Chapter 6: Alkenes: Structure and Reactivity

Size: px
Start display at page:

Download "Chapter 6: Alkenes: Structure and Reactivity"

Transcription

1 hapter 6: Alkenes: Structure and eactivity overage: 1. Degrees of Unsaturation 2. Nomenclature cis/trans E/Z 3. Alkene Stability 4. Electrophilic Addition eactions/markovinikov s ule 5. The ammond Postulate and Transition State Structure 6. arbocation earrangements End of hapter Problems: 6.23, 6,25, 6,26, 6.29, 6.31, 6.37, , 6.48 Goals: 1. Be able to calculate the degree of unsaturation from a formula and know what it means. 2. Be able to name both alkenes and cycloalkenes using IUPA rules. 3. Know the order of stability of alkenes and know how they are measured. 4. Know the mechanism of electrophilic addition. Be able to predict the regiochemistry of the reaction. 5. Know the ammond postulate and be able to predict the structure of a transition state based on the energetics of the reaction. 6. Know the fundamental processes for carbocation rearrangements including 1,2 ~ 3 shift and 1,2 ~ shift.

2 Nobel Prize in hemistry, 2001 William S. Knowles, 84 years, born 1917 (US citizen). PhD 1942 at olumbia University. Previously at Monsanto ompany, St Louis, USA. etired since e discovered that it was possible to use transition metals to make chiral catalysts for an important type of reaction called hydrogenation yoji Noyori, 63 years, born 1938 Kobe, Japan (Japanese citizen). PhD 1967 at Kyoto University. Since 1972 Professor of hemistry at Nagoya University and since 2000 Director of the esearch enter for Materials Science, Nagoya University, Nagoya, Japan. e led the further development of this process to today's general chiral catalysts for hydrogenation K. Barry Sharpless, 60 years, born 1941 Philadelphia, Pennsylvania, USA (US citizen). PhD 1968 at Stanford University. Since 1990 W.M. Keck Professor of hemistry at the Scripps esearch Institute, La Jolla, USA. e awarded half of the Prize for developing chiral catalysts for another important type of reaction oxidation

3 Alkenes Alkenes possess the double bond. Double Bond Energy 146 kcal/mol σ Bond Energy 83 kcal/mol π Bond Energy 63 kcal/mol onclusion: π bond is weaker than the σ bond by 20 kcal/mol The π bond is much more reactive! 1.33 Å 1.08 Å o o ompare: - single bond 1.54 Å The = double bond is shorter than the - single bond.

4 1. Find the parent hydrocarbon Alkene Nomenclature Find the longest continuous chain of carbon atoms that contains the double bond and name it accordingly using the ene ending. Named as octene (not decene) 2. Number the atoms in the main chain a. Begin at the end nearer the double bond. b. If the double bond is equidistant from the ends, begin at the end nearer 1 the first branch point. 2 The above molecule would be numbered as

5 3. Identify and number the substituents as you have done with alkanes. 4. Write the name as a single word. a. Use prefixes such as mono, di, tri, tetra, etc. to indicate multiple substituents. b. List substituents alphabetically, ignoring prefixes. c. Use dashes to separate substitutents, use commas to separate numbers. d. Indicate the position of the double bond by giving the number of the first alkene carbon and placing that number immediately before the parent names. e. If more than one double bond exists, indicate the position of both and use the suffix -diene butyl-2-octene Name these alkenes: Answer: 4,5-dimethyl-2-heptene Answer: 1,3-pentadiene

6 ycloalkene Nomenclature Name cycloalkenes in a similar manner. owever, since there is no chain end, the double \ bond must always be between carbons 1 and 2. Make sure the substitutents have the lowest numbers possible. It is not necessary to indicate the position of the double bond ( 3 ) 2 4-isopropylcyclohexene ,3-cyclopentadiene 2 3 Name this one ,7-dimethyl-1,3,5-cycloheptatriene 3 7 6

7 Stereochemistry and E/Z Nomenclature We know that some alkenes can exist as cis/trans stereoisomers (geometric isomers). trans-2-butene cis-2-butene What about something like this? Which is cis and which is trans? Answer: Who knows?????? We need a more general method for describing the geometry about the double bond.

8 E/Z Method for Double Bond Geometry E entgegen meaning opposite Z zusammen meaning together or the same side In order to use this system of nomenclature, you must first prioritize the substituents according to the wonderful ahn-ingold-prelog rules. 1. onsider the sp 2 carbons separately and identify the two substitutents attached to each carbon. l 3 Left side: and l ight side: and 3

9 2. Use the ahn-ingold-prelog rules to prioritize the two substituents on each side. a. The highest priority group has an atom with the highest atomic number directly bonded to the sp 2 carbon. l 3 Left side: AN = 35 l AN = 17 > l ight Side: AN = 1 3 AN = 6 3 > The above molecule has the two highest priority groups on the opposite side and therefore this is the E isomer (E)-1-bromo-1-chloro-1-propene

10 b. If the two directly bonded atoms have the same AN, then look at the next atoms bonded these atoms. l Left side: Directly attached atoms are both carbon. 2 nd Atoms: l,, AN 17, 1, 1,, An 1, 1, 1 ight side: Directly attached atoms are both carbon. 2 nd Atoms:,, AN= 1, 1, 1,, AN = 12, 1, 1 2 l > > 3 This is a E isomer. (E)-1-chloro-2,3-dimethyl-2-pentene

11 c. If an atom is doubly bonded to another atom, then it is treated as if it were singly bonded to two of these atoms. Which has highest priority? -= 2 vs st atoms are both (tie) -= 2 becomes nd atoms,, nd atoms,, -= 2 > 2 3 d. In the case of isotopes, use the mass number since they have the same atomic number 1 vs. 2 (D) deuterium AN = 1 for both atoms, but deuterium has greater mass number, therefore 2 > 1

12 Alkene Stability Not all alkenes are created equal! Some are more stable than others. Two considerations: 1. The degree of substitution. Unsubstituted Monosubstituted Disubstituted Trisubstituted Tetrasubstituted Least Stable 2. Stereochemistry Steric Interaction Most Stable 3 trans-2-butene cis-2-butene More Stable Less Stable

13 ow do we know about this order of stability? Answer: eats of ydrogenation 2 catalyst + eat The larger the heat of hydrogenation, the less stable the alkene Measure by alorimetry eat kcal/mol

14 alculating Degrees of Unsaturation Degrees of Unsaturation (DU) number of rings and/or multiple bonds in a molecule. 4 DU 2 DU 4 Du ow to calculate: DU = 2 # # DU = 2 (6) = 4 2

15 Simple enough! But what about when you have a heteroatom in the molecule eteroatom any atom besides and. 1. alogens (X) such as F, l,, and I. ount as a hydrogen atom, that is, add the number of halogens to the number of hydrogens. For example: Formula: Oxygen or Sulfur Ignore! O DU = 2(5) = 0 2 Formula: 6 10 O 6 10 DU = 2

16 3. Nitrogen Subtract the number of hydrogens from the number of hydrogens N Formula: 4 5 N 4 4 DU = 3

17 Electrophilic Addition of X to Alkenes

18

19 What happens when an asymmetric alkene reacts with? a b + Which pathway is favored. Answer: Pathway a is favored since a more stable carbocation is formed. 1 0

20 arbocation earrangements If a carbocation can rearrange to a more stable carbocation, then it probably will. Otherwise, it will not less stable 3 0 more stable Primary consideration: There must be a viable mechanism by which rearrangement can take place. 1. 1,2 ydrogen Shift (1,2 ~) ,2 ~ Both bonding electrons go with the hydrogen, leaving a + charge on the carbon left behind.

21 2. 1,2 methyl shift (1,2 ~ 3 ) ,2 ~ What is the mechanism of this rearrangement? Answer: 1,2 ~

22 In what types of reactions do we observe carbocation rearrangements? Answer: In reactions where there are carbocation intermediates. + Write a mechanism to account for both products. Which product results from carbocation rearrangement? + +

23 Transition States and the ammond Postulate The ammond postulate states that the transition state of an exothermic reaction most closely resembles the reactants in energy and structure. onversely, the transition state of an endothermic reaction most closely resembles the products in energy and structure. This is most conveniently illustrated with a reaction energy diagram. Exothermic = Endothermic = E E eaction Progress eaction Progress

24 In the exothermic reaction, the transition state (green arrow) is closer to the the reactant (red arrow) along the reaction coordinate. Meaning: The transition state structure most closely resembles the reactant. ow can we illustrate this in a structure drawing? onsider the reaction: A-B + A + B- Exothermic The transition state structure shows that B is less than half transferred to. = = [A---B ] (not [A B---] )

1. Root of name depends on longest chain of C containing the double bond; ends in "ene"

1. Root of name depends on longest chain of C containing the double bond; ends in ene Alkenes (β-carotene, an antioxidant pigment) n 2n (acyclic) n 2n-2 (cyclic) R R R R Key features sp 2 -hybridized carbons, 120 o bond angles σ + π bonding between = planar geometry around = "unsaturated"

More information

Alkenes and Alkynes 10/27/2010. Chapter 7. Alkenes and Alkynes. Alkenes and Alkynes

Alkenes and Alkynes 10/27/2010. Chapter 7. Alkenes and Alkynes. Alkenes and Alkynes Chapter 7 Alkenes and Alkynes CHP6 Problems: 6.1-13, 16-34, 36. CHP7 Problems: 7.1-23, 25-28, 31-34, 37-39, 41-47, 49-56. Alkenes and Alkynes Alkene (or olefin ) Hydrocarbon that contains a carbon-carbon

More information

Alkenes. Alkenes are unsaturated aliphatic hydrocarbons.

Alkenes. Alkenes are unsaturated aliphatic hydrocarbons. Alkenes Alkenes Each member contains one double covalent bond between two C atoms. Draw condensed structural formulas of first three members of alkenes family. Alkenes are unsaturated aliphatic hydrocarbons.

More information

Alkenes. Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula C n H 2n. Nomenclature

Alkenes. Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula C n H 2n. Nomenclature Alkenes Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula n 2n. Nomenclature Alkenes are named in the same manner as alkanes with the following adjustments. 1. Find the longest

More information

Question. Chapter 5 Structure and Preparation of Alkenes (C n H 2n ): Elimination Reactions

Question. Chapter 5 Structure and Preparation of Alkenes (C n H 2n ): Elimination Reactions hapter 5 Structure and Preparation of Alkenes ( n 2n ): Elimination Reactions The molecular formula of β-arotene is 40 On catalytic hydrogenation, β-carotene is converted to a saturated hydrocarbon of

More information

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken!

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken! Alkenes Electrophilic Addition 1 Alkene Structures chemistry of double bond σ BDE ~ 80 kcal/mol π = BDE ~ 65 kcal/mol The p-bond is weaker than the sigma-bond The, electrons in the p-bond are higher in

More information

Ch.6 Alkenes: Structure and Reactivity

Ch.6 Alkenes: Structure and Reactivity alkene = olefin 2 2 Ethylene α-pinene 3 β-arotene (orange pigment and vitamin A precursor) 6.1 Industrial Preparation and Use of Alkenes ompounds derived industrially from ethylene 2 2 Ethylene (26 million

More information

5.1 Alkene Nomenclature

5.1 Alkene Nomenclature 5.1 Alkene Nomenclature Alkenes Alkenes are hydrocarbons that contain a carbon-carbon double bond also called "olefins" characterized by molecular formula n 2n said to be "unsaturated" Alkene Nomenclature

More information

Introduction to Alkenes and Alkynes

Introduction to Alkenes and Alkynes Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene,

More information

Lab Workshop 1: Nomenclature of alkane and cycloalkanes

Lab Workshop 1: Nomenclature of alkane and cycloalkanes Lab Workshop 1: Nomenclature of alkane and cycloalkanes Each student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

Chem 341 Organic Chemistry I Lecture Summary 16 October 01, 2007

Chem 341 Organic Chemistry I Lecture Summary 16 October 01, 2007 hem 341 Organic hemistry I Lecture Summary 16 October 01, 2007 hapter 6 - Alkenes: Structure and eactivity Nomenclature Double bond geometry is important in biology. For example, the trans to cis isomerization

More information

Lecture 11 Organic Chemistry 1

Lecture 11 Organic Chemistry 1 EM 232 rganic hemistry I at hicago Lecture 11 rganic hemistry 1 Professor Duncan Wardrop February 16, 2010 1 Self Test Question What is the product(s) of the following reaction? 3 K( 3 ) 3 A 3 ( 3 ) 3

More information

Chapter 6 H 2 H 3 C C H CH 3 C H H 2 C C CH 3. (b) =2 H 2 C C C H H C H CH 2 C CH 3 H 3 C C C CH 3. (c) =2

Chapter 6 H 2 H 3 C C H CH 3 C H H 2 C C CH 3. (b) =2 H 2 C C C H H C H CH 2 C CH 3 H 3 C C C CH 3. (c) =2 hapter 6 6.1 alculate the degree of the unsaturation in the following hydrocarbons: 8 14 ; 5 6 (c) 12 20 (d) 20 32 (e) 40 56 =2 =3 (c) =3 (d) =5 (e) =13 6.2 alculate the degree of the unsaturation in the

More information

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles Alkenes - Structure, Stability, Nomenclature Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) unsaturated - contain fewer than maximum H's possible per C Can

More information

Loudon Ch. 4 Review: Alkene Structure/Reactivity Jacquie Richardson, CU Boulder Last updated 5/30/2017

Loudon Ch. 4 Review: Alkene Structure/Reactivity Jacquie Richardson, CU Boulder Last updated 5/30/2017 We already saw in Ch. 1 that π bonds are based on side-on overlap of leftover p orbitals. C atom C=C bond C atom orbital comes from destructive (differentcolor) interference: (note extra node) + 2p 2p

More information

1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. KH (1 equiv.) + KCl THF. + HBr.

1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. KH (1 equiv.) + KCl THF. + HBr. 1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. K (1 equiv.) TF K 3 2 2 3 enantiomer While writing the mechanism, justify both the regiochemistry the relative

More information

Chapter 7 Alkenes; Elimination Reactions

Chapter 7 Alkenes; Elimination Reactions hapter 7 Alkenes; Elimination Reactions Alkenes Alkenes contain a carbon-carbon double bond. They are named as derivatives of alkanes with the suffix -ane changed to -ene. The parent alkane is the longest

More information

Alkenes. Bonding and Structure: Carbons in the double bond of butene are sp 2 hybridized. Side on p-p orbital overlap creates a π-bond.

Alkenes. Bonding and Structure: Carbons in the double bond of butene are sp 2 hybridized. Side on p-p orbital overlap creates a π-bond. Alkenes Bonding and Structure: Carbons in the double bond of butene are sp 2 hybridized. Side on p-p orbital overlap creates a π-bond. Angles around the carbons in the double bond are ~ 120º. Thus, all

More information

Alkenescontain a C=C double bond (also occasionally called olefins). Alkenes are very common in natural and synthetic organic compounds.

Alkenescontain a C=C double bond (also occasionally called olefins). Alkenes are very common in natural and synthetic organic compounds. Chapter 6: Alkenes: structure and reactivity Alkenescontain a C=C double bond (also occasionally called olefins). Alkenes are very common in natural and synthetic organic compounds. 6.2 Degree of unsaturation

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C 3 C C 3 bond length bond strength 2 C C 2 a C=C double bond is stronger than a C C single

More information

Counterclockwise (Leftward turning) S. 3 2 Clockwise (Rightward turning) R

Counterclockwise (Leftward turning) S. 3 2 Clockwise (Rightward turning) R Stereochemistry I and S in Alkanes A chiral carbon has four different groups attached to it, the differences may be several bonds away, but so long as they are different in any way the groups are considered

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes.

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes. Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes Chapter 12 Alkenes are hydrocarbons which have one or more

More information

Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes

Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes Chapter 12 Alkenes are hydrocarbons which have one or more

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions 1. Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C bond length bond strength 3 C C 3 3 C C 3 3 C C 3 3 C 2 C C 2 3 C a C=C double bond

More information

Chapter 13 Alkenes and Alkynes & Aromatic Compounds

Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter Outline 13.1 Alkenes and Alkynes 13.2 Nomenclature of Alkenes and Alkynes 13.3 Cis Trans Isomers 13.4 Alkenes in Food and Medicine 13.6 Reactions

More information

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40.

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40. Reading: Chapter Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40. Alkenes: Structure, Nomenclature, Stability, and an Introduction to Reactivity Alkenes are unsaturated

More information

Chapter 3. Alkenes And Alkynes

Chapter 3. Alkenes And Alkynes Chapter 3 Alkenes And Alkynes Alkenes ydrocarbons containing double bonds C C double bond the functional group center of reactivity Molecular Formula of Alkene Acyclic alkene: C n 2n Cyclic alkene: C n

More information

CHEM Lecture 7

CHEM Lecture 7 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Lecture 7 Prof. Duncan Wardrop ctober 22, 2012 CEM 494 Special Topics in Chemistry Illinois at Chicago Preparation of Alkenes Elimination

More information

eg ethylene (IUPAC: ethene), C 2

eg ethylene (IUPAC: ethene), C 2 Alkenes: Structure & Properties Alkane (acyclic): n 2n+2 > saturated. Alkene (acyclic): n 2n > unsaturated. eg ethylene (IUPA: ethene), 2 4 : 2 = 2 The carbon-carbon double bond is the distinguishing feature

More information

Name: Chapter 3: The Nature Of Organic Reactions: Alkenes

Name: Chapter 3: The Nature Of Organic Reactions: Alkenes Name: Chapter 3: The Nature Of Organic Reactions: Alkenes 1 Vocabulary cis-trans isomerism: E,Z designation: Addition: Elimination: Substitution: Rearrangement: Homolytic: Heterolytic Homogenic: Heterogenic:

More information

3.1 Introduction to Organic Chemistry

3.1 Introduction to Organic Chemistry 3.1 Introduction to Organic hemistry Organic hemistry is the study of carbon chemistry as carbon has the ability to join together in chains, rings, balls etc. arbon also joins with other elements easily

More information

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups.

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups. Organic Chemistry - Problem Drill 10: Alkenes, Alkynes, and Dienes No. 1 of 10 1. What is the substitution pattern for alkene indicated below? (A) mono (B) di (C) tri (D) tetra (E) unsubstituted Mono is

More information

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons

Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons hem101 General hemistry Lecture 11 Unsaturated ydrocarbons Unsaturated ydrocarbons ontain one or more double or triple carbon-carbon bond. University of Wisconsin-Eau laire hem101 - Lecture 11 2 Unsaturated

More information

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16 Chapter 3 Alkenes and Alkynes Excluded sections 3.15&3.16 3.1 Definition and Classification Alkene: a hydrocarbon that contains one or more carboncarbon double bonds. ethylene is the simplest alkene. Alkyne:

More information

H H C C. Alkenes C n H 2n unsaturated hydrocarbons. C 2 H 4 ethylene. Functional group = carbon-carbon double bond

H H C C. Alkenes C n H 2n unsaturated hydrocarbons. C 2 H 4 ethylene. Functional group = carbon-carbon double bond Alkenes C n H 2n unsaturated hydrocarbons C 2 H 4 ethylene H H C C H H Functional group = carbon-carbon double bond sp 2 hybridization => flat, 120 o bond angles σ bond & π bond => H 2 C=CH 2 No rotation

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

Solutions. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #2 - October 23, 2000

Solutions. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #2 - October 23, 2000 Solutions Department of hemistry SUNY/Oneonta hem 221 - Organic hemistry I Examination #2 - October 23, 2000 INSTRUTIONS --- This examination has two parts. The first part is in multiple choice format;

More information

Lecture 9 Organic Chemistry 1

Lecture 9 Organic Chemistry 1 EM 232 Organic hemistry I at hicago Lecture 9 Organic hemistry 1 Prof. Duncan J. Wardrop 02/09/2010 1 Functional Group larification Although they can be viewed as ethers, epoxides are classified as distinct,

More information

Introduction to Alkenes. Structure and Reactivity

Introduction to Alkenes. Structure and Reactivity 4 4 Introduction to Alkenes. Structure and Reactivity Alkenes are hydrocarbons that contain one or more carbon carbon double bonds. Alkenes are sometimes called olefins, particularly in the chemical industry.

More information

Organic Halogen Compounds

Organic Halogen Compounds 8 Organic alogen ompounds APTER SUMMARY 8.1 Introduction Although organic halogen compounds are rarely found in nature, they do have a variety of commercial applications including use as insecticides,

More information

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22 hapter 4: Alkanes and ycloalkanes [Sections: 4.1-4.14] Basic Organic ompound Nomenclature hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) unsaturated (one or more pi bonds)

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Chapter 3 Alkanes and Cycloalkanes Two types Saturated hydrocarbons Unsaturated hydrocarbons 3.1 Alkanes Also referred as aliphatic hydrocarbons General formula: CnH2n+2 (straight chain) and CnH2n (cyclic)

More information

Alkanes. ! An alkane is a hydrocarbon with only single bonds. ! Alkanes have the general formula: C n H 2n+2

Alkanes. ! An alkane is a hydrocarbon with only single bonds. ! Alkanes have the general formula: C n H 2n+2 ALKANES Chapter 4 Alkanes! An alkane is a hydrocarbon with only single bonds.! Alkanes have the general formula: C n 2n+2! Alkanes can be straight-chain or branched. Properties of isomers! Constitutional

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

It is possible for organic molecules with the same molecular formula to have different structures

It is possible for organic molecules with the same molecular formula to have different structures Isomerism It is possible for organic molecules with the same molecular formula to have different structures Definition- Structural isomers: same molecular formula different structures (or structural formulae)

More information

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications OR AS hemistry A 032 for first assessment in 206 omplete Tutor Notes www.boomerchemistry.com Section: 4..3 Alkenes E/Z Isomerism Alkenes Addition polymers 205 Boomer Publications page 43 page 45 page 5

More information

Unsaturated Hydrocarbons

Unsaturated Hydrocarbons Unsaturated ydrocarbons hemical Formulas and Unsaturation n n 2n n 2n+2 n 2n+2 hemical Formulas and Unsaturation n n n n 2n n 2n hemical Formulas and Unsaturation ydrocarbons Saturated ydrocarbons Unsaturated

More information

MOLECULAR MODELS : STEREOISOMERS

MOLECULAR MODELS : STEREOISOMERS MM.1 MOLEULAR MODELS : STEREOISOMERS Note: No pre-laboratory summary is required for this experiment, but there are some topics you most probably need to review from 351 and you may want to start work

More information

3.1 Organic: Basic Concepts

3.1 Organic: Basic Concepts . rganic: Basic oncepts ydrocarbon is a compound consisting of hydrogen and carbon only Basic definitions to know Saturated: ontain single carbon-carbon bonds only Unsaturated : ontains a = double bond

More information

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #2 - October 18, 2004 ANSWERS

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #2 - October 18, 2004 ANSWERS Department of hemistry SUNY/Oneonta hem 221 - Organic hemistry I Examination #2 - October 18 2004 ANSWERS INSTRUTIONS This examination is in multiple choice format; the questions are in this Exam Booklet

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

Chapter 12 Alkenes and Alkynes

Chapter 12 Alkenes and Alkynes BR M 102 lass Notes hapter 12 Page 1 of 8 hapter 12 Alkenes and Alkynes * alkenes = double bonds * alkynes triple bonds * aromatics or arenes alternating double and single bonds such as in benzene * saturated

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

Organic Chemistry. February 18, 2014

Organic Chemistry. February 18, 2014 Organic Chemistry February 18, 2014 What does organic mean? Organic Describes products Grown through natural biological process Without synthetic materials In the 18 th century Produced by a living system

More information

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin.

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin. Vision Cis-trans isomerism is key to vision. 3 C 11 12 3 C C 3 3 C O C 3 11-cis-retinal Protein opsin 3 C 11 12 3 C C 3 3 C N Opsin C 3 Rhodopsin Light photons 3 C N Opsin 3 C 11 12 3 C C 3 C 3 ow rods

More information

5. Reactions of Alkenes (text )

5. Reactions of Alkenes (text ) 2009, Department of hemistry, The University of Western Ontario 5.1 5. Reactions of Alkenes (text 5.1 5.5) A. Addition Reactions In hapter 4, we saw that π bonds have electron density on two sides of the

More information

UNIT (7) ORGANIC COMPOUNDS: HYDROCARBONS

UNIT (7) ORGANIC COMPOUNDS: HYDROCARBONS UNIT (7) RGANI MPUNDS: YDRARBNS rganic chemistry is the study carbon containing compounds. 7.1 Bonding in rganic ompounds rganic compounds are made up of only a few elements and the bonding is almost entirely

More information

nsaturated Hydrocarbons: Alkenes, Cycloalkenes and Dienes

nsaturated Hydrocarbons: Alkenes, Cycloalkenes and Dienes 240 Chem nsaturated Hydrocarbons: Alkenes, Cycloalkenes and Dienes 1 Chapter 3 Alkenes or Olefines Crabon-Carbon double bond C n H 2n Hybridization in Alkenes: 1.34 A 2 Nomenclature of Alkenes and Cycloalkenes

More information

Unsaturated hydrocarbons. Chapter 13

Unsaturated hydrocarbons. Chapter 13 Unsaturated hydrocarbons Chapter 13 Unsaturated hydrocarbons Hydrocarbons which contain at least one C-C multiple (double or triple) bond. The multiple bond is a site for chemical reactions in these molecules.

More information

The carbon-carbon double bond is the distinguishing feature of alkenes.

The carbon-carbon double bond is the distinguishing feature of alkenes. Alkenes: Structure & Properties Alkane (acyclic): n 2n+2 > saturated. Alkene (acyclic): n 2n > unsaturated. eg ethylene (IUPA: ethene), 2 4 : 2 = 2 The carbon-carbon double bond is the distinguishing feature

More information

Once familiar with chiral centers, models, drawings and mental images NOW: Final representation of chiral centers: Fischer Projections

Once familiar with chiral centers, models, drawings and mental images NOW: Final representation of chiral centers: Fischer Projections Once familiar with chiral centers, models, drawings and mental images NOW: Final representation of chiral centers: Fischer Projections Fischer Projections are 2-dimensional representations of 3-dimensional

More information

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser hemistry 210 rganic hemistry I Winter Semester 2001 Dr. Rainer Glaser Examination #3 Alkenes and Alkynes. Structure, Synthesis and Reactions. Friday, April 20, 2001, 9:00-9:50 Name: Answer Key Question

More information

Alkanes. Introduction

Alkanes. Introduction Introduction Alkanes Recall that alkanes are aliphatic hydrocarbons having C C and C H bonds. They can be categorized as acyclic or cyclic. Acyclic alkanes have the molecular formula C n H 2n+2 (where

More information

Stereochemistry Tutorials: Assigning R/S and E/Z

Stereochemistry Tutorials: Assigning R/S and E/Z Stereochemistry Tutorials: Assigning R/S and E/Z Definitions for vocabulary words can be found in the llustrated Glossary of rganic hemistry, available at the course web site. Discussion: Every organic

More information

Chapter 4: Alkanes and Cycloalkanes

Chapter 4: Alkanes and Cycloalkanes 1. Nomenclature hapter 4: lkanes and ycloalkanes hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) [Sections: 4.1-4.14] unsaturated (one or more pi bonds) alkanes alkenes alkynes

More information

CH 3 C 2 H 5. Tetrahedral Stereochemistry

CH 3 C 2 H 5. Tetrahedral Stereochemistry Ch 5 Tetrahedral Stereochemistry Enantiomers - Two non-superimposable mirror image molecules - They are stereoisomers with the same atoms and bonds, but different spatial geometries. - The two molecules

More information

Ch09. Alkenes & Alkynes. Unsaturated hydrocarbons. Double and triple bonds in our carbon backbone. version 1.0

Ch09. Alkenes & Alkynes. Unsaturated hydrocarbons. Double and triple bonds in our carbon backbone. version 1.0 Ch09 Alkenes & Alkynes Unsaturated hydrocarbons. Double and triple bonds in our carbon backbone. version 1.0 Nick DeMello, PhD. 2007-2015 Ch09 Alkenes & Alkynes Alkenes & Alkynes Definition and bond angles.

More information

Chemistry 2321 OLD TEST QUESTIONS CH 3

Chemistry 2321 OLD TEST QUESTIONS CH 3 Test No. 2 hemistry 2321 LD TEST QUESTNS Professor M. Pomerantz 1. n the following reaction the electrophile is: 3 3 + the group none of these 2. Given the reaction shown and the bond dissociation energies

More information

Alkenes, Alkynes, and Aromatic Compounds

Alkenes, Alkynes, and Aromatic Compounds Alkenes, Alkynes, and Aromatic Compounds Alkenes and Alkynes Unsaturated Contain carbon-carbon DOUBLE and TRIPLE bond to which more hydrogen atoms can be added Alkenes: carbon-carbon double bonds Alkynes:

More information

Columbia University C99ORG12.DOC S3443D Summer 99 Professor Grace B. Borowitz Exam No. 2 June 14, 1999

Columbia University C99ORG12.DOC S3443D Summer 99 Professor Grace B. Borowitz Exam No. 2 June 14, 1999 olumbia University 99RG12.D SD Summer 99 Professor Grace B. Borowitz Exam No. 2 June 1, 1999 Name: Sterie hemistry Grade: Please use a non-red pen. Answer questions in the provided space. If you write

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

5.5 Physical Properties of Alkenes

5.5 Physical Properties of Alkenes 5.5 Physical Properties of Alkenes Dipole moments What is direction of dipole moment? Does a methyl group donate electrons to the double bond, or does it withdraw them? µ = 0 D 3 µ = 0.3 D µ = 1.4 D Dipole

More information

3.1 Organic: Basic Concepts

3.1 Organic: Basic Concepts 3.1 rganic: Basic oncepts ydrocarbon is a compound consisting of hydrogen and carbon only Basic definitions to know Saturated: ontain single carbon-carbon bonds only Unsaturated : ontains a = double bond

More information

12.01 Organic Chemistry

12.01 Organic Chemistry 12.01 rganic hemistry hemistry of arbon An Introduction to nomenclatures, structures and reactions Dr. Fred mega Garces hemistry 100 Miramar ollege 1 rganic hemistry What is rganic hemistry? rganic hemistry:

More information

Chapter 20 (part 2) Organic Chemistry

Chapter 20 (part 2) Organic Chemistry Chapter 20 (part 2) Organic Chemistry Section 20.7 Alkenes and Alkynes Alkenes: hydrocarbons that contain a carbon carbon double bond. [C n H 2n ] CH 3 CH=CH 2 propene Alkynes: hydrocarbons containing

More information

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons Chemistry 11 Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons 2 1. Unsaturated hydrocarbons So far, we have studied the hydrocarbons in which atoms are connected exclusively by

More information

Knowing how many elements of unsaturation are present helps to classify, and helps in isomer problems. Theory # H's - Actual # H's 2 (2C + 2) - H

Knowing how many elements of unsaturation are present helps to classify, and helps in isomer problems. Theory # H's - Actual # H's 2 (2C + 2) - H hem 341 Jasperse h. 6 andouts 1 h. 6 Structure and Synthesis of lkenes Review ond Strength - σ ond 83 kcal/mol = π ond 63 kcal/mol π onds are much weaker π onds are thus more breakable and more reactive

More information

Homework Problem Set 8 Iverson CH320M/328M Due Friday, Nov. 9

Homework Problem Set 8 Iverson CH320M/328M Due Friday, Nov. 9 omework Problem Set 8 Iverson 320M/328M Due Friday, Nov. 9 NAME (Print): SIGNATURE: hemistry 320M/328M Dr. ent Iverson 8th omework November 2, 2018 Please print the first three letters of your last name

More information

Chem 121 Winter 2016: Section 03, Sample Problems. Alkenes and Alkynes

Chem 121 Winter 2016: Section 03, Sample Problems. Alkenes and Alkynes Chem 121 Winter 2016: Section 03, Sample Problems Alkenes and Alkynes Problems adapted from Chemistry - The Central Science, 3 rd edition. 24.2 Consider the hydrocarbon drawn below. (a) What is the hybridisation

More information

Assigning Stereochemistry I What is stereochemistry?

Assigning Stereochemistry I What is stereochemistry? S. Lievens, March 0 University of alifornia, Davis For use in UDavis hemistry 8/8 Series Assigning Stereochemistry I What is stereochemistry? Types of isomers As organic molecules get larger (more than

More information

4.1.3 Alkenes. N Goalby chemrevise.org. Formation of π bond p orbitals C C C C. Alkenes contain a carboncarbon. General formula is CnH2n

4.1.3 Alkenes. N Goalby chemrevise.org. Formation of π bond p orbitals C C C C. Alkenes contain a carboncarbon. General formula is CnH2n 4.1.3 Alkenes Alkenes are unsaturated hydrocarbons General formula is n2n Alkenes contain a carboncarbon double bond somewhere in their structure Ethene Propene Numbers need to be added to the name when

More information

CHEMISTRY - TRO 4E CH.21 - ORGANIC CHEMISTRY.

CHEMISTRY - TRO 4E CH.21 - ORGANIC CHEMISTRY. !! www.clutchprep.com TOPI: ORGANI EMISTRY Organic hemistry is the study of carbon and the other common nonmetals it is connected to:,, &. Some organic molecules are made of just carbons and hydrogens

More information

Common Elements in Organic Compounds

Common Elements in Organic Compounds Organic hemistry ommon Elements in Organic ompounds lassification of ydrocarbons Alkanes Alkanes have the general formula n 2n+2 where n = 1,2,3, only single covalent bonds saturated hydrocarbons because

More information

More Tutorial at

More Tutorial at 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question (50 pts). 1) Which of the following statements about propene, CH3CH CH2, is 1) correct? A) There

More information

ORGANIC CHEMISTRY- 1

ORGANIC CHEMISTRY- 1 ORGANIC CEMISTRY- 1 ALKENES Alkenes are also called Olefins (C n 2n ) unsaturated hydrocarbons. Alkenes occur abundantly in nature. Ethylene ( 2 C=C 2 ) is a plant hormone that induces ripening in fruit.

More information

Naming Organic Compounds: Alkanes

Naming Organic Compounds: Alkanes Naming Organic Compounds: Alkanes Chemical nomenclature assigns compounds a unique name that allows them to be easily identified and structurally understood. The International Union of Pure and Applied

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes hapter 8 Alkenes and Alkynes II: Addition eactions Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The carbocation

More information

Chapter 8 Addition Reactions to Alkenes

Chapter 8 Addition Reactions to Alkenes . 8 hapter 8 Addition eactions to Alkenes In this chapter will we study the addition reactions of alkenes. We will see that the π electrons of the double bond are loosely held and that their maximum electron

More information

General formula is CnH2n. Propene. But-1-ene. C-C pi bond. Formation of π bond in alkenes p orbitals Rotation can occur around a sigma bond

General formula is CnH2n. Propene. But-1-ene. C-C pi bond. Formation of π bond in alkenes p orbitals Rotation can occur around a sigma bond 4.1.3 Alkenes Alkenes are unsaturated hydrocarbons General formula is n2n Alkenes contain a carboncarbon double bond somewhere in their structure Ethene Propene Numbers need to be added to the name when

More information

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES CHEM 244 PRINCIPLES OF ORGANIC CHEMISTRY I FOR CHEMICAL ENGINEERING STUDENTS, COLLEGE OF ENGINEERING PRE-REQUISITES COURSE; CHEM 101 CREDIT HOURS; 2 (2+0) Dr. Mohamed El-Newehy Chemistry Department, College

More information

As time allows, additional practice questions for Exam 2 follow. This is an incomplete collection. Content & emphasis will vary.

As time allows, additional practice questions for Exam 2 follow. This is an incomplete collection. Content & emphasis will vary. Chem 226 Exam 2 Fall 2005: will cover Bruice, Chaps 3 through 6; Note: review e-mail & inclass quizzes and Worksheets, suggest on-line practice questions and quizzes plus ACS rganic Chemistry Guide As

More information

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes Section 21.1 Introduction to Hydrocarbons Section 1 Objectives: Explain the terms organic compound and organic chemistry. Section 21.2 Alkanes Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

More information

Organic Chemistry. Nomenclature: Alkanes

Organic Chemistry. Nomenclature: Alkanes Organic Chemistry Nomenclature: Alkanes Alkanes Hydrocarbon chains where all the bonds between carbons are SINGLE bonds Name uses the ending ane Examples: Methane, Propane, Butane, Octane, 2-methylpentane

More information

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. INTRODUCTION TO ORGANIC AND BIOCHEMISTRY QUIZ 5 Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the IUPAC name

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

MOLECULER MODELS/ISOMERS ORGANIC STRUCTURES AND NAMING

MOLECULER MODELS/ISOMERS ORGANIC STRUCTURES AND NAMING REVISED 10/14 EMISTRY 1101L MOLEULER MODELS/ISOMERS ORGANI STRUTURES AND NAMING NOTE: This lab does not require safety glasses or lab coats. INTRODUTION Electron Dot Structures: Electron dot structures,

More information

Chapter 7. dehydration

Chapter 7. dehydration hapter 7 7.1 ne problem with elimination reactions is that mixtures of products are often formed. For example, treatment of 2-bromo-2-methylbutane with K in ethanol yields a mixture of two alkene products.

More information

Dienes & Polyenes: An overview and two key reactions (Ch )

Dienes & Polyenes: An overview and two key reactions (Ch ) Dienes & Polyenes: An overview and two key reactions (h. 14.1-14.5) Polyenes contain more than one double bond and are very common in natural products (ex: carotene). Diene chemistry applies to trienes,

More information