Once familiar with chiral centers, models, drawings and mental images NOW: Final representation of chiral centers: Fischer Projections

Size: px
Start display at page:

Download "Once familiar with chiral centers, models, drawings and mental images NOW: Final representation of chiral centers: Fischer Projections"

Transcription

1 Once familiar with chiral centers, models, drawings and mental images NOW: Final representation of chiral centers: Fischer Projections Fischer Projections are 2-dimensional representations of 3-dimensional chiral centers (Ch. 25). -Developed by Emil Fischer during his work on carbohydrates -Must always be viewed so the horizontal lines are coming TOWARDS you and the vertical lines are going AWAY from you. A B View from Top D D C D A C B A C B (R) Lactic Acid O CO 2 C 3 O 2 C C 3 O Everyone sees things differently how about TIS angle (between the C 3 line and O wedge)? O CO 2 C 3 CO 2 O C 3 Or TIS angle (between O wedge and CO 2 line)? O CO 2 C 3 O C 3 CO 2 There are lots of correct answers for drawing a Fischer projection. Unless you can see these comfortably and confidently, I would suggest that you view them the same way every time. Remember: If the lines form a cup, then DAS is UP but if lines are facing down, then DAS is DOWN

2 The lines are already placed on the left and right sides as you view the Fischer Projection. It s sorting out the wedge and dash that can be tricky sometimes Draw a Fischer Projection for the following: A B D C Draw Fischer Projections: 3 C 3 C 2 C O O 3 C 2 C 3 C C 3 O Can use Fischer Projections to determine if two chiral centers are the same or opposite (i.e. mirror images) by moving the Fischer Projections and comparing: If all four groups line up the same, the chiral carbons are the same. If two match and two do not, the chiral carbons are mirror images. SUGGESTION: When comparing two molecules, just rotate/move one of the Fischer Projections. If you start moving both of them, in different ways, trying to get them to match, you may just confuse yourself Rules for moving Fischer Projections: 1. Can rotate a F.P. 180º but not 90º or 270º. C 3 O O C 3

3 2. Can hold any one group constant and rotate the other three groups, CW or CCW. O 3 C O C 3 Inadvertently violating either of these rules will result in the accidental inversion of configuration! What should be R will appear to be S Single Chiral Center: Same or Enantiomers? C 3 Cl O O C 3 Cl O Cl O 3 C C 3 Cl Multiple Chiral Centers: Same, Enantiomers or Diastereomers? C 3 O C 3 O O O C 3 C 3 Simplest way to compare: eak the multiple centers into individual chiral carbons. Compare C 1 with C 1 and then C 2 with C 2. O C 3 1 C 3 O O 1' O C 3 2 2' C 3 If all chiral centers match exactly the same compound C 1 = C 1 and C 2 = C 2 If ALL centers do not match (no match means mirror image, so all are mirror images) enantiomers

4 C 1 C 1 and C 2 C 2 If some match and some do not diastereomers C 1 = C 1 and C 2 C 2 or C 1 C 1 and C 2 = C 2 C 3 O 1 C 3 O 1' R R R O 2 C 3 R O C 3 2' The More Evil Version: What makes this more confusing? 3 C 2 N N Cl 3 C C 3 C 3 Cl 3 C Cl 1' 2' C 3 Determine the relationships: 3 C C 3 O O C 3 C 3 C 3 O C 3 N Can Assign R/S configuration to Fischer Projections: 1. Prioritize according to CIP Rules. 2. Move/manipulate the F.P. so the lowest priority (#4) is at the top OR bottom of the F.P. drawing. This places it in a position that is FACING AWAY from you. 3. Assign R/S: If is CCW, the configuration is S.

5 If is CW, the configuration is R. Assign R/S configurations: Cl O C 3 C 3 O Cl Final Section: Stereochemistry of Reactions What stereochemical outcome is expected in a reaction? Will products will the reaction produce? o Enantiomers? A Racemic Mixture? Diastereomers? Meso Compound? Will it be optically active or not? Sometimes reactions do not generate chiral carbons when the reagents add to an alkene: This IS a possible outcome that can occur. The product is not chiral - it has no chiral center and it is not optically active. For those reactions that do generate chiral centers though, there are two options for what might occur: Option I: Achiral + Achiral = not optically active product(s) (Enantiomers or a Racemic Mixture) Ex 1: Addition of to an alkene The alkene shown below has no chiral centers in it ( achiral ) and the reagent,, is not chiral either ( achiral ). Draw the product: ow many chiral centers formed in the reaction? Draw the product(s) WIT STEREOCEMISTRY:

6 + This is an example of a reaction where an achiral alkene is reacting with an achiral reagent. The product produced is NOT OPTICALLY ACTIVE (i.e. either a racemic mixture or a meso compound). The addition of to this alkene generates ONE new chiral center for a molecule that had no chiral centers. The total number of stereoisomers is 2 N, where N=1 so 2 1 = 2 possible stereoisomers, which are shown above. If Achiral + Achiral = Not Optically Active and the only options are a Racemic Mix or Meso Compound, which did you form? With only one chiral center, this must be a not optically active racemic mixture that formed (since meso compounds must have at least two chiral centers). Recall that the mechanism for the addition of to an alkene involves the addition of - to a carbocation, which allows for both possible enantiomers to form. Ex 2: Addition of OsO 4 to an alkene 1. OsO 4 2. NaSO 3, 2 O Achiral + Achiral = not optically active product(s) ow many new chiral centers are formed? ow many possible stereoisomers are formed? This reaction generates two new chiral centers. 2 2 = 4 but because we know this reaction only occurs as a SYN addition, so only two of the 4 possible stereoisomers can form: 1. OsO 4 2. NaSO 3, 2 O O O + O O What is the relationship between these two products? Did this reaction form a racemic mixture (non-superimposable mirror images) or a meso compound (possess at least two chiral centers and a plane of symmetry)?

7 With two chiral carbons and a plane of symmetry: Meso Compound! Option II: Chiral + Achiral = Optically Active Diastereomers What about additions to chiral alkenes? The previous examples were reactions done on achiral alkenes. What is the difference when an alkene is reacting that has a pre-existing chiral center? C 3 (S) Chiral alkenes inherently do not have a plane of symmetry. Because chiral alkenes are asymmetric, one face of the alkenes would be more accessible by the reagent than the other face, so the product mixture that forms will NOT be 50:50. C 3 (S) C 3 (S) (S) C 3 (R) (S) Chiral + Achiral = Optically active product(s) What is the relationship between these two products? The old chiral center remains unchanged in the process. The new chiral center is a mixture of R and S (albeit not 50:50). The result is unequal amounts of (2R, 3S) and (2S, 3S) which are a mixture of optically active diastereomers! Determine the stereochemical outcome in the following reactions: Ex: Addition of 2 to an alkene 2, Pd/C Chiral or Achiral Alkene? achiral + achiral = not optically active product(s) Like the reaction with OsO 4, this reaction generates two new chiral centers. 2 2 = 4 possible stereoisomers that could be drawn but there will not be 4 products because this reaction can only occur as a SYN addition. With stereochemistry:

8 2, Pd/C + What is the relationship between these two products? Did this reaction form a racemic mixture or a meso compound? With two chiral carbons and a plane of symmetry: Meso Compound! What about: 2, Pd/C Chiral or Achiral Alkene? achiral + achiral = not optically active product(s) Again, this reaction generates two new chiral centers but only 2 possible stereoisomer products, due to SYN addition. With stereochemistry: 2, Pd/C + Note that there is no central plane of symmetry. The hydrogen atoms are aligned but not the methyl and ethyl groups. If you rotate to match the methyl and ethyl groups, the hydrogen atoms are no longer aligned: What is the relationship between these two products? Did this reaction form a racemic mixture or a meso compound? Although there are two chiral carbons, there isn t a plane of symmetry: Racemic mixture!

9 Ex: Oxymercuration 1. g(oac) 2, 2 O 2. NaB 4 Chiral or achiral alkene? Chiral + achiral = optically active diastereomers Products: (S) (R) (S) (S) * * O O One old chiral center. ow many new chiral centers are created? What is the relationship between these two products? One chiral center the same, one a mirror image Diastereomers Ex: Addition of 2 to an alkene 2 achiral + achiral = not optically active product(s) This reaction generates two new chiral centers. 2 2 = 4 but there will not be 4 possible stereoisomers, because this reaction can only occur as an ANTI addition. With stereochemistry: 2 + There is no plane of symmetry because the alkene has two different groups attached at each end (left: methyl, right: ethyl). What is the relationship between these two products? Racemic mixture!

10 Ex: Addition of 2 to an alkene 2 achiral + achiral = not optically active product(s) Again, this reaction generates two new chiral centers but there will not be 4 possible stereoisomer products, because this reaction can only occur as an ANTI addition. With stereochemistry: 2 * * + * * Notice how the alkene was symmetrical with the methyl groups side by side. Notice also that the methyl groups in the product are still aligned side by side, but one bromine atom faces up and the other faces down. Is there a plane of symmetry? No What is the relationship between these two products? Racemic mixture! Ex: One more time: Addition of 2 to an alkene 2 achiral + achiral = not optically active product(s) Only two possible products, because this reaction can only occur as an ANTI addition. With stereochemistry: 2 + What s the relationship between these two products? Is there a plane of symmetry? No groups are lined up to show any mirror plane. Rotate that second molecule around on its center C-C bond and see how the methyl groups line up: 3 C C C C 3 3 C C 3

11 Is there a plane of symmetry? Yes Two or more chiral centers? Yes Meso Compound! Other reactions could include hydroboration, acid-catalyzed hydration or halohydrin formation. Chapter 9: Alkynes Structure: R C C terminal alkyne R C C R' internal alkyne The alkyne functional group contains two sp hybridized carbons, with a 180º bond angle, linear geometry There are two sets of perpendicular p orbitals to form the two pi bonds 6 e- between the two carbon nuclei o shortest bond shortest hybrid orbitals (sp) o strongest sigma bond - best overlap with roundest hybrid orbital (sp) Nomenclature: Suffix: -yne 1. Find the longest chain containing the C C triple bond 2. Number from the end closest to the triple bond (use branches if equidistant from both ends). If more than one alkyne is present, number from end closest to first triple bond. 3. Identify all substituents and their position numbers 4. Write the full name: Prefixes (alphabetized) - # - Parent YNE OR Prefixes (alphabetized)-parent-#-yne As seen with alkenes, use the lower of the two numbers to indicate the alkyne position.

12 Can have adiynes,-atriynes, etc, just include numbers for each triple bond. Molecules with both alkenes and alkynes: Two Suffixes: -en yne [IN TAT ORDER!!] 1. Find the longest chain containing both alkene and alkyne 2. Number from the end closest to a MULTIPLE bond. If equidistant, the ALKENE gets the priority and thus numbering occurs from the end closest to the alkene. So: Which end do we start from? 3. Identify all substituents and their position numbers 4. Write the full name: Prefixes - # Parent, followed by en - # yne or Parent -# en - # yne 3-decen-7-yne OR dec-3-en-7-yne Preparation of Alkynes: Double dehydrohalogenation: (Need a dihalide) 2 equiv KOtBu Step-Wise:

13 2 equiv KOtBu 1 equiv KOtBu 1 equiv KOtBu Mechanism: tbuo 2 equiv KOtBu 1 equiv KOtBu 1 equiv KOtBu OtBu Where does the dihalide come from to make an alkyne? X 2 Addition to an alkene: 2 So, how would you do the following conversion (synthesis, more than one step)?

14 NOTE: Cannot do double dehydrations to form alkynes. Reactions of Alkynes: 1. Addition of X (Addn of, X, where X = Cl, ) Markovnikov 1x or 2x Types of Alkynes Terminal one end is substituted with R and one has an. The end with the R is more substituted, and therefore forms a more stable carbocation intermediate, thus Markovnikov can be easily distinguished: 1 equiv 2 equiv Note that when two equivalents of X are added to a terminal alkyne, both X s wind up on the same carbon! Internal Symmetrical Alkynes Both ends are equally substituted with the same R group so it doesn t matter which end the or X adds to, TE FIRST TIME This is not a regioselective reaction both ends are the same: 1 equiv. Both carbocations that could form are exactly the same: is the same as

15 The SECOND addition is problematic. Once the first addition has occurred, the two ends of the (now) alkene are not symmetrical. Each end still has one alkyl group so neither is more substituted but the mere presence of the first halide throws off the symmetry. 2 equiv 1st equiv 2nd equiv??? 1st equiv 2nd equiv and That s a bad reaction makes two different products! Internal Asymmetrical Alkynes In this version, the alkyne is equally substituted with a single R group on each end but the R groups are different so Markovnikov cannot be distinguished mixture of at least two products always results, even with only 1x addition of X. Bad reaction!! 1 equiv. and through two different carbocations: and A second addition would just make even more products (four total!) Examples: 1 equiv. Cl

16 2 equiv. 1 equiv Cl 2. Addition of X 2 (X = Cl, ) ANTI 1x or 2x -Can only see ANTI for a single addition (1x) -ANTI is shown by the relative positions of the halides in the alkene product, NOT by the use of wedges/dashes!! 1 equiv Cl 2 2 equiv Cl 2 More Examples: 1 equiv. Cl 2 1 equiv. 2 2 equiv. 2 An Oldie: Cl 2 3. ydrogenation of alkynes (2X Addn of, ) SYN (can t see it but it IS happening!) 2x ALWAYS

17 2, Pd/C 2, Pd/C 2, Pd/C 2, Pd/C 2, Pd/C 4. Formation of CIS alkenes (1X Addn of, ) SYN 1X ALWAYS -Catalyst is poisoned with lead (Pb) and thus reacts slower than Pd/C. This reaction gives us some insight into the relative reactivity of alkenes and alkynes. Since only the starting alkynes continue to react without any of the product alkenes undergoing hydrogenation, we can see that alkynes ARE more reactive than alkenes in a hydrogenation. 2 Pd/CaCO 3 /Pb 2 Pd/CaCO 3 /Pb

18 2, Pd/CaCO 3 /Pb 5. Formation of TRANS alkenes - (1X Addn of, ) -ANTI 1X ALWAYS Li or Na, N 3 Li, N 3 Li, N 3 The mechanism for this reaction is completely different than those in the past this reaction involves an electron transfer process. Both Na and Li are Group I elements that want to give up one electron in order to become Nobel Gas configurations. They dump an electron into the pi system, creating a radical anion, which immediately removes a proton ( + ) from the solvent, N 3. Then the process repeats itself: Li Li + + 1e- N 2 Li Li + + 1e- N 2 The stereochemistry is determined when the second electron is transferred. Which is more stable? And why?

19 The first one is more stable because it places the alkyl groups around the newly forming alkene farther away from each other (less steric interactions!).

Option II: Chiral + Achiral = Optically Active Diastereomers

Option II: Chiral + Achiral = Optically Active Diastereomers Option II: Chiral + Achiral = Optically Active Diastereomers What about additions to chiral alkenes? The previous examples were reactions done on achiral alkenes. What is the difference when an alkene

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? CEM 331: Chapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N C 2 C N C 2 C N 1 2 3 4 1: three sigma bonds and

More information

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group: Next Up: Addition of, : The next two reactions are the Markovnikov and non-markovnikov additions of and to an alkyne But you will not see alcohols form in this reaction! When and add to the alkyne, an

More information

CH 3 C 2 H 5. Tetrahedral Stereochemistry

CH 3 C 2 H 5. Tetrahedral Stereochemistry Ch 5 Tetrahedral Stereochemistry Enantiomers - Two non-superimposable mirror image molecules - They are stereoisomers with the same atoms and bonds, but different spatial geometries. - The two molecules

More information

Stereochemistry. 3-dimensional Aspects of Tetrahedral Atoms

Stereochemistry. 3-dimensional Aspects of Tetrahedral Atoms Stereochemistry 3-dimensional Aspects of Tetrahedral Atoms Chiral Entire molecules or simply atoms that do not possess a plane of symmetry are called chiral. Conversely, the term achiral is applied to

More information

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018 An alkyne is any molecule with a triple bond between two carbon atoms. This triple bond consists of one σ bond and two π bonds: the σ bond exists on a straight line between carbon atoms, while one π bond

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? EM 331: hapter 1/2: Structures (Atoms, Molecules, Bonding) 1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound? N 2 N 2 N 1 2 3 4 2. What hybrid orbitals are used to

More information

Learning Guide for Chapter 17 - Dienes

Learning Guide for Chapter 17 - Dienes Learning Guide for Chapter 17 - Dienes I. Isolated, conjugated, and cumulated dienes II. Reactions involving allylic cations or radicals III. Diels-Alder Reactions IV. Aromaticity I. Isolated, Conjugated,

More information

HONORS ORGANIC CHEM. HAHS MRS. RICHARDS

HONORS ORGANIC CHEM. HAHS MRS. RICHARDS NRS RGANIC CEM. AS MRS. RICARDS RGANIC CEMISTRY: FINAL EXAM REVIEW List of Topics: While the exam will specifically focus on material from Quarter 2, an understanding of several important concepts from

More information

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects.

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. Stereochemistry This is study of the 3 dimensional arrangement in space of molecules. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. E.g. the isomers

More information

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups.

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups. Organic Chemistry - Problem Drill 10: Alkenes, Alkynes, and Dienes No. 1 of 10 1. What is the substitution pattern for alkene indicated below? (A) mono (B) di (C) tri (D) tetra (E) unsubstituted Mono is

More information

CHAPTER 5. Stereoisomers

CHAPTER 5. Stereoisomers CHAPTER 5 Stereoisomers We have already covered two kinds of isomerism: Constitutional Isomers (structural isomers) Stereoisomers Examples of Constitutional Isomers: Examples of Stereoisomers: Another

More information

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below.

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below. CEM1102 2014-J-10 June 2014 The structure of ( )-linalool, a commonly occurring natural product, is shown below. 4 What is the molecular formula of ( )-linalool? C 10 18 O Which of the following best describes

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017 Compounds with a single ring are monocyclic. For example: Assuming they have no double or triple bonds, they each have one degree of unsaturation. This means that their formulas follow the pattern C nh

More information

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule

CHEMISTRY 231 GENERAL ORGANIC CHEMISTRY I FALL 2014 List of Topics / Examination Schedule Page 1 of 5 CHEMISTRY 231 FALL 2014 List of Topics / Examination Schedule Unit Starts Topic of Study 20 Aug 2014 STRUCTURE AND BONDING Suggested Reading: Chapter 1 29 Aug 2014 ALKANES & CYCLOALKANES Suggested

More information

tbuo OtBu Br 1) B 2 H 6 /THF OH 2) OH - + H 2 O 2 NaNH 2 NH3 Na NH 3 /-35 C CH 3 CCH 2 CHCH 3

tbuo OtBu Br 1) B 2 H 6 /THF OH 2) OH - + H 2 O 2 NaNH 2 NH3 Na NH 3 /-35 C CH 3 CCH 2 CHCH 3 EM 12A Name KEY EXAM II all 2003 1.(16 pts) Draw the structure of the major product expected from each of the following sets of reactants. Specify stereochemistry where appropriate. + 2 Pt + 2 2 2 + enantiomer

More information

Chem 341 Jasperse Ch. 9 Handouts 1

Chem 341 Jasperse Ch. 9 Handouts 1 Chem 341 Jasperse Ch. 9 andouts 1 Ch. 9 Stereochemistry Stereoisomers have the same condensed formulas and basic bonding sequence, but have different 3-dimensional shape and cannot be interconverted 9.1,2

More information

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction? Practice Questions Practice Questions D B F C E A G How many steps are there in this reaction? 1 Practice Questions D B F C E A G What is the highest-energy transitions state? Practice Questions D B F

More information

Chapter 6. Isomers and Stereochemistry

Chapter 6. Isomers and Stereochemistry Chapter 6. Isomers and Stereochemistry Learning objectives: 1. Differentiate chiral and achiral molecules. 2. Recognize and draw structural isomers (constitutional isomers), stereoisomers including enantiomers

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center)

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

Chapter 19: Alkenes and Alkynes

Chapter 19: Alkenes and Alkynes Chapter 19: Alkenes and Alkynes The vast majority of chemical compounds that we know anything about and that we synthesize in the lab or the industrial plant are organic compounds. The simplest organic

More information

Alkenes. Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula C n H 2n. Nomenclature

Alkenes. Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula C n H 2n. Nomenclature Alkenes Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula n 2n. Nomenclature Alkenes are named in the same manner as alkanes with the following adjustments. 1. Find the longest

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Concept Check: Topic 1: Conformation Winter 2009 Page 112 Concept Check: Topic 1: Conformation Winter 2009 Page 113 1 STEREOCHEMISTRY Winter 2009 Page 114 We have already covered two kinds of isomerism:

More information

sp 2 geometry tetrahedral trigonal planar linear ΔH C-C ΔH C-H % s character pk a 464 KJ/mol 33% 44

sp 2 geometry tetrahedral trigonal planar linear ΔH C-C ΔH C-H % s character pk a 464 KJ/mol 33% 44 hapter 10: Alkynes 10.1 Introduction to Alkynes ~ 111 ~ 122 1.06 Å 180 1.1 Å ~ 116 1.08 Å 1.54 Å 1.34 Å 1.20 Å hybridization of sp 3 sp 2 sp geometry tetrahedral trigonal planar linear 368 KJ/mol 632 KJ/mol

More information

Alkenes. Dr. Munther A. M-Ali For 1 st Stage Setudents

Alkenes. Dr. Munther A. M-Ali For 1 st Stage Setudents Alkenes Dr. Munther A. M-Ali For 1 st Stage Setudents Alkenes Family of hydrocarbons, the alkenes, which contain less hydrogen, carbon for carbon, than the alkanes Structure of ethylene, The carbon-carbon

More information

Alkynes Nomenclature of Alkynes

Alkynes Nomenclature of Alkynes Chapter 7 Alkynes Alkynes - hydrocarbons containing a carbon-carbon triple bond (2 bonds) Acyclic alkanes = C n H 2n+2 Alkenes and cyclic alkanes = C n H 2n Alkynes (and cyclic alkenes) = C n H 2n-2 The

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

(1) Check to see if the two compounds are identical. (2) Recall the definitions of stereoisomers, conformational isomers, and constitutional isomers.

(1) Check to see if the two compounds are identical. (2) Recall the definitions of stereoisomers, conformational isomers, and constitutional isomers. MCAT Organic Chemistry Problem Drill 04: Stereochemistry Question No. 1 of 10 Question 1. Determine the relationship of the molecules shown: O O Question #01 (A) Identical (B) Constitutional isomers (C)

More information

Chapter 6. Isomers and Stereochemistry

Chapter 6. Isomers and Stereochemistry hapter 6. Isomers and Stereochemistry Learning objectives: 1. Differentiate chiral and achiral molecules. 2. Recognize and draw structural isomers (constitutional isomers), stereoisomers including enantiomers

More information

Name. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #3 - November 11, 2002 ANSWERS

Name. Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #3 - November 11, 2002 ANSWERS Name INSTRUTINS Department of hemistry SUNY/neonta hem 221 - rganic hemistry I Examination #3 - November 11, 2002 ANSWERS This examination has two parts. The first part is in multiple choice format; the

More information

1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. KH (1 equiv.) + KCl THF. + HBr.

1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. KH (1 equiv.) + KCl THF. + HBr. 1. Use appropriate curved arrows to indicate the complete mechanism of each of these reactions. K (1 equiv.) TF K 3 2 2 3 enantiomer While writing the mechanism, justify both the regiochemistry the relative

More information

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement.

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement. Chem 350 Jasperse Ch. 1 Notes 1 Note: The headers and associated chapters don t actually jive with the textbook we are using this summer. But otherwise this highlights a lot of the chemistry from Organic

More information

For more info visit

For more info visit Bond Fission: a) Homolytic fission: Each atom separates with one electron, leading to the formation of highly reactive entities called radicals, owing their reactivity to their unpaired electron. b) Heterolytic

More information

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only I. Addition Reactions of Alkenes Introduction Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem 2310 An addition reaction always involves changing a double bond to a single bond and adding a new bond

More information

Preparation of alkenes

Preparation of alkenes Lecture 11 אלקנים הכנה ותגובות של אלקנים: הידרוגנציה, סיפוח הידרוהלוגנים )כלל מארקובניקוב(, סיפוח הלוגנים והסטראוכימיה של תוצרי הסיפוח, הידרובורציה, אפוקסידציה, אוזונוליזה. 1 Preparation of alkenes 1.

More information

Chem 3719 Example Exams. Chemistry 3719 Practice Exams

Chem 3719 Example Exams. Chemistry 3719 Practice Exams Chem 3719 Example Exams Chemistry 3719 Practice Exams Fall 2018 Chemistry 3719, Fall 2017 Exam 1 Student Name: Y Number: This exam is worth 100 points out of a total of 700 points for Chemistry 3719/3719L.

More information

Copyright 2009 James K Whitesell

Copyright 2009 James K Whitesell Copyright 2009 James K Whitesell 5-1 These two molecules, cyclopropylcyclopentane and cyclobutycyclobutane have the same number of carbon and hydrogen atoms and thus they are constitutional isomers. 5-2

More information

CH Organic Chemistry I (Katz) Practice Exam #3- Fall 2013

CH Organic Chemistry I (Katz) Practice Exam #3- Fall 2013 C2710 - rganic Chemistry I (Katz) Practice Exam #3- all 2013 Name: Score: Part I - Choose the best answer and write the letter of your choice in the space provided. (32 pts) 1. f the following, which reaction

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 4-3: Continue Alkynes: An Introduction to Organic Synthesis Based on: McMurry s Organic Chemistry,

More information

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth Organic Chemistry Chapter 5 Stereoisomers. D. Roth 11. Chirality of conformationally mobile systems ring compounds Monosubstituted cycloalkanes cannot have an asymmetric carbon in the ring, because there

More information

Chapter 5 Stereochemistry. Stereoisomers

Chapter 5 Stereochemistry. Stereoisomers Chapter 5 Stereochemistry Stereoisomers Same bonding sequence Different arrangement in space Example: OOC-C=C-COO has two geometric (cis-trans) isomers: COO COO COO COO Stereochemistry Slide 5-2 1 Chirality

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

CHEM1902/ N-9 November 2014

CHEM1902/ N-9 November 2014 CEM1902/4 2014-N-9 November 2014 The elimination of 2 O from alcohol A can form the isomeric alkenes B and C. Elimination of Br from the alkyl halide D can generate the same two alkenes. 7 Assign the absolute

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

3-chloro-1-propene 1-chloropropane 2-chloropropene

3-chloro-1-propene 1-chloropropane 2-chloropropene ANSWERS #1. (from 50 minute exam #3, Fall 2000) 5. (6 points) For each group of 3 compounds, identify the compound that expresses the indicated property the MOST and the compound that expresses it the

More information

Chapter 7 - Alkenes and Alkynes I

Chapter 7 - Alkenes and Alkynes I Andrew Rosen Chapter 7 - Alkenes and Alkynes I 7.1 - Introduction - The simplest member of the alkenes has the common name of ethylene while the simplest member of the alkyne family has the common name

More information

Chapter 5 Stereochemistry

Chapter 5 Stereochemistry Chapter 5 Stereochemistry References: 1. Title: Organic Chemistry (fifth edition) Author: Paula Yurkanis Bruice Publisher: Pearson International Edition 2. Title: Stereokimia Author: Poh Bo Long Publisher:

More information

Learning Guide for Chapter 13 - Alkynes

Learning Guide for Chapter 13 - Alkynes Learning Guide for Chapter 13 - Alkynes I. Introduction to Alkynes - p 1 II. Natural ccurrence and Uses of Alkynes - p 5 III. Physical Properties of Alkynes - p 7 IV. Spectroscopy of Alkynes - p 7 V. Nomenclature

More information

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2

C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 C h a p t e r S e v e n : Haloalkanes: Nucleophilc Substitution and Elimination Reactions S N 2 CHM 321: Summary of Important Concepts Concepts for Chapter 7: Substitution Reactions I. Nomenclature of

More information

240 Chem. Stereochemistry. Chapter 5

240 Chem. Stereochemistry. Chapter 5 240 Chem Stereochemistry Chapter 5 1 Isomerism Isomers are different compounds that have the same molecular formula. Constitutional isomers are isomers that differ because their atoms are connected in

More information

Learning Guide for Chapter 11 - Alkenes I

Learning Guide for Chapter 11 - Alkenes I Learning Guide for Chapter 11 - Alkenes I I. Introduction to alkenes - p 1 bond structure, classifying alkenes, reactivity, physical properties, occurrences and uses, spectroscopy, stabilty II. Unsaturation

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions "

Chapter 8 Alkenes and Alkynes II: Addition Reactions Chapter 8 Alkenes and Alkynes II: Addition Reactions Additions to Alkenes Generally the reaction is exothermic because one π and one σ bond are converted to two σ bonds Alkenes are electron rich The π

More information

Straight. C C bonds are sp 3 hybridized. Butane, C 4 H 10 H 3 C

Straight. C C bonds are sp 3 hybridized. Butane, C 4 H 10 H 3 C Hydrocarbons Straight Chain Alkanes aren t Straight C C bonds are sp 3 hybridized Butane, C 4 H 10 Structural Shorthand Explicit hydrogens (those required to complete carbon s valence) are usually left

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Lesson 4. Molecular Geometry and Isomers II. Lesson 4 CH 3 HO H OH

Lesson 4. Molecular Geometry and Isomers II. Lesson 4 CH 3 HO H OH Lesson 4 Molecular Geometry and Isomers II 4 Lesson 4 3 O O 3 Organic Edge A. Structural Isomers (onstitutional Isomers) 1. Structural isomers are molecules that share the same molecular formula but differ

More information

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken!

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken! Alkenes Electrophilic Addition 1 Alkene Structures chemistry of double bond σ BDE ~ 80 kcal/mol π = BDE ~ 65 kcal/mol The p-bond is weaker than the sigma-bond The, electrons in the p-bond are higher in

More information

STEREOCHEMISTRY A STUDENT SHOULD BE ABLE TO:

STEREOCHEMISTRY A STUDENT SHOULD BE ABLE TO: A STUDENT SHOULD BE ABLE TO: STEREOCHEMISTRY 1. Determine the relationship between two given structures (which may be any of the kinds below). Also, define the following terms, and give examples of pairs

More information

4Types of Isomers. 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B.

4Types of Isomers. 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B. 4Types of Isomers 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B. Diastereomers 4Types of Isomers C 4 10 C 4 10 O O O O O O O O O O O O C 3

More information

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT.

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT. Exam 1 (Ch 17 and Review of CEM 331) Answer Key: 1. ne-step Questions: You need to know reagents for reagent arrows and to be able to draw products. I know a lot of them seem to look alike its your job

More information

Organic Chemistry. Alkenes (2)

Organic Chemistry. Alkenes (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkenes (2) by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides"

Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides The (E)-(Z) System for Designating Alkene Diastereomers The Cahn-Ingold-Prelog convention is used to assign

More information

Chapter 7. Alkenes: Reactions and Synthesis

Chapter 7. Alkenes: Reactions and Synthesis Chapter 7. Alkenes: Reactions and Synthesis 1 Synthesis of Alkenes: Elimination Reactions 1. Dehydrohalogenation of alkyl halides. loss of requires CH 2 CH 2 Cl Zaitsev s Rule: CH 2 C 2. Dehydration of

More information

Chapter 8 - Alkenes and Alkynes II Addition Reactions of Alkenes - Electrons in the π bond of alkenes react with electrophiles

Chapter 8 - Alkenes and Alkynes II Addition Reactions of Alkenes - Electrons in the π bond of alkenes react with electrophiles Andrew Rosen Chapter 8 - Alkenes and Alkynes II 8.1 - Addition Reactions of Alkenes - Electrons in the π bond of alkenes react with electrophiles 8.2 - Electrophilic Addition of Hydrogen Halides to Alkenes:

More information

Chem 251 Fall Learning Objectives

Chem 251 Fall Learning Objectives Learning Objectives Chapter 8 (last semester) 1. Write an electron-pushing mechanism for an SN2 reaction between an alkyl halide and a nucleophile. 2. Describe the rate law and relative rate of reaction

More information

ORGANIC - BROWN 8E CH ALKENES AND REACTIONS OF ALKENES

ORGANIC - BROWN 8E CH ALKENES AND REACTIONS OF ALKENES !! www.clutchprep.com CONCEPT: ALKENES and ALKYNES Alkenes/Alkynes are named by adding the suffix modifier (- /- ) to the end of the root. Alkenes/alkynes receive in numbering alkanes Location is assigned

More information

Chapter 9 Alkynes. Introduction

Chapter 9 Alkynes. Introduction hapter 9 Alkynes Introduction Alkynes contain a triple bond. General formula is n 2n-2. Two elements of unsaturation for each triple bond. MST reactions are like alkenes: addition and oxidation. Some reactions

More information

REACTION AND SYNTHESIS REVIEW

REACTION AND SYNTHESIS REVIEW REACTION AND SYNTHESIS REVIEW A STUDENT SHOULD BE ABLE TO PREDICT PRODUCTS, IDENTIFY REACTANTS, GIVE REACTION CONDITIONS, PROPOSE SYNTHESES, AND PROPOSE MECHANISMS (AS LISTED BELOW). REVIEW THE MECHANISM

More information

General Glossary. General Glossary

General Glossary. General Glossary General Glossary Absolute configuration The actual three-dimensional structure of a chiral molecule. Absolute configurations are specified verbally by the Cahn-Ingold-Prelog R,S convention and are represented

More information

Chem 145 Unsaturated hydrocarbons Alkynes

Chem 145 Unsaturated hydrocarbons Alkynes Dr. Seham ALTERARY Chem 145 Unsaturated hydrocarbons Alkynes Chapter 4 1434-1435 2013-2014 2 st semester By the end of this chapter you should be familiar with: Definition for Alkynes. Nomenclature of

More information

Organic Chemistry. Alkynes

Organic Chemistry. Alkynes For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkynes by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

CHEM Lecture 7

CHEM Lecture 7 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Lecture 7 Prof. Duncan Wardrop ctober 22, 2012 CEM 494 Special Topics in Chemistry Illinois at Chicago Preparation of Alkenes Elimination

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

Lecture 20 Organic Chemistry 1

Lecture 20 Organic Chemistry 1 CEM 232 rganic Chemistry I at Chicago Lecture 20 rganic Chemistry 1 Professor Duncan Wardrop March 18, 2010 1 Self-Test Question Capnellene (4) is a marine natural product that was isolated from coral

More information

Required Materials For complete material(s) information, refer to

Required Materials For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2017 Implemented Spring 2018 COURSE OUTLINE Organic Chemistry 1 Course Description CH 240. Organic

More information

Note: You must have your answers written in pen if you want a regrade!!!!

Note: You must have your answers written in pen if you want a regrade!!!! NAME (Print): SIGNATURE: hemistry 310M/318M Dr. Brent Iverson 2nd Midterm November 1, 2007 Please print the first three letters of your last name in the three boxes Please Note: This test may be a bit

More information

Alkenes and Alkynes 10/27/2010. Chapter 7. Alkenes and Alkynes. Alkenes and Alkynes

Alkenes and Alkynes 10/27/2010. Chapter 7. Alkenes and Alkynes. Alkenes and Alkynes Chapter 7 Alkenes and Alkynes CHP6 Problems: 6.1-13, 16-34, 36. CHP7 Problems: 7.1-23, 25-28, 31-34, 37-39, 41-47, 49-56. Alkenes and Alkynes Alkene (or olefin ) Hydrocarbon that contains a carbon-carbon

More information

Stereochemistry CHAPTER SUMMARY

Stereochemistry CHAPTER SUMMARY 2 7 2 7. Introduction APTER SUMMARY Isomers are compounds with identical molecular formulas but different structural formulas. Structural or constitutional isomers differ in the bonding arrangement of

More information

Three-Dimensional Structures of Drugs

Three-Dimensional Structures of Drugs Three-Dimensional Structures of Drugs Moore, T. (2016). Acids and Bases. Lecture presented at PHAR 422 Lecture in UIC College of Pharmacy, Chicago. Chiral drugs are sometimes sold as one enantiomer (pure

More information

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16 Chapter 3 Alkenes and Alkynes Excluded sections 3.15&3.16 3.1 Definition and Classification Alkene: a hydrocarbon that contains one or more carboncarbon double bonds. ethylene is the simplest alkene. Alkyne:

More information

O N N. electrons in ring

O N N. electrons in ring ame I. ( points) Page 1 A. The compound shown below is a commonly prescribed antifungal drug. It belongs to a category of compounds known as triazoles. Analyze the geometry and other properties for various

More information

Introduction to Alkenes and Alkynes

Introduction to Alkenes and Alkynes Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene,

More information

Synthesis and Retrosynthesis

Synthesis and Retrosynthesis Synthesis and Retrosynthesis Putting Reactions Together A large part of ganic chemistry involves building me complex molecules from smaller ones using a designed sequence of reactions, i.e. chemical synthesis.

More information

2. Which functional groups and structural features are present in the following molecule (strychnine)?

2. Which functional groups and structural features are present in the following molecule (strychnine)? Chapter 1-2: 1. Which of the following species has a negative charge but NO lone pair of valance shell nonbonding electrons? [all atoms have complete valance shell of electrons, but lone pairs are not

More information

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional)

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional) Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional) Stereoisomers... have the same connectivity but a different

More information

9. Stereochemistry: Introduction to Using Molecular Models

9. Stereochemistry: Introduction to Using Molecular Models 9. Stereochemistry: Introduction to Using Molecular Models The first part of this document reviews some of the most important stereochemistry topics covered in lecture. Following the introduction, a number

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Note: You must have your answers written in pen if you want a regrade!!!!

Note: You must have your answers written in pen if you want a regrade!!!! NAME (Print): SIGNATURE: hemistry 310M/318M Dr. ent Iverson 2nd Midterm ctober 29, 2009 Please print the first three letters of your last name in the three boxes Please Note: This test may be a bit long,

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

MOLECULAR MODELS : STEREOISOMERS

MOLECULAR MODELS : STEREOISOMERS MM.1 MOLEULAR MODELS : STEREOISOMERS Note: No pre-laboratory summary is required for this experiment, but there are some topics you most probably need to review from 351 and you may want to start work

More information

Stereochemistry. Based on McMurry s Organic Chemistry, 6 th edition

Stereochemistry. Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry! Some objects are not the same as their mirror images (technically, they have no plane of symmetry)! A right-hand glove

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

به نام خدا. Organic Chemistry 1. Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran

به نام خدا. Organic Chemistry 1. Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran به نام خدا 8 Organic Chemistry 1 Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir 8 Alkynes: An Introduction to Organic Synthesis آلکین ها: مقدمه ای

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information