hermodynamic Properties of some substances at 0 = 298K and p 0 = 1 bar Substance G (kj) S (J/K) C p (J/K) H 2 O (l) H 2 O (g) H 2 (g) O 2 (g) ii

3 P340: hermodynamics and Statistical Physics, Exam#2, Solution 1. he equation of state for the an der Waals gas (n = 1 mole) is ( p + a ) ( b) = R. 2 (a) Show that C is independent of, i.e. ( C / ) = 0. (b) Find C p C as a function of p and. (c) Assuming that C is independent of, show that the entropy of the an der Waals gas is S = C ln + R ln( b) + constant. hus p = R v b a v 2, du = ( ) u d + v ( ) u v = ( ) p p = a v v 2 ( ) u dv = C v d + a v v 2dv (a) Since du is an exact differential, we find (b) ( ) Cv i.e. C v is a function of only. C p = ( ) S, p C p C v = vβ2 κ C p C v = R [ = R (v b) 2 = ( (a/v 2 ) ) v = 0, ( ) 2 ( ) 2 β p vκ = κ ] [ ] 1. R (v b) 2 2 a v 3 In the limit that a 0 and b 0, we find C p C v R. (c) o evaluate entropy, we begin with ds = 1 (du + pd ) = 1 ( ) v p = [( ) ( ) ] U U d + d + pd. ( ) p 2 ( ) p v, 1

4 We know ( U/ ) = C. Now we evaluate ( ) U = ( ) p p = R b p = a 2. Substituting the result in the entropy equation, we find ds = C d + R b d. If C is independent of, we can integrate the equation to obtain where S 0 is an integration constant. S = C ln + R ln( b) + S 0, 2. A room is to be kept at an indoor temperature of H = 294 K. he outdoor temperature is L. Heat, that leak through the windows and doors at a rate of Q leak = a, must be replenished by a room heater at the same rate. (a) We assume that the electric radiator convert electric power Ẇ el into heat with 100% efficiency. Find Ẇel as a function of a, H, and L. (b) Now we consider the case of heating the room with an ideal electric heat pump that uses Ẇ sup of electric power to extract heat at a rate of Q L at the outdoor temperature L and convert it into heat at a rate of Q H = Q L + Ẇhp at the indoor temperature. In general the heat derived from heat pump is given by Ẇ hp = (1 b)ẇsup, where the coefficient b represents the mechanical power inefficiency of the heat pump. Express power Ẇ sup as a function of a, b, H, and L. (c) Determine the outdoor temperature range where the heat pump is more economical than the electric radiator for fixed H = 294 K, and b = 0.75 (75% loss). (a) Ẇ el = a = a( H L ). (b) o supply constant temperature, we need Q H = a = a( H L. Since Q H = Q L + Ẇhp = (cop + 1)Ẇhp = [ H /( H L )]Ẇhp, we find Ẇ sup = 1 1 bẇhp = H L (1 b) H Q H = a ( H L ) 2 (1 b) H. (c) Setting Ẇsup Ẇel, we find L H b his means that L b H = 221 K or above 52 C, the heat pump can provide more heat for heating the house than an electric space heater. 2

5 3. he equation of state and the internal energy (Stefan s law) for the black body radiation are given by p = 1 3 a 4, U(, ) = a 4, where a = 8π 5 k 4 /(15h 3 c 3 ) = Jm 3 K 4 is a constant, is the temperature, is the volume, and p is the pressure. (a) Show that the equation of state for an adiabatic process is p 4/3 = K, where K is a constant. (b) Describe the 4-steps (isothermal, adiabatic, isothermal, and adiabatic) Carnot engine for the black-body radiation in the (p ) plane, and calculate the efficiency of the black-body Carnot engine (c) Find C v and κ S, and determine the entropy and other thermodynamics potentials, i.e. S(, ), U(S, ), H(S, p), F(, ), and G(, p). (a) From the first law of thermodynamics, we find ds = du + Pd = (4a 3 d + a 4 d ) a 4 d. For an adiabatic process, ds = 0, we find d + d 3 = d[ln( 1/3 )] = 0, or 1/3 = constant, or 1 3 a 4 4/3 = p 4/3 = constant. (b) A cycle of a Carnot engine is divided into 4 processes: i. isothermal: Q 2 = du + Pd = 4 3 a 4 2 ( 2 1 ) ii. adiabatic: dq = 0, 2 1/3 2 = 1 1/3 3 iii. isothermal: Q 1 = du + Pd = 4 3 a 4 1 ( 4 3 ) iv. adiabatic: dq = 0, 1 1/3 4 = 2 1/3 1 W = Q 2 + Q 1 = 4 3 a( 2 1 )[ ], η = W Q 2 = = (c) Using definition of each physical quantities, we obtain: C = ( ) U = 4a 3, κ S = 1 ( ) p U(S, ) = a 4 = a 3 S ( 3S 4a = 3 4p, S(, ) = 4 3 a 3, ) 4/3 = 34/3 4 4/3 a 1/3S4/3 1/3, H(p, S) = U + p = 4 3 a 4 = 31/4 a 1/4p1/4 S, F(, ) = U S = 1 3 a 4, G(, p) = H S = 0

6 Figure 1: he Carnot cycle example with 2 = 10 4 K, 1 = K, 2 = 1 m 3, and 3 = 2 m 3 is shown in this example. For the photon gas, isothermal process is equivalent to an isobaric process. 4. (10 points) A Diesel cycle for an ideal gas with γ = C p /C v operating between 1, 2 and 3, where 1 / 2 and 3 / 2 are respectively called the compression ratio and the cut-off ratio. Find the efficiency of the engine in terms of γ, compression ratio, and cut-off ratio. he Diesel cycle is described by 1 2 adiabatic, 2 3 isobaric, 3 4 adiabatic, and 4 1 constant volume. hus Q h = C p ( 3 2 ), Q c = C v ( 4 1 ), e = 1 Q c = = (p 4 p 1 ) Q h γ 3 2 γ p 2 ( 3 2 ), where we applied the ideal gas law in the last equation, and use γ = C p /C. Now, the adiabatic processes provide the following identities: p 4 γ 1 = p 2 γ 3, p 1 γ 1 = p 2 γ 2. hus we find p 4 p 1 p 2 = e = 1 1 γ ( ) γ ( ) γ (p 4 p 1 ) p 2 ( 3 2 ) = 1 1 γ ( 2 1 ) γ ( 3 / 2 ) γ 1 ( 3 / 2 ) 1 5. (10 points) An ideal mixing corresponds to mixing of molecules having the same size, same interactions. It is applicable to mixings of ideal gases, liquids, etc. Consider N A blue and N B green marbles of the same size and weight. hey are mixed in a box. What is the entropy of mixing? Please expressed it in terms of x = N A /(N A + N B ). 4

7 he number of possible states for the mixing is Ω = N! N A!N B! hus the mixing entropy is S = k ln Ω = Nk(x ln(x) + (1 x) ln(1 x), where x = N A /N. 6. (10 points) Using the able of thermodynamics parameters at temperature 0 = 298 K and p 0 = 1 bar below. Find the Gibbs free energy per mole (or chemical potential) for water and steam as a function of temperature. Evaluate the chemical potentials at = 350 K and = 400 K, at a constant pressure p 0 = 1 bar. Here, we can assume constant C p for both steam and liquid. See able 1. he Gibbs free energy at constant pressure is given by G() = G( 0 ) 0 S()d where G is the Gibbs free energy relative to the Gibbs free energy of H 2 and 1 2 O 2 at 0 and p 0. he entropy is given by hus S() = S( 0 ) + 0 C p () d = S 0 + C p ln 0. G() = G 0 S 0 ( 0 ) C p [ ln ] ( 0 ) 0 Using the able 1, we can calculate the Gibbs free energy vs temperature. Figure 2 shows the Gibbs free energies of H 2 O liquid and gas phases. hey cross at the boiling point. heir values are kj (l), kj (g) at = 350 K, and kj (l), kj (g) at = 400 K respectively 7. (10 points) In a hydrogen fuel cell, the steps of the chemical reactions are at electrode : H 2 + 2OH 2H 2 O + 2e, at + electrode : 1 2 O 2 + H 2 O + 2e 2OH. Calculate the voltage of the fuel cell between these two electrodes. See able 1. he available Gibbs free energy in this reaction is kj (see able 1). Each reaction transports 2 electrons across the electrodes, and thus the voltage available is = G Q = J/mol 2 ( ) ( ) 5 = 1.23 olts

8 Figure 2: he Gibbs free energy vs the temperature at p 0 = 1 bar. (Problem #6). At the boiling point, the Gibbs functions of water and steam are equal. 8. (10 points) A biological cell is a water solution of sugar, amino acids, and other molecules. ypically, it contains 200 water molecules for each molecule of something else. Sea water has a salinity of 3.5%, i.e. if you boil away a kilogram of seawater you will find 35 g of NaCl left in the pot. Each mole of NaCl is g. If you drop a biological cell into sea water, what will be the osmotic pressure when the equilibrium is reached at = 300 K? We assume that the cell wall is semipermeable that only water molecules can pass through the cell wall. he chemical potentials are equal for both solutions. hus µ 0 (, p 1 ) N B1k N A p 2 p 1 = n B2 n B1 R = µ 0 (, p 2 ) N B2k N A Since NaCl is ionized, each molecule counts as two solutes, we find n B2 = g = mol/m g/mol m3 n B1 = 1.0 mol 200 mol 18 g/mol 10 6 m 3 /g = 278 mol/m3. hs osmotic pressure is p 2 p 1 = 22.9 bar. 6

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v.

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v. AME 54531 Intermediate hermodynamics Examination : Prof. J. M. Powers 7 November 018 1. 10) rue or False: A material with an ideal thermal equation of state must have a constant c v. False. Forsuchamaterialc

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

Physics 360 Review 3

Physics 360 Review 3 Physics 360 Review 3 The test will be similar to the second test in that calculators will not be allowed and that the Unit #2 material will be divided into three different parts. There will be one problem

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

PHYSICS 214A Midterm Exam February 10, 2009

PHYSICS 214A Midterm Exam February 10, 2009 Clearly Print LAS NAME: FIRS NAME: SIGNAURE: I.D. # PHYSICS 2A Midterm Exam February 0, 2009. Do not open the exam until instructed to do so. 2. Write your answers in the spaces provided for each part

More information

CHAPTER 3 TEST REVIEW

CHAPTER 3 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 52 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 3 TEST REVIEW 1. Water at a temperature of 0 C is kept in a thermally insulated container.

More information

arxiv:physics/ v4 [physics.class-ph] 27 Mar 2006

arxiv:physics/ v4 [physics.class-ph] 27 Mar 2006 arxiv:physics/0601173v4 [physics.class-ph] 27 Mar 2006 Efficiency of Carnot Cycle with Arbitrary Gas Equation of State 1. Introduction. Paulus C. jiang 1 and Sylvia H. Sutanto 2 Department of Physics,

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i

2. Under conditions of constant pressure and entropy, what thermodynamic state function reaches an extremum? i 1. (20 oints) For each statement or question in the left column, find the appropriate response in the right column and place the letter of the response in the blank line provided in the left column. 1.

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Dual Program Level 1 Physics Course

Dual Program Level 1 Physics Course Dual Program Level 1 Physics Course Assignment 15 Due: 11/Feb/2012 14:00 Assume that water has a constant specific heat capacity of 4190 J/kg K at all temperatures between its melting point and boiling

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

1 Garrod #5.2: Entropy of Substance - Equation of State. 2

1 Garrod #5.2: Entropy of Substance - Equation of State. 2 Dylan J. emples: Chapter 5 Northwestern University, Statistical Mechanics Classical Mechanics and hermodynamics - Garrod uesday, March 29, 206 Contents Garrod #5.2: Entropy of Substance - Equation of State.

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSIY OF SOUHAMPON PHYS1013W1 SEMESER 2 EXAMINAION 2013-2014 Energy and Matter Duration: 120 MINS (2 hours) his paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes BSc Examination by course unit. Friday 5th May 01 10:00 1:30 PHY14 Thermal & Kinetic Physics Duration: hours 30 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics he Second Law of hermodynamics So far We have studied the second law by looking at its results We don t have a thermodynamic property that can describe it In this chapter we will develop a mathematical

More information

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Name: Quiz 2: Chapters 3, 4, and 5 September 26, 2013 Constants and Conversion Factors Gas Constants: 8.314 J mol 1 K 1 8.314 Pa m 3 mol 1

More information

For this problem you might also need to know that 1 kcal = kj and that the specific heat capacity of water at 25 C is 1 kcal/(kg K).

For this problem you might also need to know that 1 kcal = kj and that the specific heat capacity of water at 25 C is 1 kcal/(kg K). Umeå Universitet Department of Physics Peter Olsson Examination, Thermodynamics B, 6hp, 2017 03 04, at 9:00 15:00. Allowed aids: Calculator, Beta, Physics Handbook, english dictionary, one A4-sized paper

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.21 Fall 2011 Physics of Energy October 4, 2011 Quiz 1 Instructions Problem Points 1 30 2 45 3 25 4 (+ 20) Total 100 You must do problems

More information

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall

Physics 231. Topic 14: Laws of Thermodynamics. Alex Brown Dec MSU Physics 231 Fall Physics 231 Topic 14: Laws of Thermodynamics Alex Brown Dec 7-11 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 1 Chapter 21 Entropy and the Second Law of hermodynamics Aljalal-Phys.102-27 March 2004-Ch21-page 2 21-1 Some One-Way Processes Egg Ok Irreversible process Egg

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

CH352 Assignment 3: Due Thursday, 27 April 2017

CH352 Assignment 3: Due Thursday, 27 April 2017 CH352 Assignment 3: Due Thursday, 27 April 2017 Prof. David Coker Thursday, 20 April 2017 Q1 Adiabatic quasi-static volume and temperature changes in ideal gases In the last assignment you showed that

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S UNIERSIY OF ORONO Please mark X to indicate your tutorial section. Failure to do so will result in a deduction of 3 marks. U 0 U 0 FACULY OF APPLIED SCIENCE AND ENGINEERING ERM ES 7 MARCH 05 U 03 U 04

More information

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Existing Resources: Supplemental/reference for students with thermodynamics background and interests: Existing Resources: Masters, G. (1991) Introduction to Environmental Engineering and Science (Prentice Hall: NJ), pages 15 29. [ Masters_1991_Energy.pdf] Supplemental/reference for students with thermodynamics

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. he second law deals with direction of thermodynamic processes

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-189 S.E. (Chemical Engineering) (Second Semester)EXAMINATION, 2012 THERMODYNAMICS-I (2008 PATTERN) Time : Three Hours Maximum Marks

More information

Entropy & the Second Law of Thermodynamics

Entropy & the Second Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 20 Entropy & the Second Law of Thermodynamics Entropy gases Entropy solids & liquids Heat engines Refrigerators Second law of thermodynamics 1. The efficiency of

More information

Exam 1 Solutions 100 points

Exam 1 Solutions 100 points Chemistry 360 Fall 018 Dr. Jean M. Standard September 19, 018 Name KEY Exam 1 Solutions 100 points 1.) (14 points) A chunk of gold metal weighing 100.0 g at 800 K is dropped into 100.0 g of liquid water

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 19 To represent

More information

The First Law of Thermodynamics

The First Law of Thermodynamics he First Law of hermodynamics he First Law of hermodynamics states that the energy of an isolated system is constant. If a system does an amount of work w, its internal energy (U) falls by the amount w.

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2008

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2008 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 008 Midterm Examination Key July 5 008 Blue books are required. Answer only the number of questions requested. Chose wisely!

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

General Physics I (aka PHYS 2013)

General Physics I (aka PHYS 2013) General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:

More information

Downloaded from

Downloaded from Chapter 12 (Thermodynamics) Multiple Choice Questions Single Correct Answer Type Q1. An ideal gas undergoes four different processes from the same initial state (figure). Four processes are adiabatic,

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

Test Exchange Thermodynamics (C) Test Answer Key

Test Exchange Thermodynamics (C) Test Answer Key 1 Test Exchange Thermodynamics (C) Test Answer Key Made by Montgomery High School montyscioly@gmail.com 2 Questions are worth between 1 to 3 points. Show calculations for all open-ended math questions

More information

T ice T water T water = T ice =0 0 C. e =1

T ice T water T water = T ice =0 0 C. e =1 Given 1 kg of water at 100 0 C and a very large (very very large) block of ice at 0 0 C. A reversible heat engine absorbs heat from the water and expels heat to the ice until work can no longer be extracted

More information

Chem 75 Winter, 2017 Practice Exam 1

Chem 75 Winter, 2017 Practice Exam 1 This was Exam 1 last year. It is presented here with, first, just the problems and then with the problems and their solutions. YOU WILL BENEFIT MOST if you attempt first just the problems as if you were

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

Physics Nov Heat and Work

Physics Nov Heat and Work Physics 301 5-Nov-2004 19-1 Heat and Work Now we want to discuss the material covered in chapter 8 of K&K. This material might be considered to have a more classical thermodynamics rather than statistical

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Thermodynamics B Test

Thermodynamics B Test Northern Regional: January 19 th, 2019 Thermodynamics B Test Name(s): Team Name: School Name: Team Number: Rank: Score: Science Olympiad North Florida Regional at the University of Florida Thermodynamics

More information

Chem Lecture Notes 6 Fall 2013 Second law

Chem Lecture Notes 6 Fall 2013 Second law Chem 340 - Lecture Notes 6 Fall 2013 Second law In the first law, we determined energies, enthalpies heat and work for any process from an initial to final state. We could know if the system did work or

More information

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie. General Physics I Exam 5 - Chs. 13,14,15 - Heat, Kinetic Theory, Thermodynamics Dec. 14, 2010 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show formulas used, essential

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

Thermal Conductivity, k

Thermal Conductivity, k Homework # 85 Specific Heats at 20 C and 1 atm (Constant Pressure) Substance Specific Heat, c Substance Specific Heat, c kcal/kg C J/kg C kcal/kg C J/kg C Solids Aluminum 0.22 900 Brass 0.090 377 Copper

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th and 9th editions Entropy of Phase ransition at the ransition emperature Expansion of the Perfect

More information

Final Exam, Chemistry 481, 77 December 2016

Final Exam, Chemistry 481, 77 December 2016 1 Final Exam, Chemistry 481, 77 December 216 Show all work for full credit Useful constants: h = 6.626 1 34 J s; c (speed of light) = 2.998 1 8 m s 1 k B = 1.387 1 23 J K 1 ; R (molar gas constant) = 8.314

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.60 Thermodynamics & Kinetics Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.60 Spring 2008 Lecture

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0)

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Key Point: ΔS universe allows us to distinguish between reversible and irreversible

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

Answer: Volume of water heated = 3.0 litre per minute Mass of water heated, m = 3000 g per minute Increase in temperature,

Answer: Volume of water heated = 3.0 litre per minute Mass of water heated, m = 3000 g per minute Increase in temperature, Question A geyser heats water flowing at the rate of 3.0 litres per minute from 2 7 C to 77 C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion

More information

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1 NY Times /5/03 slide Thermodynamics and Gases Last Time specific heats phase transitions Heat and Work st law of thermodynamics heat transfer conduction convection radiation Today Kinetic Theory of Gases

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM B March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed lease show

More information

Thermodynamics. Inaugural University of Michigan Science Olympiad Invitational Tournament. Test length: Minutes

Thermodynamics. Inaugural University of Michigan Science Olympiad Invitational Tournament. Test length: Minutes Inaugural University of Michigan Science Olympiad Invitational Tournament Thermodynamics Test length: 20-25 Minutes Team number: School name: Student names: Instructions: Show work for all problems. Partial

More information

T-5. Engines and Efficiency

T-5. Engines and Efficiency Physics 7B nswers for T5 (rev. 3.0) Page 1 T-5. Engines and Efficiency Solutions to Dicussion Questions 1. In common-sense language, efficiency is what you want what you have to put in. Let s see how this

More information

Chapter 7. Thermodynamics

Chapter 7. Thermodynamics Chapter 7 Thermodynamics 7.0 Introduction Thermodynamics is a branch of physics, which deals with the energy and work of a system, was first studied in the 19 th century as scientists were first discovering

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. However, the first law cannot explain certain facts about thermal

More information

Chem 75 February, 2017 Practice Exam 2

Chem 75 February, 2017 Practice Exam 2 As before, here is last year s Exam 2 in two forms: just the questions, and then the questions followed by their solutions. 1. (2 + 6 + 8 points) At high temperature, aluminum nitride, AlN(s), decomposes

More information

Chapter 2 Carnot Principle

Chapter 2 Carnot Principle Chapter 2 Carnot Principle 2.1 Temperature 2.1.1 Isothermal Process When two bodies are placed in thermal contact, the hotter body gives off heat to the colder body. As long as the temperatures are different,

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals King Fahd University of Petroleum & Minerals Mechanical Engineering Thermodynamics ME 04 BY Dr. Haitham Bahaidarah My Office Office Hours: :00 0:00 am SMW 03:00 04:00 pm UT Location: Building Room # 5.4

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

4200:225 Equilibrium Thermodynamics

4200:225 Equilibrium Thermodynamics 4:5 Equilibrium Thermodynamics Unit I. Earth, Air, Fire, and Water Chapter 3. The Entropy Balance By J.R. Elliott, Jr. Unit I. Energy and Entropy Chapter 3. The Entropy Balance Introduction to Entropy

More information

CHEM Exam 2 - March 3, 2017

CHEM Exam 2 - March 3, 2017 CHEM 3530 - Exam 2 - March 3, 2017 Constants and Conversion Factors NA = 6.02x10 23 mol -1 R = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 bar = 100 kpa = 750 torr 1 kpa = 7.50 torr 1 J = 1 kpa-l 1 kcal = 4.18 kj

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

More information

Thermodynamics and Statistical Physics Exam

Thermodynamics and Statistical Physics Exam Thermodynamics and Statistical Physics Exam You may use your textbook (Thermal Physics by Schroeder) and a calculator. 1. Short questions. No calculation needed. (a) Two rooms A and B in a building are

More information

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C 1. A circular rod of length L = 2 meter and diameter d=2 cm is composed of a material with a heat conductivity of! = 6 W/m-K. One end is held at 100 C, the other at 0 C. At what rate does the bar conduct

More information