Reducing the Depth of Quantum Circuits Using Additional Circuit Lines

Size: px
Start display at page:

Download "Reducing the Depth of Quantum Circuits Using Additional Circuit Lines"

Transcription

1 Ruing th Dpth of Quntum Ciruits Using Aitionl Ciruit Lins Nil Assi 1, Rort Will 1,2, Mthis Sokn 1,2, n Rolf Drhslr 1,2 1 Institut of Computr Sin, Univrsity of Brmn Group of Computr Arhittur, D Brmn, Grmny 2 Cyr-Physil Systms, DFKI GmH D Brmn, Grmny {nil,rwill,msokn,rhsl}@informtik.uni-rmn. Astrt. Th synthsis of Booln funtions, s thy r foun in mny quntum lgorithms, is usully onut in two stps. First, th funtion is rliz in trms of rvrsil iruit follow y mpping into orrsponing quntum rliztion. During this pross, th numr of lins n th quntum osts of th rsulting iruits hv minly n onsir s optimiztion ojtivs thus fr. Howvr, yon tht lso th pth of quntum iruit is vitl. Although first synthsis pprohs tht onsir pth hv rntly n introu, th mjority of sign mthos i not onsir this mtri. In this ppr, w introu n optimiztion pproh iming for th rution of pth in th pross of mpping rvrsil iruit into quntum iruit. For this purpos, w prsnt n improv (lol) mpping of singl gts s wll s (glol) optimiztion shm onsiring th whol iruit. In oth ss, w inorport th i of xploiting itionl iruit lins whih r us in orr to split hin of sril gts. Our optimiztion thniqus nl onurrnt pplition of gts whih signifintly rus th pth of th iruit. Exprimnts show tht rutions of pprox. 40% on vrg n hiv whn following this shm. 1 Introution Quntum omputtion hs om n tiv rsrh fil u to its promising rsults for importnt tsks suh s ftoriztion or ts srh. Motivt y this, rsrhrs hv vlop svrl synthsis pprohs [1 5]. Mny quntum lgorithms r oftn sri y mns of strutur quntum iruit in whih only th rprsnttion of Booln omponnts iffrs. Hn, for th synthsis of ths omponnts into quntum iruits, usully two-stp pproh is ppli: First, th sir Booln funtionlity is rliz s rvrsil iruit only onsisting of rvrsil gts whih is ftrwrs mpp to n quivlnt rliztion s on quntum gts. For this purpos, mpping shms s introu.g. in [6, 15] r ppli. In this flow, minimizing th numr of lins n th quntum osts hv n onsir s th mjor optimiztion ojtivs thus fr. Howvr, yon tht

2 lso th pth of th iruit is vitl. Dpth optimiztion thniqus onsir th onurrnt pplition of singl gts in orr to ru th ovrll xution tim of th iruit rliztion. Whil first pprohs for synthsis with rspt to pth hv rntly n introu (s.g. [7 11]), th vst mjority of sign mthos os not onsir this mtri. As n xmpl in [7, 11], yl rprsnttion ws hosn n input yls whr prtition into thr susts. Eh sust is synthsiz inpnntly on iffrnt st of nill in prlll. This mtho rquirs 2n itionl lins n fouss only on ruing th pth of rvrsil iruit rthr thn th quntum iruit. This is ruil sin th xution tims for two rvrsil gts n iffr signifintly whn tking th rsptiv quntum iruit mpping into ount. As onsqun, vn pth-optiml rvrsil iruit likly ls to quntum iruit with non-optiml pth. Anothr postsynthsis pproh hs n prsnt in [8]. Howvr, thir pproh mks us of spil lss of tmplts. Finlly, th work prsnt in [10] sris n xhustiv lgorithm iming to fin miniml pth quntum iruit using spil gt lirry. Howvr, u to its xponntil tim omplxity, it is only pplil to iruits with smll numr of quits. In this ppr, w prsnt n i on how pth of quntum iruits n ru y ing n itionl lin to th iruit. Bs on this i, two pth optimiztion pprohs r prsnt. Th first mtho ims to ru th pth y pplying th rution gt-pr-gt, whrs th son mtho fouss on th whol iruit. An xprimntl vlution of oth pprohs shows tht signifint improvmnt of pth n hiv for quntum iruits. Th rminr of this ppr is strutur s follows. Th nxt stion rifly introus rvrsil n quntum iruits. Dpth mtris n th gnrl i r prsnt in St. 3. Aftrwrs, oth propos pprohs r sri n vlut in St. 4 n St. 5, rsptivly. Finlly, St. 6 onlus th ppr. 2 Bkgroun To kp th rminr of this ppr slf-ontin, this stion rifly introus th sis on rvrsil iruits, quntum iruits, n th orrsponing mpping from rvrsil to quntum iruits. 2.1 Rvrsil Ciruits Booln rvrsil funtions r thos funtions f : IB n IB n tht r ijtiv, i.. thr xists n 1-to-1 mpping from th inputs to th outputs n vi vrs. Rvrsil funtions n rliz y rvrsil iruits tht onsist of t lst n lins. Rvrsil iruits r ss of rvrsil gts tht long to gt lirry. On gt lirry tht is oftn us onsists of multipl ontrol Toffoli gts [12].

3 () Rvrsil gt () Rvrsil iruit Fig. 1. Rvrsil iruitry Dfinition 1. Givn st of vrils V = {x 1,..., x n }, multipl ontrol Toffoli gt T(C, t) hs ontrol lins C = {x j1, x j2,..., x jl } V n trgt lin t V \ C. Th gt mps t t (x j1 x j2 x jl ) n lvs ll othr lins unltr. In th spil ss C = 0 n C = {} = 1, th gts r rfrr to s NOT n CNOT gt n not N(t) n C(, t), rsptivly. In [13], it hs n shown tht ny rvrsil funtion f : IB n IB n n rliz y rvrsil iruit with n lins whn using Toffoli gts. Exmpl 1. Figur 1() shows Toffoli gt with two ontrol lins. Th ontrol lins r not y, whil th trgt lin is not y. Th nnott vlus monstrt th omputtion of th gt for givn input ssignmnt. Figur 1() shows iffrnt Toffoli gts in s forming rvrsil iruit. 2.2 Quntum Booln Ciruits Inst of its, quntum iruits mnipult quits whih n rprsnt th lssil Booln vlus ut lso th suprposition of thm. Mor prisly, quit ϕ is vtor ( ) whr, C suh tht = 1. If = 1, thn ϕ rprsnts th lssil 0, not 0, n if = 1, thn ϕ rprsnts th lssil 1, not 1. In gnrl, quntum gt ting on n quits rprsnts 2 n 2 n unitry mtrix [14], whr mtrix U is unitry if U U = UU = I n U is th joint mtrix U = U T. Using this gt finition, mny quntum mhnil ffts suh s suprposition n ntnglmnt n formult. Howvr, in th sop of this ppr w r onsiring iruits tht rliz pur Booln funtionlity ut still n to rliz using quntum gts in orr to m thm into quntum lgorithms suh s Dutsh-Josz, Grovr, or Shor. Toffoli gts rprsnt unitry mtrix n r hn suitl for rlizing quntum Booln iruits. Howvr, with rspt to th tul physil implmnttion, it is of intrst to otin iruits tht mk us of gts from lirry with only fw lmnts [6]. For th prsnt ppr, w r mking us of ommon gt lirry onsisting of four quntum gts tht only hng on quit t tim n is fin s follows. Dfinition 2. A quntum gt U(C, t) pplis th unitry 2 2 mtrix to th quit tht orrspons to th trgt lin t, if n only if ll ontrol lins C r s-

4 V 1 V v 0 V 0 Fig. 2. Quntum iruitry x 1 x 1 x 2 x 2 x 3 V V V x 3 x 1x 2 () Bs on Fig. 1() x 1 x 1 x 2 x 2 x 3 x 3 x 4 V V V V V V x 4 () Bs on Fig. 1() Fig. 3. Mpping rvrsil iruits to quntum iruits sign 1. W ( onsir ) gt lirry X({}, t), X({}, t), V ({}, t), n V ({}, t) 0 1 with X =, V V = X, n V 1 0 ing th joint of V. Not tht X({}, t) = N(t) n X({}, t) = C(, t). Th gt lirry is oftn rfrr to s NCV lirry. Exmpl 2. Figur 2 pits quntum iruit onsisting of four gts, whr v 0 = V 1 = V Mpping Rvrsil Ciruits to Quntum Ciruits Sin ny quntum oprtion n rprsnt y unitry mtrix [14], h quntum iruit is inhrntly rvrsil. As isuss ov, whn rvrsil iruits shoul rprsnt s quntum iruit, th Toffoli gts r too gnrl n, thus, not suitl for rliztion. As onsqun, rvrsil iruits r mpp to quntum iruits tht only onsists of gts of prtiulr gt lirry,.g. th NCV lirry. For this purpos, h gt of th rvrsil iruit is mpp into s of funtionlly quivlnt quntum gts. Exmpl 3. Consir Toffoli gt with two ontrol lins s shown in Fig. 1(). A funtionlly quivlnt rliztion in trms of quntum gts is pit in Fig. 3(). This s n ppli to fully mp th rvrsil iruit shown in Fig. 1() into n quivlnt quntum iruit. For this purpos, ll orrsponing Toffoli gts r rsptivly sustitut with orrsponing quntum gt s. Th 2 n, 4 th, n 5 th gt rmin unhng s thy lry rprsnt quntum gts. Th rsulting fully quivlnt quntum iruit is shown in Fig. 3(). Similr mppings xist for Toffoli gts with mor thn two ontrol lins. But with inrsing numr of ontrol lins, th rsulting quntum iruits om

5 mor xpnsiv, i.. rquir mor quntum gts. Th urrntly st known mppings of singl Toffoli gts into quntum ss hv n introu in [15]. In this work, w r following th mppings introu thr. As singl quntum gts r ssum to hv unit osts, th numr of gts of th rsulting ss usully is rfrr to s quntum osts. 3 Ruing th Dpth of Quntum Ciruits In this work, w r proposing optimiztion pprohs iming for rution of th pth in quntum iruits using itionl iruit lins. This stion first motivts th onsirtion of pth in quntum iruits, whrs th gnrl i of th propos pprohs is outlin ftrwrs. 3.1 Consirtion of Dpth in Quntum Ciruits Thus fr, th mjor optimiztion ojtivs for synthsis hv n th numr of lins n th quntum osts of th rsulting iruits s rviw ov. Howvr, yon tht lso th pth of quntum iruit is vitl. This mtri rognizs whthr gts n onurrntly ppli whih likly ls to rution in th xution tim of iruit. Dfinition 3. Lt U i (C i, t i ) n U i+1 (C i+1, t j+1 ) two onsutiv quntum gts. Ths gts n ppli onurrntly if C i C i+1 {t i, t i+1 } = C i + C i In othr wors, if th lins us y h gt (oth ontrol n trgt lin) r isjoint. Lt G quntum iruit with k lmntry quntum gts, thn G n prtition into m k suiruits whos gts n pirwis ppli onurrntly. W rfr to th miniml m s th pth of th iruit. Algorithm D (Dtrmin Ciruit Dpth). Givn quntum iruit G = U 1 (C 1, t 1 )... U k (C k, t k ) ovr n vrils x 1,..., x n. This lgorithm trmins th pth m of th iruit oring to Dfinition 3 y pplying gry srh to gts tht n xut in prlll. For th omputtion, w r mking us of th intgrs 1,..., n. D1. [Initiliz.] St m 1, i 1, n j 0 for 1 j n. D2. [Trmint?] If i > k, trmint. D3. [Apply gt.] For h x j C i {t i }, st j j + 1. D4. [Gts o not ovrlp?] If thr xists no j {1,..., n} suh tht j = 2, st i i + 1 n goto Stp D2. D5. [Gts ovrlp.] For h j {1,..., n}, st j 1, if x j C i {t i }, othrwis st j 0; st m m + 1, i i + 1, n goto Stp D2. Exmpl 4. Figur 4 illustrts th pth for th rvrsil iruit shown in Fig. 1().

6 V V V V V V Fig. 4. Quntum pth for th rvrsil iruit shown in Fig. 1() Although th ohrn tim, i.. th tim quit n kp its quntum stt, n th gt oprtion tim, i.. th tim gt ns to prform its oprtion, my vry from on thnology to nothr (s.g. Tl III of [16]), kping th ovrll xution tim s smll s possil is ssntil in ll ths ss. Consquntly, th pth mtri n ppli in gnri mnnr, s it provis propr mol whih n onsir lry t th synthsis stg in th sn of pris thnologil onstrints. Dspit th ft tht quntum lgorithms lry xploit lgorithmi prlllism to inrs th prossing sp, synthsis pprohs shoul im for prouing iruits with t lst s possil iruit pth. Motivt y this, w r onsiring th qustion how th pth of quntum iruit n ru in th rminr of this ppr. For this purpos, w r mking us of itionl iruit lins s motivt in th following. 3.2 Exploiting Aitionl Ciruit Lins Kping th numr of iruit lins s smll s possil is wll pt in th synthsis of quntum iruits. This is minly motivt y th ft tht h iruit lin hs to rprsnt y quit, whih is vry limit rsour. Nvrthlss, vlutions lso show tht (slight) xtnsion of iruit with itionl lins my hv signifint nfits. For xmpl in [6, 15], it hs n monstrt tht lrgr mount of iruit lins llow for muh hpr mpping of rvrsil iruits to quntum iruits in trms of gt ount. In [3], vlutions show tht using twi th numr of iruit lins rus th quntum osts y up to two orrs of mgnitu. Evntully, this l to post-synthsis optimiztion pproh [17] whih nls rutions in quntum osts of up to 69% only y ing singl itionl lin to th iruit. In this work, w show tht similr onpts lso hlp in ruing th pth of quntum iruits. W r following th stlish synthsis flow rviw in St. 2.3, i.. first rvrsil iruit is rliz whih ftrwrs is mpp to quntum iruit. Howvr, y inorporting itionl lins uring this pross, pth-wr optimiztion oms possil. Th itionl iruit lins r introu s hlpr lins. Dfinition 4. Lt G rvrsil or quntum iruit. A hlpr lin is n itionl lin whos input is st to onstnt 0 n is us in wy throughout th iruit suh tht th output of th lin is lso 0.

7 V V V V V V V V V V V V 0 0 () Initil iruit () Ciruit with ru pth Fig. 5. Dpth rution y using itionl hlpr lins Following th onpt from [17], hlpr lins n now ppli in orr to uffr vlus of iruit lins so tht thy n r-us ltr y othr gts. Whnvr th urrnt vlu of hlpr lin h is 0, nothr signl lin x n opi to h y ppning opy gt C({x}, h) to th iruit. Th hlpr lin n rstor with th sm gt if no othr gt hs us h s trgt lin in twn. In [17], this uffring hs n xploit to rmov ommon ontrol lins onntions twn Toffoli gts in orr to ru th quntum ost. Howvr, th sm onpt n similrly ppli to ru th pth of quntum iruits s illustrt y th following xmpl. Exmpl 5. Figur 5() shows iruit in whih no gts n prform in prlll sin thy ll shr th sm ontrol lin. In Fig. 5() hlpr lin hs n to opy th vlu of. By oing this, th gts n rrrng whih rus th pth from 8 to 6. Clrly, Exmpl 5 prsnts rthr rtifiil iruit. Howvr, s on this gnrl i w r proposing iffrnt optimiztion pprohs whos vlutions show tht in signifint rution of pth in quntum iruits n hiv. 4 Optimiztion Approhs Motivt y th gnrl i outlin ov, two optimiztion pprohs r propos in this stion whih im for ruing th pth y xploiting itionl iruit lins. Th first pproh follows lol shm, i.. onsirs h Toffoli gt inpnntly, whr th son pproh onsirs th whol iruit inst. Finlly, thniqus r prsnt to furthr ru th pth n th quntum osts whih n ppli to th rsulting quntum ss. 4.1 Consirtion of Singl Toffoli Gts Th vilility of hlpr lin s introu in th prvious stion llows for n improvmnt of th mpping shm rviw in St Rll tht, whn

8 () Toffoli Gt V V V () Originl mpping V V V 0 0 () Propos mpping Fig. 6. Consirtion of singl Toffoli gts following th fult mpping shm, h Toffoli gt is mpp to quntum rliztion of pth 5 s shown in Fig. 6(). Howvr, s th son n th thir gt shr th sm ontrol lin, n itionl hlpr lin llows for onurrnt xution of oth gts s shown in Fig. 6(). Sin itionlly th opy gts n insrt without inrsing th pth, pth rution for th quntum iruit rliztion for h Toffoli gt from 5 to 4 n otin. Exmpl 6. Consir gin th rvrsil iruit from Fig. 1(). Using th stlish mpping shm from St. 2.3, quntum iruit with pth 12 rsults (s shown in Fig. 3(); non of th gts xpt for th singl NOT gt n xut onurrntly). In ontrst, pplying th itionl hlpr lin s propos in Fig. 6, th iruit pit in Fig. 7() rsults. This rus th pth from 12 to 9. Not tht this prour n lso ppli to Toffoli gts with mor thn two ontrol lins. In ft, stt-of-th-rt mpping shms (suh s sri in [15]) ompos ths gts into ss of two-ontroll Toffoli gts. For thm, th pth-optimiz mpping to quntum gts s propos in Fig. 6 n ppli. Morovr, th sm shm n ppli to othr rvrsil gts suh s th Prs gt s wll. This shm is not nfiil in ll ss. In ft, if onurrnt Toffoli gts r mpp to quntum iruit, th originl mpping ls to ttr rsults. This is illustrt y mns of Fig. 8. Applying th originl mpping shm to th two Toffoli gts shown in Fig. 8() ls to th quntum s s shown in Fig. 8(). As oth Toffoli gts r ppli onurrntly, lso th rsulting quntum gt ss n ppli onurrntly, i.. pth of 5 rsults. Applying th propos shm from Fig. 6 woul worsn th rsult. In ft, th 0 V V V V V V 0 () Consirtion of singl Toffoli gts 0 V V V V V V 0 () Consirtion of th whol iruit Fig. 7. Applition of th propos pprohs to th iruit from Fig. 1()

9 f f f V V V V V V f V V V f V V V f 0 0 () Originl iruit () Originl mpping () Propos mpping Fig. 8. Applition of th lol shm to onurrnt Toffoli gts V V V () Originl iruit V V V 0 0 () Rsulting iruit Fig. 9. Consirtion of th whol iruit hlpr lin togthr with th rquir opy gts woul inrs th pth to 7 s shown in Fig. 8(). Consquntly, this shm is only ppli in ss whr n tul pth improvmnt n hiv. Howvr, xprimnts summriz in St. 5 lrly onfirm tht sustntil improvmnts with rspt to th pth n still hiv. As rwk, this oviously oms with th pri of inrs quntum osts in th rsulting s. But lso hr, xprimnts show th rsulting inrs to mort. 4.2 Consirtion of th Whol Ciruit Whil so fr th hlpr lin hs n xploit in lol ontxt, lso glol onsirtion turns out to nfiil. Th i is to intify suiruits of gts shring th sm ontrol lin n us th hlpr lin in orr to prtition th gts. Thn, h onsutiv pir of gts in suh s n onurrntly xut y using th originl ontrol lin for th first gt n th opi vlu t th hlpr lin for th son gt. Exmpl 7. Figur 9() shows quntum iruit ompos of gts tht shr th sm ontrol lins. Using th hlpr lin, n quivlnt rliztion s shown in Fig. 9() n riv. This rus th pth from 5 to 4. This shm n itionlly improv y pplying th moving rul for quntum iruits. In ft, two jnt gts U(C 1, t 1 ) n U(C 2, t 2 ) n intrhng if t 2 / C 1 n t 1 / C 2 {t 1 } =. As rsult, gts n mov through th iruit whih might l to lrgr suiruits of gts shring th sm ontrol lin. In this s, mor sustntil rution n hiv.

10 Exmpl 8. Consir gin th quntum iruit shown in Fig. 4. Th son, fifth, sixth, n svnth gt shr th sm ontrol lin n n mov togthr (not, lthough lso th thir n tnth gt hv ontrol lin, thy nnot mov to onsutiv s). Exploiting tht, this s n optimiz ling to th iruit shown in Fig. 7(). This rus th pth from 12 to 9. Not tht this shm lso inrss th quntum osts of th rsulting iruit. Howvr, sin for h intifi suiruit only two opy gts hv to, th inrs is lmost ngligil. 4.3 Furthr Optimiztions Inpnnt of th optimiztion shms propos ov, th pth of quntum gt ss n itionlly improv using xisting optimiztion shms tht originlly im for quntum ost rution. In prtiulr, th pplition of mrging n ltion ruls s xplin in [18] togthr with th moving rul s lry isuss ov is nfiil. For xmpl, th iruit shown in Fig. 7() (otin using xisting mpping shms) oviously n improv y rmoving th fifth n th sixth gt whih nl h othr. This rus th quntum osts ut lso improvs th pth of th iruit. Aoringly, suh simpl optimiztions r lso ppli in our pproh. For th xprimntl vlution summriz in St. 5, th mthos xploiting itionl hlpr lins r ppli to iruits lry optimiz using moving, mrging, n ltion rul. 5 Exprimntl Rsults In orr to onfirm th ffiiny of th propos i, th pprohs sri ov hv n implmnt n xprimntlly vlut. For this purpos, th opn sour toolkit RvKit [19] hs n ppli n nhmrks hv n tkn from th RvLi [20] ts. All xprimnts hv n onut on n Intl Cor i5 Prossor with 4 GB of min mmory. In this stion, w summriz n isuss th otin rsults. Tl 1 provis th otin numrs. For ll nhmrks list in th first olumn, th numr of lins (Lins), th quntum osts (Costs), n th pth (Dpth) of th rsptiv iruit rliztions s wll s th run-tim (Tim) n to gnrt thm r provi. W istinguish twn th following iruits: Initil Ciruits (IC) rprsnt th iruits s tkn from RvLi n mpp to quntum iruits s sri in St. 2.3, i.. without ny pth optimiztion whtsovr. Optimiz Ciruits (OC) rprsnt th iruits tht hv itionlly n optimiz using th strightforwr thniqus rviw in St. 4.3.

11 Both, th initil iruits n optimiz iruits, llow for omprison to th iruits otin y th propos thniqus, nmly: Ciruits tht hv n otin y using th optimiztion shm tht onsirs singl Toffoli gts (Lol) s sri in St Ciruits tht hv n otin y using th optimiztion shm tht onsirs th whol iruit (Glol) s sri in St Th prntg pth-improvmnt of th iruits otin y th propos thniqus with rspt to th initil iruit n th optimiz iruits r provi in th olumns not y Impr IC n Impr OC, rsptivly. First of ll, it n osrv tht lry th niv pprohs rviw in St. 4.3 l to signifint improvmnts (15% on vrg n up to 42% in th st s for 4mo5-v0 18 ). Howvr, xploiting itionl iruit lins nls furthr improvmnts whih r ftors yon tht. In th st s (x5p 296 ), pth n ru from 1352 to 303 (using th lol pproh from St. 4.1) or 226 (using th glol pproh from St. 4.2). But lso for th othr nhmrks sustntil rutions n osrv, vn ompr to th lry optimiz iruits. As isuss ov, ths improvmnts in th pth my om t th pri of highr quntum osts. As our vlutions show, this prtiulrly hols for th lol onsirtion of singl Toffoli gts (s olumns not Lol). Hr, quntum osts inrs y 18% on vrg ompr to th lry optimiz iruit. Howvr, for th glol shm, no suh isvntgs n osrv. In ft, quntum osts rmin unhng hr (s olumns not Glol). Ovrll, vn ompr to lry optimiz iruits, improvmnts of mor thn 50% on vrg n hiv. If th glol shm is ppli, ths hivmnts r possil without th n to pt n inrs in th quntum osts. This is m possil y th ition of singl iruit lin. Although this vntully rsults in th onsirtion of nothr quit to physilly rliz, th possil nfits with rspt to timing n prtiulrly ohrn tim might worth th ovrh. 6 Conlusion In this ppr, pth optimiztion y ing hlpr lin to quntum iruits hs n introu n vlut. Two pprohs, nmly gt s n iruit s, hv n onsir. Exprimntl rsults for th two mthos hv shown signifint pth rutions whih rhs ovr 50% for quntum iruits. Although ths mthos inrs quntum ost, pplying furthr improvmnts to th quntum iruits hv fix th prolm.

12 Tl 1. Exprimntl vlution Bnhmrk Initil Ciruits Optimiz Ciruits Lol Glol (St. 4.3, +0 lin) (St. 4.1, +1 lin) (St. 4.2, +1 lin) Lins Cost Dpth Tim Cost Dpth Tim ImprIC Cost Dpth Tim ImprIC ImprOC Cost Dpth Tim ImprIC ImprOC x5p , ,95 15% ,48 81% 78% ,92 86% 83% hw , ,71 15% ,64 78% 74% ,58 84% 81% , ,04 6% ,73 75% 73% ,66 75% 73% hw , ,88 14% ,59 76% 72% ,21 83% 80% hw , ,09 14% ,28 71% 66% ,44 78% 75% w , ,26 14% ,11 71% 66% ,47 76% 72% hw , ,67 12% ,79 68% 64% ,42 74% 71% , ,23 20% ,06 69% 62% ,99 69% 62% , ,06 19% ,35 69% 61% ,85 68% 61% , ,02 19% ,19 67% 60% ,14 67% 59% hm , ,51 25% ,35 70% 60% ,22 72% 63% , ,00 17% ,03 65% 57% ,03 63% 56% hw , ,11 12% ,15 61% 56% ,95 65% 60% mo5r , ,17 13% ,80 62% 56% ,55 69% 65% r , ,08 15% ,80 62% 55% ,73 66% 60% r , ,30 16% ,65 62% 55% ,79 72% 67% , ,00 17% ,58 57% 48% ,99 57% 48% nt , ,00 5% ,03 50% 47% ,04 39% 36% hm , ,03 23% ,14 55% 42% ,12 60% 49% mo , ,00 7% ,00 29% 23% ,00 36% 31% urf , ,19 5% ,74 26% 22% ,03 28% 24% 4mo5-v , ,00 42% ,00 54% 21% ,00 63% 36% ryy , ,36 12% ,14 28% 18% ,55 29% 19% lu , ,19 12% ,46 27% 18% ,25 29% 19% Avrg Improvmnt 15% 60% 52% 63% 56% Lgn of th tl is sri in Stion 5.

13 Rfrns 1. Fzl, K., Thornton, M., Ri, J.: ESOP-s toffoli gt s gnrtion. In: Communitions, Computrs n Signl Prossing, PRim Pifi Rim Confrn on. (2007) Millr, D.M., Mslov, D., Duk, G.W.: A trnsformtion s lgorithm for rvrsil logi synthsis. In: Dsign Automtion Conf. (2003) Will, R., Drhslr, R.: BDD-s synthsis of rvrsil logi for lrg funtions. In: Dsign Automtion Conf. (2009) Sokn, M., Will, R., Ottrstt, C., Drhslr, R.: A synthsis flow for squntil rvrsil iruits. In: Int l Symposium on. Multipl-Vlu Logi (2012) Sokn, M., Will, R., Hilkn, C., Przigo, N., Drhslr, R.: Synthsis of rvrsil iruits with miniml lins for lrg funtions. In: ASP Dsign Automtion Conf. (2012) Brno, A., Bnntt, C.H., Clv, R., DiVinhnzo, D., Mrgolus, N., Shor, P., Sltor, T., Smolin, J., Winfurtr, H.: Elmntry gts for quntum omputtion. Th Amrin Physil Soity 52 (1995) Arzh, M., Sh Zmni, M., Sighi, M., Si, M.: Dpth-optimiz rvrsil iruit synthsis. Quntum Informtion Prossing (2012) Mslov, D., Duk, G., Millr, D., Ngrvrgn, C.: Quntum iruit simplifition n lvl omption. Trnstions on Computr-Ai Dsign of Intgrt Ciruits n Systms 27(3) (2008) Bohrov, A., Svor, K.M.: A pth-optiml nonil form for singl-quit quntum iruits. rxiv prprint rxiv: (2012) 10. Amy, M., Mslov, D., Mos, M., Rottlr, M.: A mt-in-th-mil lgorithm for fst synthsis of pth-optiml quntum iruits. rxiv prprint rxiv: (2012) 11. Arzh, M., Zmni, M., Sighi, M., Si, M.: Logil-pth-orint rvrsil logi synthsis. In: Int l Workshop on Logi n Synthsis. (2011) 12. Toffoli, T.: Rvrsil omputing. In Bkkr, W., vn Luwn, J., s.: Automt, Lngugs n Progrmming. Springr (1980) 632 Thnil Mmo MIT/LCS/TM-151, MIT L. for Comput. Si. 13. Shn, V.V., Prs, A.K., Mrkov, I.L., Hys, J.P.: Synthsis of rvrsil logi iruits. Trnstions on Computr-Ai Dsign of Intgrt Ciruits n Systms 22(6) (2003) Nilsn, M., Chung, I.: Quntum Computtion n Quntum Informtion. Cmrig Univ. Prss (2000) 15. Millr, D.M., Will, R., Ssnin, Z.: Elmntry quntum gt rliztions for multipl-ontrol Toffolli gts. In: Int l Symp. on Multi-Vlu Logi. (My 2011) Mtr, R.V., Oskin, M.: Arhitturl implitions of quntum omputing thnologis. J. Emrg. Thnol. Comput. Syst. 2(1) (2006) Millr, D.M., Will, R., Drhslr, R.: Ruing rvrsil iruit ost y ing lins. In: Int l Symp. on Multi-Vlu Logi. (2010) Zhr, S.: Thnology Mpping n Optimiztion for Rvrsil n Quntum. PhD thsis, Univrsity of Vitori (2012) 19. Sokn, M., Frhs, S., Will, R., Drhslr, R.: Rvkit: n opn sour toolkit for th sign of rvrsil iruits. Rvrsil Computtion, Ltur Nots in Computr Sin 7165 (2012) RvKit is vill t

14 20. Will, R., Groß, D., Tur, L., Duk, G.W., Drhslr, R.: RvLi: n onlin rsour for rvrsil funtions n rvrsil iruits. In: Int l Symp. on Multi- Vlu Logi. (2008) RvLi is vill t

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Exact Template Matching Using Boolean Satisfiability

Exact Template Matching Using Boolean Satisfiability 2013 IEEE 43r Intrntionl Symposium on Multipl-Vlu Logi Ext Tmplt Mthing Using Booln Stisfiility Nil Assi Mthis Sokn Rort Will Rolf Drhslr Institut of Computr Sin, Univrsity of Brmn, 28359 Brmn, Grmny Cyr-Physil

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Design Optimization Based on Diagnosis Techniques

Design Optimization Based on Diagnosis Techniques Dsign Optimiztion Bs on Dignosis Thniqus Anrs Vnris Mgy S. Air Irhim N. Hjj Univrsity of Toronto Motorol Univrsity of Illinois ECE Dprtmnt 77 W. Prmr ECE Dprtmnt n CSL Toronto, ON M5S 34 Austin, T 78729

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with

A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with A Grph-Bs Synthsis Algorithm or AND/XOR Ntworks Yibin Y Kushik Roy Shool o Eltril n Computr Enginring Puru Univrsity, Wst Lytt, IN 4797-285, USA Abstrt In this ppr, w introu Shr Multipl Root XORbs Domposition

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134 On Implmnttion Chois for Itrtiv Improvmnt Prtitioning Algorithms Lrs W. Hgn y, Dnnis J.-H. Hung n Anrw B. Khng UCLA Dprtmnt of Computr Sin, Los Angls, CA 90024-1596 y Cn Dsign Systms, In., Sn Jos, CA 95134

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

35 th Design Automation Conference Copyright 1998 ACM

35 th Design Automation Conference Copyright 1998 ACM Eint Booln ivision n Sustitution Shih-Chih Chng vi Ihsin Chng pt. o CS n IE Ntionl Chung Chng Univrsit Ultim Intronnt Th. Chi-Yi, TAIWAN, ROC Sunnvl, CA 94086 Astrt Booln ivision, n hn Booln sustitution,

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Clustering for Processing Rate Optimization

Clustering for Processing Rate Optimization Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL 60208 Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s Ciruit Prtitioning for Dynmilly Rongurl FPGAs Huiqun Liu n D. F. Wong Dprtmnt of Computr Sins Unirsity of Txs t Austin Austin, T 787 Emil: fhqliu, wongg@s.utxs.u Astrt Dynmilly rongurl FPGAs h th potntil

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

ECE Experiment #6 Kitchen Timer

ECE Experiment #6 Kitchen Timer ECE 367 - Exprimnt #6 Kithn Timr Sprin 2006 Smstr Introution This xprimnt hs you onstrut iruit intrfin nin I/O lins from th 68HC11 with two svn smnt isplys n mtrix kyp, n writ ssmbly lnu o to rliz prormmbl

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas Effiint Brost in MANETs Using Ntwork Coing n Dirtionl Antnns Shuhui Yng Dprtmnt of Computr Sin Rnsslr Polythni Institut Troy, NY 28 Ji Wu n Mihl Cri Dprtmnt of Computr Sin n Enginring Flori Atlnti Univrsity

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Layout Decomposition for Quadruple Patterning Lithography and Beyond

Layout Decomposition for Quadruple Patterning Lithography and Beyond Lyout Domposition for Qurupl Pttrning Lithogrphy n Byon Bi Yu ECE Dprtmnt Univrsity of Txs t Austin, Austin, TX i@r.utxs.u Dvi Z. Pn ECE Dprtmnt Univrsity of Txs t Austin, Austin, TX pn@.utxs.u ABSTRACT

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information