Layout Decomposition for Quadruple Patterning Lithography and Beyond

Size: px
Start display at page:

Download "Layout Decomposition for Quadruple Patterning Lithography and Beyond"

Transcription

1 Lyout Domposition for Qurupl Pttrning Lithogrphy n Byon Bi Yu ECE Dprtmnt Univrsity of Txs t Austin, Austin, TX i@r.utxs.u Dvi Z. Pn ECE Dprtmnt Univrsity of Txs t Austin, Austin, TX pn@.utxs.u ABSTRACT For nxt-gnrtion thnology nos, multipl pttrning lithogrphy (MPL) hs mrg s ky solution,.g., tripl pttrning lithogrphy (TPL) for 14/11nm, n qurupl pttrning lithogrphy (QPL) for su-10nm. In this ppr, w propos gnri n roust lyout omposition frmwork for QPL, whih n furthr xtn to hnl ny gnrl K-pttrning lithogrphy (K>4). Our frmwork is s on th smifinit progrmming (SDP) formultion with novl oloring noing. Mnwhil, w propos fst yt fftiv oloring ssignmnt n hiv signifint spup. To our st knowlg, this is th first work on th gnrl multipl pttrning lithogrphy lyout omposition. Ctgoris n Sujt Dsriptors B.7.2 [Hrwr, Intgrt Ciruit]: Dsign Ais Gnrl Trms Algorithms, Dsign, Prformn Kywors Multipl Pttrning Lithogrphy, Lyout Domposition 1. INTRODUCTION As th minimum ftur siz furthr rss, multipl pttrning lithogrphy (MPL) hs om on of th most vil solutions to su-14nm hlf-pith pttrning, long with xtrm ultr violt lithogrphy (EUVL), ltri m lithogrphy (EBL), n irt slf-ssmly (DSA) [1,2]. Lst fw yrs hv sn xtnsiv rsrhs on MPL thnology suh s oul pttrning [], n tripl pttrning [4]. Continuing growth of thnology no is xpt to shrink furthr own to 11nm or yon. Suh vn is, nonthlss, mking onvntionl pttrning prosss rly suffiint for th nxt gnrtion. Qurupl pttrning lithogrphy (QPL) is nturl xtnsion long th prigm of oul/tripl pttrning. In th QPL mnufturing, thr r four xposur/thing prosss, through whih th initil lyout n prou. Com- Prmission to mk igitl or hr opis of ll or prt of this work for prsonl or lssroom us is grnt without f provi tht opis r not m or istriut for profit or ommril vntg n tht opis r this noti n th full ittion on th first pg. To opy othrwis, to rpulish, to post on srvrs or to ristriut to lists, rquirs prior spifi prmission n/or f. DAC 14, Jun , Sn Frniso, CA, USA Copyright 2014 ACM /14/06...$ msk 1 msk 2 msk msk 4 () Figur 1: () A ommon ntiv onflit from tripl pttrning lithogrphy; () Th onflit n rsolv through qurupl pttrning lithogrphy. pr with tripl pttrning lithogrphy, QPL introus on mor msk. Although inrsing th numr of prossing stps y % ovr tripl pttrning, thr r svrl rsons/vntgs for QPL. Firstly, u to th ly or unrtinty of othr lithogrphy thniqus, suh s EUVL, smionutor inustry ns CAD tools to prpr n unrstn th omplxity/implition of QPL. Evn from thortil prsptiv, stuying th gnrl multipl pttrning is vlul. Sonly, it is osrv tht for tripl pttrning lithogrphy, vn with stith insrtion, thr r svrl ommon ntiv onflit pttrns. As shown in Fig. 1 (), ontt lyout within th stnr ll my gnrt som 4- liqu pttrns, whih r inomposl. This onflit n sily rsolv if four msks r vill (s Fig. 1 ()). Thirly, with on mor msk, som stiths my voi uring mnufturing. By this wy it is potntil to rsolv th ovrlpping n yil issus riv from th stiths. Th pross of QPL rings up svrl ritil yt opn sign hllngs, suh s lyout omposition, whr th originl lyout is ivi into four msks (olors). Doul/tripl pttrning lyout omposition with onflit n stith minimiztion hs n wll stui for full-hip lyout [ 12] n ll s sign [1 15]. Th prolm n optimlly solv through xpnsiv intgr linr progrmming (ILP) [ 5]. To ovrom th long runtim prolm of ILP solvr, for oul pttrning, prtitioning/mthing s mthos hv n propos [6,7]; whil for tripl pttrning, som spup thniqus,.g., smifinit progrmming (SDP) [4,10], n huristi oloring ssignmnt [8, 9] hv n propos. Howvr, how to fftivly solv th qurupl pttrning, or vn gnrl multipl pttrning prolms, is still n opn qustion. In this ppr, w l with th qurupl pttrning lyout omposition (QPLD) prolm. Our ontriutions r highlight s follows. (1) To our st knowlg, this is th first lyout omposition rsrh for QPLD prolm. W liv this work will invok mor futur rsrh into this fil thry promoting th sling of thnology no. (2) Our frmwork onsists of holisti lgorithmi prosss, suh s smifinit progrmming s lgorithm, linr olor s- ()

2 signmnt, n novl GH-tr s grph ivision. () W monstrt th viility of our lgorithm to suit with gnrl K-pttrning (K 4) lyout omposition, whih oul vn guilins for futur thnology. Th rst of th ppr is orgniz s follows. In Stion 2, w giv th prolm formultions n th ovrll omposition flow. In Stion n Stion 4 w propos th olor ssignmnt lgorithms n grph ivision thniqus, rsptivly. Stion 5 xtns our mthoologis to gnrl K-pttrning prolm. Stion 6 prsnts th xprimnt rsults, follow y onlusion in Stion PRELIMINARIES 2.1 Prolm Formultion Givn input lyout whih is spifi y fturs in polygonl shps, omposition grphs [4, 5] is onstrut y Dfinition 1. Dfinition 1 (Domposition Grph). A omposition grph is n unirt grph {V, CE, SE} with singl st of vrtis V, n two g sts CE n SE ontining th onflit gs (CE) n stith gs (SE), rsptivly. Eh vrtx v V rprsnts polygonl shp, n g CE xists iff th two polygonl shps r within minimum oloring istn min s, n n g SE iff thr is stith nit twn th two vrtis whih r ssoit with th sm polygonl shp. Now w giv th prolm formultion of qurupl pttrning lyout omposition (QPLD). Prolm 1 (QPLD). Givn n input lyout whih is spifi y fturs in polygonl shps n minimum oloring istn min s, th omposition grph is onstrut. Qurupl pttrning lyout omposition (QPLD) ssigns ll th vrtis into on of four olors (msks) to minimiz onflit numr n stith numr. Th QPLD prolm n xtn to gnrl K-pttrning lyout omposition prolm s follows. Prolm 2 (K-Pttrning Lyout Domposition). Givn n input lyout, th omposition grph is onstrut. Eh vrtx in grph woul ssign into on of K olors (msks) to minimiz onflit numr n stith numr. 2.2 Ovrviw of Lyout Domposition Flow min_s Input Lyout Figur 2: Domposition Grph Constrution Grph Division Color Assignmnt Output Msks SDP s Algorithm Linr Color Assignmnt Propos lyout omposition flow. Th ovrll flow of our lyout omposition is summriz in Fig. 2. W first onstrut omposition grph to trnsform th originl gomtri pttrns into grph mol. By this wy, th QPLD prolm n formult s 4 oloring on th omposition grph. To ru th prolm siz, grph ivision thniqus (s Stion 4) r ppli to prtition th grph into st of omponnts. Thn th olor ssignmnt prolm n solv inpnntly for h omponnt, through st of lgorithms isuss in Stion.. COLOR ASSIGNMENT IN QPLD Givn omposition grph G = {V, CE, SE}, olor ssignmnt woul rri out to ssign h vrtx into on of four olors (msks), to minimiz oth th onflit numr n th stith numr. In this stion, w propos two olor ssignmnt lgorithms, i.., smifinit progrmming (SDP) s lgorithm, n linr olor ssignmnt..1 SDP Bs Color Assignmnt ( Figur : p 6, p 2, 1 ) (0, 2p 2, 1 ) y z (0, 0, 1) ( p 6, p 2, 1 ) x Four vtors orrspon to four olors. Smifinit progrmming (SDP) hs n sussfully ppli to tripl pttrning lyout omposition [4, 10]. Hr w will show tht SDP formultion n xtn to solv QPLD prolm. To rprsnt four iffrnt olors (msks), s illustrt in Fig., four unit vtors r introu [16]: (0, 0, 1), (0, 2 2, 1 ), ( 6, 2, 1 ) n ( 6, 2, 1 ). W onstrut th vtors in suh wy tht innr prout for ny two vtors v i, v j stisfying: v i v j = 1 if v i = v j; v i v j = 1 if vi vj. Bs on th vtor finition, th QPLD prolm n formult s th following vtor progrmming: min ij CE 4 ( vi vj + 1 ) + α 4 ij SE (1 v i v j) (1) s.t. v i {(0, 0, 1), (0, 2 2, ), (,, 1 ), 6 2 (,, 1 )} whr th ojtiv funtion is to minimiz th onflit numr n th stith numr. α is usr-fin prmtr, whih is st s 0.1 in this work. Aftr rlxing th isrt onstrints in (1) n rmoving th onstnt in ojtiv funtion, w rrw th following smifinit progrmming (SDP) formultion. min ij CE v i v j α s.t. v i v i = 1, i V v i v j 1, ij SE ij CE v i v j (2) Aftr solving th SDP, w gt st of ontinuous solutions in mtrix X, whr h vlu x ij in mtrix X orrspons to v i v j. If x ij is los to 1, vrtis v i, v j r tn to

3 in th sm msk (olor). A gry mpping lgorithm [4] n irtly ppli hr to gt olor ssignmnt solution. Howvr, th prformn of gry mtho my not goo. Algorithm 1 SDP + Bktrk Input: SDP solution x ij, thrshol vlu t th ; 1: for ll x ij t th o 2: Comin vrtis v i, v j into on lrgr vrtx; : n for 4: Construt mrg grph G = {V, CE, SE }; 5: BACKTRACK(0, G ); 6: rturn olor ssignmnt rsult in G ; 7: funtion BACKTRACK(t, G ) 8: if t siz[g ] thn 9: if Fin ttr olor ssignmnt thn 10: Stor urrnt olor ssignmnt; 11: n if 12: ls 1: for ll lgl olor o; 14: G [t] ; 15: BACKTRACK(t + 1, G ); 16: G [t] 1; 17: n for 18: n if 19: n funtion To ovrom th limittion of th gry mtho, in our frmwork ktrk s lgorithm (s Algorithm 1) is propos to onsir oth SDP rsults n grph informtion. Th ktrk s mtho pts two rgumnts of th SDP solution {x ij} n thrshol vlu t th. In our work t th is st s 0.9. As isuss ov, if x ij is los to 1, two vrtis v i n v j tn to in th sm olor (msk). Thrfor, w sn ll pirs, n omin som vrtis into on lrgr vrtx (lins 1 ). Aftr th omintion, th vrtx numr n ru, thus th grph hs simplifi (lin 4). Th simplifi grph is ll mrg grph [10]. On th mrg grph, BACKTRACK lgorithm is prsnt to srh n optiml olor ssignmnt (lins 7 19)..2 Linr Color Assignmnt Bktrk s mtho my still involv runtim ovrh, spilly for omplx s whr SDP solution nnot provi nough mrging nits. Thrfor, n ffiint olor ssignmnt is rquir. At first gln, th olor ssignmnt for qurupl pttrning n solv through four olor mp thorm [17] tht vry plnr grph is 4-olorl. Howvr, in mrging thnology no, th signs r so omplx tht w osrv mny K 5 or K, struturs, whr K 5 is th omplt grph on fiv vrtis, whil K, is th omplt iprtit grph on six vrtis. Du to Kurtowski s thorm [18], th omposition grph is not plnr, thus lssil four oloring thniqus [19] is hr to ppli. Hr w propos n ffiint olor ssignmnt lgorithm. Not tht our mtho is trgting gnrl grph, not just plnr grph. In ition, iffrnt from lssil four oloring mtho tht ns qurti runtim [19], our olor ssignmnt is linr runtim lgorithm. Th tils of linr olor ssignmnt is summriz in Algorithm 2, whih involvs thr stgs. Th first stg is itrtivly vrtx rmovl. For h vrtx v i, w not its onflit gr onf (v i) s numr of onflit gs inint to v i, Algorithm 2 Linr Color Assignmnt Input: Domposition grph G = {V, CE, SE}, Stk S; 1: whil v i V s.t. onf (v i) < 4 & stit(v i) < 2 o 2: S.push(v i); : G.lt(v i); 4: n whil 5: Construt vtor v; 6: C1 = SEQUENCE-COLORING(v); 7: C2 = DEGREE-COLORING(v); 8: C = ROUND-COLORING(v); 9: C = st oloring solution mong {C1, C2, C}; 10: POST-REFINEMENT(v); 11: whil!s.mpty() o 12: v i = S.pop(); 1: G.(v i); 14: (v i) lgl olor; 15: n whil Hlf Pith () () Figur 4: () Domposition grph; () Gry oloring with on onflit; () is tt s olor-frinly to ; () Coloring onsiring olor-frinly ruls. whil its stith gr stit(v i) s numr of stith gs. Th min i is tht th vrtis with onflit gr lss thn 4 n stith gr lss thn 2 r intifi s non-ritil, thus n tmporrily rmov n push into stk S (lins 1-4). Aftr oloring rmining vrtis, h vrtx in stk S woul pop up on y on n ssign on lgl olor (lins 11-15). This strtgy is sf in trms of onflit numr. In othr wors, whn vrtx is pop up from S, thr is lwys on olor vill without introuing nw onflit. In th son stg (lins 5-9), ll rmining vrtis woul ssign olors on y on. Howvr, olor ssignmnt through on spifi orr my stuk t lol optimum whih stms from th gry ntur. For xmpl, givn omposition grph in Fig. 4 (), if th oloring orr is ----, whn vrtx is grily slt gry olor, th following vrtx nnot fin ny olor without onflit (s Fig. 4 ()). In othr wors, vrtx orring signifintly impts th oloring rsult. To llvit th impt of vrtx orring, two strtgis r propos. Th first strtgy is ll olor-frinly ruls, s in Dfinition 2. In Fig. 4 (), ll onflit nighors of pttrn r ll insi gry ox. Sin th istn twn n is within th rng of (min s, min s + hp), is olor-frinly to. Intrstingly, w isovr rul tht for omplx/ns lyout, olor-frinly pttrns tn to with th sm olor. Bs on ths ruls, uring linr olor ssignmnt, to trmin on vrtx olor, inst of just ompring its on- () ()

4 flit/stith nighors, th olors of its olor-frinly vrtis woul lso onsir. Dtting olor-frinly vrtis is similr to th onflit nighor ttion, thus it n finish uring omposition grph onstrution without muh itionl fforts. Dfinition 2 (Color-Frinly). A pttrn is olor-frinly to pttrn, iff thir istn is lrgr thn min s, ut smllr thn min s + hp. Hr hp is th hlf pith. Our son strtgy is ll pr sltion, whr thr iffrnt vrtx orrs woul pross simultnously, n th st on woul slt s th finl oloring solution (lins 6-8). Although olor ssignmnt is solv thri, sin for h orr th oloring is in linr tim, th totl omputtionl tim is still linr. In th thir stg (lin 10), post-rfinmnt grily hks h vrtx to s whthr th solution n furthr improv. For omposition grph with olor-frinly informtion n n vrtis, in th first stg vrtx rmovl/pop up n finish in O(n). In th son stg, s mntion ov th oloring ns O(n). In post-rfinmnt stg, ll vrtis r trvl on, whih rquirs O(n) tim. Thrfor, th totl omplxity is O(n). 4. GRAPH DIVISION FOR QPLD Grph ivision is thniqu tht prtitions th whol omposition grph into st of omponnts, thn th olor ssignmnt on h omponnt n solv inpnntly. In our frmwork, th thniqus xtn from prvious work r summriz s follows, (1) Inpnnt Componnt Computtion [4 10, 1]; (2) Vrtx with Dgr Lss thn Rmovl [4,8 10] 1 ; () 2-Vrtx-Connt Componnt Computtion [8 10]. 4.1 GH-Tr s -Cut Rmovl Anothr thniqu, ut rmovl, hs n provn powrful in oul/pttrning lyout omposition [4, 7, 8]. A ut of grph is n g whos rmovl isonnts th grph into two omponnts. Th finition of ut n xtn to 2- ur (-ut), whih is oul (triplt) of gs whos rmovl woul isonnt th grph. Howvr, iffrnt from th 1- ut n 2-ut ttion tht n finish in linr tim [8], -ut ttion is muh mor omplit. In this sustion w propos n fftiv -ut ttion mtho. Bsis, our mtho n sily xtn to tt ny K-ut (K ). olor 0 olor 1 olor 2 olor omponnt 1 f omponnt 2 () omponnt 1 f omponnt 2 () rott y 1 omponnt 1 f omponnt 2 Figur 5: An xmpl of -ut ttion n rmovl. 1 In QPLD prolm, th vrtis with gr lss thn 4 woul tt n rmov tmporlly. () () 4 4 () Figur 6: () Domposition grph; () Corrsponing GH-tr; () Componnts ftr -ut rmovl. Fig. 5 () shows grph with -ut (,, f), n two omponnts n riv y rmoving this -ut. Aftr olor ssignmnt on two omponnts, for h ut g, if th olors of th two npoints r iffrnt, th two omponnts n mrg irtly. Othrwis, olor rottion oprtion is rquir to on omponnt. For vrtx v in grph, w not (v) s its olor, whr (v) {0, 1, 2, }. Vrtx v is si to rott y i, if (v) is hng to ((v) + i)%4. It is sy to s tht ll vrtis in on omponnt shoul rott y th sm vlu, so no itionl onflit is introu within th omponnt. An xmpl of suh olor rottion oprtion is illustrt in Fig. 5 ()-(), whr onflit twn vrtis, f woul rmov to intronnt two omponnts togthr. Hr ll th vrtis in omponnt 2 r rott y 1 (s Fig. 5 ()). W hv th following Lmm: Lmm 1. In QPLD prolm, olor rottion ftr intronnting -ut os not inrs th onflit numr. In ition, to tt ll -uts, w hv th following Lmm: Lmm 2. If th minimum ut twn two vrtis v i n v j is lss thn 4, thn v i, v j long to iffrnt omponnts tht ivi y -ut. Bs on Lmm 2, w n s tht if th ut twn vrtis v i, v j is lrgr or qul to 4 gs, v i, v j shoul long to th sm omponnt. On strightforwr -ut ttion mtho is to omput th minimum uts for ll th {s t} pirs. Howvr, for omposition grph with n vrtis, thr r n(n 1)/2 pirs of vrtis. Computing ll ths ut pirs my spn too long runtim, whih is imprtil for omplx lyout sign. Gomory n Hu [20] show tht th ut vlus twn ll th pirs of vrtis n omput y solving only n 1 ntwork flow prolms on grph G. Furthrmor, thy show tht th flow vlus n rprsnt y wight tr T on th n vrtis, whr for ny pir of vrtis (v i, v j), if is th minimum wight g on th pth from v i to v j in T, thn th minimum ut vlu from v i to v j in G is xtly th wight of. Suh wight tr T is ll Gomory-Hu tr (GH-tr). For xmpl, givn th omposition grph in Fig. 6 (), th orrsponing GH-tr is shown in Fig. 6 (), whr th vlu on g ij is th minimum ut numr twn vrtis v i n v j. Bus of Lmm 2, to ivi th grph through -ut rmovl, ll th gs with vlu lss thn 4 woul rmov. Th finl thr omponnts r in Fig. 6 (). Th prour of th -ut rmovl is shown in Algorithm. Firstly w onstrut GH-tr s on th lgorithm y [21] (lin 1). Dini s loking flow lgorithm [22] is ppli to hlp GH-tr onstrution. Thn ll gs in th GH-tr with wights lss thn four r rmov (lin 2). Aftr solving th onnt omponnt prolm (lin ), w n ssign olors to ()

5 Algorithm GH-tr s -Cut Rmovl Input: Domposition grph G = {V, CE, SE}; 1: Construt GH-tr s in [21]; 2: Rmov th gs with wight < 4; : Comput onnt omponnts on rmining GH-tr; 4: for h omponnt o 5: Color ssignmnt on this omponnt; 6: n for 7: Color rottion to intronnt ll omponnts; h omponnt sprtly (lins 4 5). At lst olor rottion is ppli to intronnt ll -uts k (lin 6). 5. GENERAL K-PATTERNING LAYOUT DE- COMPOSITION In this stion, w monstrt tht our lyout omposition frmwork is gnrlizl to K-pttrning lyout omposition, whr K > 4. Thorm 1: SDP formultion in () n provi v i v j pirs for K-pttrning olor ssignmnt prolm. min ( v i v j + 1 k 1 ) + α (1 v i v j) () ij CE s.t. v i v i = 1, i V v i v j 1 k 1, ij CE ij SE W n s tht if K = 4, formultion () quivlnts to (2). Rphrsing oth th SDP formultion in () n ktrk mtho in Algorithm 1, th olor ssignmnt prolm for K-pttrning n rsolv. In ition, th linr olor ssignmnt lgorithm in Stion.2 n xtn to gnrl K-pttrning prolm s wll. All th grph ivision thniqus in Stion 4 n xtn hr. Bsis, w rw th following Thorm: Thorm 2: For K-pttrning lyout omposition prolm, iviing grph through (K 1)-ut os not inrs th finl onflit numr. Th proof n provi y xtning Lmm 1. Bs on Thorm 2, GH-tr s ut rmovl in Stion 4 n ppli hr to srh ll (K 1)-uts. Tht is, ftr onstruting GH-tr, ll gs with wight lss thn K r rmov. 6. EXPERIMENTAL RESULTS W implmnt th propos lyout omposition lgorithms in C++, n tst on Linux mhin with 2.9GHz CPU. W hoos GUROBI [2] s th intgr linr progrmming (ILP) solvr, n CSDP [24] s th SDP solvr. Th nhmrks in [4,8] r us s our tst ss. W sl own th Mtl1 lyr to 20nm hlf pith. Both th minimum ftur with w m n th minimum sping twn fturs s m r 20nm. From Fig. 7 w n s tht whn minimum oloring istn min s = 2 s m + w m = 60nm, vn on imnsion rgulr pttrns n K 5 strutur, whih is not 4-olorl or plnr [18]. In our xprimnts, for qurupl pttrning min s is st s 2 s m + 2 w m = 80nm, whil for pntupl pttrning min s is st s s m w m = 110nm. Whn lrgr min s is ppli, thr r too mny ntiv onflits in lyouts, s th nhmrks r not multipl pttrning frinly. () w m s m () 2 s m + w m Figur 7: min s = 2 s m + w m my us K 5 strutur. 6.1 Qurupl Pttrning First w ompr iffrnt olor ssignmnt lgorithms for qurupl pttrning, n th rsults r list in Tl 1. ILP, SDP+Bktrk, SDP+Gry n Linr not ILP formultion, SDP follow y ktrk mpping (Stion.1), SDP follow y gry mpping, n linr olor ssignmnt (Stion.2), rsptivly. Hr w implmnt n ILP formultion xtn from th tripl pttrning work [4]. In SDP+Gry, gry mpping from [4] is ppli. All th grph ivision thniqus, inluing GH-tr s ivision, r ppli. Th olumns n# n st# not th onflit numr n th stith numr, rsptivly. Column CPU(s) is olor ssignmnt tim in sons. From Tl 1 w n s tht for smll ss th ILP formultion n hiv st prformn in trms of onflit numr n stith numr. Howvr, for lrg ss (S8417, S592, S8584, S15850) ILP suffrs from long runtim prolm tht non of thm n finish in on hour. Compr with ILP, SDP+Bktrk n hiv nr-optiml solutions, i.., in vry s th onflit numr is optiml, whil only in on s 2 mor stiths r introu. SDP+Gry mtho n hiv 2 spup ginst SDP+Bktrk. But th prformn of SDP+Gry is not goo tht for omplx signs hunrs of itionl onflits r rport. Th linr olor ssignmnt n hiv roun 200 spup ginst SDP+Bktrk, whil only 15% mor onflits n 8% mor stiths r rport. 6.2 Pntupl Pttrning W furthr ompr th lgorithms for pntupl pttrning, tht is, K = 5. To our st knowlg thr is no xt ILP formultion for pntupl pttrning in litrtur. Thrfor w onsir thr slins, i.., SDP+Bktrk, SDP+Gry, n Linr. All th grph ivision thniqus r ppli. Tl 2 vluts six most ns ss. W n s tht ompr with SDP+Bktrk, SDP+Gry n hiv roun 8 spup, ut 15% mor onflits r rport. In trms of runtim, linr olor ssignmnt n hiv 500 n 60 spup, ginst SDP+Bktrk n SDP+Gry, rsptivly. In trms of prformn, linr olor ssignmnt rports th st onflit numr minimiztion, ut mor stiths my introu. Intrstingly, w osrv tht whn lyout is multipl pttrning frinly, olor-frinly ruls n provi goo guilin, thus linr olor ssignmnt n hiv high prformn in trms of onflit numr. Howvr, whn lyout is vry omplx or involving mny ntiv onflits, linr olor ssignmnt rports mor onflits thn SDP+Bktrk. On possil rson is tht th olor-frinly ruls r not goo in moling glol onflit minimiztion, ut oth SDP n ktrk provi glol viw. 7. CONCLUSIONS In this ppr w hv propos th first lyout ompo-

6 Tl 1: Comprison for Qurupl Pttrning Ciruit ILP SDP+Bktrk SDP+Gry Linr n# st# CPU(s) n# st# CPU(s) n# st# CPU(s) n# st# CPU(s) C C C C C C C C C C S S S592 N/A N/A > S8584 N/A N/A > S15850 N/A N/A > vg. - - > rtio - - > Tl 2: Comprison for Pntupl Pttrning Ciruit SDP+Bktrk SDP+Gry Linr n# st# CPU(s) n# st# CPU(s) n# st# CPU(s) C C S S S S vg rtio sition frmwork for qurupl pttrning n yon. Exprimntl vlutions hv monstrt tht our lgorithm is fftiv n ffiint to otin high qulity solution. As ontinuing sling of thnology no to su-10nm, MPL my promising mnufturing solution. W liv this ppr will stimult mor futur rsrh into this fil, thry filitting th vnmnt of MPL thnology. Aknowlgmnt Th uthors woul lik to thnk Tsung-Wi Hung for hlpful isussions. This work is support in prt y NSF, NSFC, SRC, Orl, n Toshi. 8. REFERENCES [1] D. Z. Pn, B. Yu, n J.-R. Go, Dsign for mnufturing with mrging nnolithogrphy, IEEE Trnstions on Computr-Ai Dsign of Intgrt Ciruits n Systms (TCAD), vol. 2, no. 10, pp , 201. [2] B. Yu, J.-R. Go, D. Ding, Y. Bn, J.-S. Yng, K. Yun, M. Cho, n D. Z. Pn, Dling with IC mnufturility in xtrm sling, in Pro. ICCAD, 2012, pp [] A. B. Khng, C.-H. Prk, X. Xu, n H. Yo, Lyout omposition for oul pttrning lithogrphy, in Pro. ICCAD, 2008, pp [4] B. Yu, K. Yun, B. Zhng, D. Ding, n D. Z. Pn, Lyout omposition for tripl pttrning lithogrphy, in Pro. ICCAD, 2011, pp [5] K. Yun, J.-S. Yng, n D. Z. Pn, Doul pttrning lyout omposition for simultnous onflit n stith minimiztion, in Pro. ISPD, 2009, pp [6] Y. Xu n C. Chu, A mthing s omposr for oul pttrning lithogrphy, in Pro. ISPD, 2010, pp [7] X. Tng n M. Cho, Optiml lyout omposition for oul pttrning thnology, in Pro. ICCAD, 2011, pp [8] S.-Y. Fng, W.-Y. Chn, n Y.-W. Chng, A novl lyout omposition lgorithm for tripl pttrning lithogrphy, in Pro. DAC, 2012, pp [9] J. Kung n E. F. Young, An ffiint lyout omposition pproh for tripl pttrning lithogrphy, in Pro. DAC, 201, pp. 69:1 69:6. [10] B. Yu, Y.-H. Lin, G. Luk-Pt, D. Ding, K. Lus, n D. Z. Pn, A high-prformn tripl pttrning lyout omposr with ln nsity, in Pro. ICCAD, 201, pp [11] Y. Zhng, W.-S. Luk, H. Zhou, C. Yn, n X. Zng, Lyout omposition with pirwis oloring for multipl pttrning lithogrphy, in Pro. ICCAD, 201, pp [12] B. Yu, J.-R. Go, n D. Z. Pn, Tripl pttrning lithogrphy (TPL) lyout omposition using n-utting, in Pro. of SPIE, vol. 8684, 201. [1] H. Tin, H. Zhng, Q. M, Z. Xio, n M. Wong, A polynomil tim tripl pttrning lgorithm for ll s row-strutur lyout, in Pro. ICCAD, 2012, pp [14] B. Yu, X. Xu, J.-R. Go, n D. Z. Pn, Mthoology for stnr ll omplin n til plmnt for tripl pttrning lithogrphy, in Pro. ICCAD, 201, pp [15] H. Tin, Y. Du, H. Zhng, Z. Xio, n M. Wong, Constrin pttrn ssignmnt for stnr ll s tripl pttrning lithogrphy, in Pro. ICCAD, 201, pp [16] D. Krgr, R. Motwni, n M. Sun, Approximt grph oloring y smifinit progrmming, J. ACM, vol. 45, pp , Mrh [17] K. Appl n W. Hkn, Evry plnr mp is four olorl. prt i: Dishrging, Illinois Journl of Mthmtis, vol. 21, no., pp , [18] C. Kurtowski, Sur l prolm s ours guhs n topologi, Funmnt mthmti, vol. 15, no. 1, pp , 190. [19] N. Rortson, D. P. Snrs, P. Symour, n R. Thoms, Effiintly four-oloring plnr grphs, in ACM Symposium on Thory of omputing, 1996, pp [20] R. E. Gomory n T. C. Hu, Multi-trminl ntwork flows, Journl of th Soity for Inustril & Appli Mthmtis, vol. 9, no. 4, pp , [21] D. Gusfil, Vry simpl mthos for ll pirs ntwork flow nlysis, SIAM Journl on Computing, vol. 19, no. 1, pp , [22] E. A. Dini, Algorithm for solution of prolm of mximum flow in ntworks with powr stimtion, in Sovit Mth. Dokl, vol. 11, no. 5, 1970, pp [2] GUROBI, [24] B. Borhrs, CSDP, C lirry for smifinit progrmming, Optimiztion Mthos n Softwr, vol. 11, pp , 1999.

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Layout Decomposition for Triple Patterning Lithography

Layout Decomposition for Triple Patterning Lithography Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

arxiv: v1 [cs.ar] 11 Feb 2014

arxiv: v1 [cs.ar] 11 Feb 2014 Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

A High-Performance Triple Patterning Layout Decomposer with Balanced Density

A High-Performance Triple Patterning Layout Decomposer with Balanced Density A High-Prormn Tripl Pttrning Lyout Domposr with Blnd Dnsity Bi Yu, Yn-Hung Lin, Grrd Luk-Pt, Duo Ding, Kvin Lus, Dvid Z. Pn ECE Dpt., Univrsity o Txs t Austin, Austin, USA Synopsys In., Austin, USA CS

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation

Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation Multi-Wy VLSI Ciruit Prtitioning Bs on Dul Nt Rprsnttion Json Cong Dprtmnt of Computr Sin Univrsity of Cliforni, Los Angls, CA 90024 Wilurt Lio n Nrynn Shivkumr Dprtmnt of Computr Sin Stnfor Univrsity,

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

Design Optimization Based on Diagnosis Techniques

Design Optimization Based on Diagnosis Techniques Dsign Optimiztion Bs on Dignosis Thniqus Anrs Vnris Mgy S. Air Irhim N. Hjj Univrsity of Toronto Motorol Univrsity of Illinois ECE Dprtmnt 77 W. Prmr ECE Dprtmnt n CSL Toronto, ON M5S 34 Austin, T 78729

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas Effiint Brost in MANETs Using Ntwork Coing n Dirtionl Antnns Shuhui Yng Dprtmnt of Computr Sin Rnsslr Polythni Institut Troy, NY 28 Ji Wu n Mihl Cri Dprtmnt of Computr Sin n Enginring Flori Atlnti Univrsity

More information

Clustering for Processing Rate Optimization

Clustering for Processing Rate Optimization Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL 60208 Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s Ciruit Prtitioning for Dynmilly Rongurl FPGAs Huiqun Liu n D. F. Wong Dprtmnt of Computr Sins Unirsity of Txs t Austin Austin, T 787 Emil: fhqliu, wongg@s.utxs.u Astrt Dynmilly rongurl FPGAs h th potntil

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

overconstrained well constrained underconstrained a b c d e f g h i j k

overconstrained well constrained underconstrained a b c d e f g h i j k Using Grph Domposition or Solving Continuous CSPs Christin Blik 1, Brtrn Nvu 2, n Gills Tromttoni 1 1 Artiil Intllign Lortory, EPFL CH-1015 Lusnn, Switzrln {lik,trom}@li.i.pl.h 2 CERMICS, quip Contrints

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

WORKSHOP 6 BRIDGE TRUSS

WORKSHOP 6 BRIDGE TRUSS WORKSHOP 6 BRIDGE TRUSS WS6-2 Workshop Ojtivs Lrn to msh lin gomtry to gnrt CBAR lmnts Bom fmilir with stting up th CBAR orinttion vtor n stion proprtis Lrn to st up multipl lo ss Lrn to viw th iffrnt

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Graph-Based Workflow Recommendation: On Improving Business Process Modeling

Graph-Based Workflow Recommendation: On Improving Business Process Modeling Grph-Bs Workflow ommntion: On Improving Businss Pross Moling Bin Co Collg of Computr Sin Zhjing Univrsity Hngzhou Chin 37 oin@zju.u.n Dongjing Wng Collg of Computr Sin Zhjing Univrsity Hngzhou Chin 37

More information

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines Ruing th Dpth of Quntum Ciruits Using Aitionl Ciruit Lins Nil Assi 1, Rort Will 1,2, Mthis Sokn 1,2, n Rolf Drhslr 1,2 1 Institut of Computr Sin, Univrsity of Brmn Group of Computr Arhittur, D-28359 Brmn,

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information