1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that"

Transcription

1 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to In 1869 Russian chemist published a method of organizing the elements Mendeleev showed that He broke the list into a series of rows such that elements in one row were directly over elements with similar properties in other rows. He called each horizontal row a and each vertical column a. In certain cases, Mendeleev Mendeleev also left gaps in his table for elements which he believed were not yet discovered. He was so confident in his method of organization that When these elements were eventually discovered, they matched Mendeleev s predictions quite closely. At last with Mendeleev s Periodic Table,

2 UNIT VIII ATOMS AND THE PERIODIC TABLE As more and better data became available, chemists made a significant change to Mendeleev s method of organizing the elements. The modern periodic table is organized This solved problems The Periodic Law summarizes the organization of the periodic table. THE PERIODIC LAW 4. In the modern periodic table, a PERIOD is the A GROUP or FAMILY is the There are several special groups, rows, and blocks of elements. The are the main groups of elements. The are the central block of elements which separates the two blocks of the representative elements. The are the elements in the first column (except hydrogen).

3 22 CHEMISTRY 11 The are the elements in the second column. The are the elements in group 17 headed by fluorine. The are the elements in group 18 headed by helium. The and are the two rows below the main part of the table starting with lanthanum and actinium respectively. 5. Elements can also be classified according to their metallic character. The properties of metals

4 UNIT VIII ATOMS AND THE PERIODIC TABLE 23 The properties of nonmetals 6. There are some elements The nonmetals can be divided into two subgroups, A SEMICONDUCTOR is Semiconductors were formerly called or because they have properties which resemble metals more than nonmetals. The important difference is that the electrical conductivity of metals with increasing temperatures whereas the electrical conductivity of semiconductors with increasing temperature.

5 24 CHEMISTRY There are two important trends in the periodic table which exists among the elements: i) ii)

6 UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between two charged particles, The greater the charge on two particles, 2. Each period on the periodic table The 1 st shell has electrons and therefore the 1 st period has elements. The 2 nd shell has electrons and therefore the 2 nd period has elements. The 3 rd shell has electrons and therefore the 3 rd period has elements. (Note: for the purposes of this section, the transition metals, lanthanides, and actinides are IGNORED. Only the REPRESENTATIVE ELEMENTS will be considered.)

7 26 CHEMISTRY Going from left to right across a given period, the This increase in atomic number also brings an increase in the number of electrons surrounding the nucleus. All the electrons in a given shell can be assumed to have the same average distance from the nucleus. p+ 3p+

8 UNIT VIII ATOMS AND THE PERIODIC TABLE The shells surrounding the nucleus can be described as or An open shell is A closed shell is A closed shell has e.g. The 3 rd shell, Na to Ar, can hold a maximum of 8 electrons: 3s 2 3p 6. The atoms Na to Cl have less than 8 electrons in their 3 rd shell so they are OPEN. The atom Ar has its outermost shell full with 8 electrons therefore it is CLOSED. Previously VALENCE ELECTRONS were described as all the electrons in an atom excluding those in the core or filled d- or f-subshells. Valence electrons are. The NOBLE GASES have NO valence electrons and are NOT REACTIVE but F and Na HAVE valence electrons and ARE REACTIVE.

9 28 CHEMISTRY Isolated atoms have their electrons placed in s, p, d, and f orbitals; however, Only electrons are considered for bonding and the TRANSITION metals are ignored. There are a total of orbitals into which electrons can be placed (one s and three p orbitals). Each individual orbital holds up to electrons. Since electrons repel each other, Only after each orbital contains one electron will the The following or electron dot diagrams show how the valence electrons are distributed in an atom. The VALENCE (not valence electrons) of an atom = the number of electrons. Valence is sometimes called

10 UNIT VIII ATOMS AND THE PERIODIC TABLE In order to form a positive ion, an Li + energy Li + + e- IONIZATION ENERGY is (The electron is removed from the outermost shell and is always a valence electron unless the atom has a closed shell.) Ionization energy left to right across a period since The noble gas at the end of any period will Ionization energy top to bottom along a group since Ionization energy across a period and in a group.

11 30 CHEMISTRY 11 F. Types of Chemical Bonding 1. Atoms can form ions by either or electrons. Metal atoms generally form ions and nonmetal atoms form ions due to their difference in ELECTRONEGATIVITY. Electronegativity is Atoms of high electronegativity Electronegativity increases when the Electronegativity across a period and a group. In general, when an atom forms an ion, Na (1 valence e - ) e - + Na + (0 valence e - s like Ar) O (6 valence e - s) + 2e - O 2- (0 valence e - s like Ar) The most common charges found when going across the periodic table are shown below. The elements in group 14 (C, Si, Ge, Sn, and Pb) are not included because C, Si, and Ge do not form simple ionic compounds and Sn and Pb are metals which most readily form +2 ions and only rarely form +4 ions.

12 UNIT VIII ATOMS AND THE PERIODIC TABLE 31 Group Charge on ion 2. An IONIC BOND is formed It is formed when IONIC BONDS are formed when IONIC BONDS are very STRONG, so that compounds held together by ionic bonds have HIGH MELTING TEMPERATURES. In an IONIC SOLID there are Instead, there is a matrix of alternating positive and negative ions in three dimensions. Ionic solids are described as which are the lowest whole number ratio of positive to negative ions.

13 32 CHEMISTRY When an atom forms an ion, the resulting ion will be a different size than the corresponding neutral atom. When an atom gains electrons to form a ION, the does not change but since there are more electrons, the increases and the ion becomes than the neutral atom. When an atom loses electrons to form a ION, the between electrons decreases since there are fewer electrons. As such, and the ion becomes than the neutral atom. 4. In a COVALENT BOND Instead, the bond involves A covalent bond is formed when The states that atoms in groups 14 to 17 of the periodic table tend to form covalent bonds so as to have electrons in their valence shells.

14 UNIT VIII ATOMS AND THE PERIODIC TABLE 33 Atoms that form covalent bonds have relatively high electronegativities. They attract each other s electrons strongly but will not let go of their own electrons. This results in a tug of war and the electrons are shared in the bond. COVALENT BONDS are formed when a combines with a. 5. Oxygen atoms are 2 electrons short of a full shell. By sharing electrons and forming a, the atoms can form a full octet. Similarly, nitrogen atoms are 3 electrons short of a full shell. By sharing electrons and forming a, that atoms can form a full octet.

15 34 CHEMISTRY In covalent bonds between two different types of atoms the electrons This results in a bond where one end of the bond is slightly more negative (δ-) and the other end slightly more positive (δ+). Chemical bonds can be classified according to their difference in electronegativities. The following table lists the electronegativities of the elements H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr Be 1.2 Mg 1.0 Ca 1.0 Sr 0.9 Ba 0.9 Ra Sc 1.2 Y La-Lu Ac-No Zr Nb Mo Tc Ru Rh Pd Ag Cd 1.3 Hf 1.5 Ta 1.7 W 1.9 Re 2.2 Os 2.2 Ir 2.2 Pt 2.4 Au Hg B 1.5 Al C 1.8 Si Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge 1.7 In 1.8 Tl Sn 1.8 Pb 3.0 N 2.1 P 2.0 As 1.9 Sb 1.9 Bi 3.5 O 2.5 S 2.4 Se 2.1 Te 2.0 Po 4.0 F 3.0 Cl 2.8 Br 2.5 I 2.2 At Type of Chemical Bond Electronegativity Difference Ionic Polar Covalent Covalent NaCl = = ( ) CH 4 = = ( ) F 2 = = ( )

16 UNIT VIII ATOMS AND THE PERIODIC TABLE The formula of covalently-bonded binary compounds can be predicted. Group Valence If we want to predict that formula of a compound between N and F. G. Writing Lewis Structures 1. LEWIS STRUCTURES (electron dot structures) are used to The symbol is used to denote the and dots are used indicate the To write the Lewis Structure for an atom, Li Ca B C N

17 36 CHEMISTRY The Lewis Structure of an ionic compound is written by: e.g. Draw the Lewis Structure for MgCl 2 3. Drawing Lewis Structures of covalent compounds that obey the octet rule follow a simple set of rules. Add one electron for each charge and subtract one electron for each charge. Determine which atoms are bonded together and Use the remaining valence electrons to Then (These non-bonding pairs of electrons are called.) If a central atom has less than an octet of electrons, Tidy up,

18 UNIT VIII ATOMS AND THE PERIODIC TABLE 37 Draw Lewis Structures for the following: NH 4 + CHO 2 - HOPO RESONANCE STRUCTURES exist when as in CHO - 2 and HOPO. 4. There are a number of atoms that violate the octet rule. In addition to H, the atoms are exceptions to the tendency for covalently-bonded atoms to complete their octet. These atoms have such a low electronegativity that they Be has 2 valence electrons and can only share 4 electrons (forming 2 bonds) while B and Al have 3 valence electrons and can only share 6 electrons (3 bonds).

19 38 CHEMISTRY 11 The Lewis Structure for BF 3 is A molecule in which one or more atoms (other than hydrogen) does not possess a full octet of electrons is called an molecule. 5. Elements in the 3 rd and 4 th periods of the periodic table Other than the fact that the central atom will end up with more than 8 electrons, the same rules are used to draw Lewis Structures. The Lewis Structure for PCl 5 is

20 UNIT VIII ATOMS AND THE PERIODIC TABLE 39 H. The Shape and Behaviour of Molecules 1. Lewis structures can be used to help visualize molecules in three dimension. Since all electrons carry the same charge, The valence electrons should be evenly spread out in regions of space around the central atom. This is the basis of the Summary of VSEPR shapes. Bonds Lone Pairs Shape Example Structure BeCl 2 BCl 3 CH 4 NH 3 H 2 O PCl 5 ClF 3

21 40 CHEMISTRY 11 SF 6 BrF 5 XeF 4 2. Polar bonds are a result of varying electronegativities among the elements. Since molecules usually possess more that one bond, If the polar bonds of a molecule are If the polar bonds are As a general rule, (Square planar molecules are an exception to this rule.)

22 UNIT VIII ATOMS AND THE PERIODIC TABLE Individual molecules are held together by covalent bonds between the atoms in the molecule. Such bonds are strong and are called. There are also weak forces that hold individual molecules next to other molecules. These are called There are two main types of van der Waals forces: Polar molecules are often referred to as because these molecules have a slightly positive and slightly negative end. As a result of the these dipoles, and they affect many of the properties of a compound such as boiling point There is a special case of dipole-dipole forces known as hydrogen-bonding. A HYDROGEN-BOND A hydrogen-bond is simply a particularly strong dipole-dipole force. H O H H O H O H H

23 42 CHEMISTRY 11 London Forces are the of van der Waals forces and are the result of. London forces are the weakest type of bonding force known. In general, London forces are always present, but are much weaker than covalent or ionic bonds. Hence, That is, London forces are important between the following closed-shell species: i) ii)

Atoms and The Periodic Table

Atoms and The Periodic Table Atoms and The Periodic Table A. Early Models of the Atom 1. The earliest models of the atom came in the 5 th century B.C. when In the 4 th century, B.C., rejected this idea and proposed that earthly matter

More information

Polar bonds, polar molecules and the shape of molecules.

Polar bonds, polar molecules and the shape of molecules. Chapter 3 Polar bonds, polar molecules and the shape of molecules. Polar and non-polar bonds In homonuclear diatomic molecules such as H 2 or Cl 2 electrons are shared equally between equal atoms. The

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Atoms and The Periodic Table

Atoms and The Periodic Table Atoms and The Periodic Table A. Early Models of the Atom 1. Democritus 2. Aristotle Earliest model of the atom Stated that the differences between substances were the direct result of differences in the

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond Covalent Bonding Section 9.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule sigma bond

More information

(FIRST) IONIZATION ENERGY

(FIRST) IONIZATION ENERGY 181 (FIRST) IONIZATION ENERGY - The amount of energy required to remove a single electron from the outer shell of an atom. - Relates to reactivity for metals. The easier it is to remove an electron, the

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Stoichiometry. Mole Concept. Balancing Chemical Equations

Stoichiometry. Mole Concept. Balancing Chemical Equations Stoichiometry The story so far The structure of an atom protons, neutrons & electrons Electron structure & the Periodic Table Shapes of electron orbitals (Quantum Numbers) Essential and toxic elements

More information

1.02 Elements, Symbols and Periodic Table

1.02 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry Miramar College.0 Elements, Symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of the

More information

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the atomic

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

4.01 Elements, Symbols and Periodic Table

4.01 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry 00 Miramar College.0 Elements, symbols and the Periodic Table Aug The Elements: Building block of Matter The periodic table of the chemical

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

4.06 Periodic Table and Periodic Trends

4.06 Periodic Table and Periodic Trends 4.06 Periodic Table and Periodic Trends Dr. Fred Omega Garces Chemistry 100, Miramar College 1 4.06 Periodic Table and Periodic Trend The Periodic Table and the Elements What is the periodic table? What

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. 59 Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

1 Arranging the Elements

1 Arranging the Elements CHAPTER 12 1 Arranging the Elements SECTION The Periodic Table BEFORE YOU READ After you read this section, you should be able to answer these questions: How are elements arranged on the periodic table?

More information

Periodic Classification and Properties Page of 6

Periodic Classification and Properties Page of 6 The Modern Periodic Table In the modern Periodic table the elements are arranged according to electron configuration of the atoms of the elements. The elements are placed in the increasing order of their

More information

Chapter 8 Test Study Guide AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date:

Chapter 8 Test Study Guide AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date: Chapter 8 Test Study Guide Name: AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date: Topics to be covered on the December 13, 2017 test: bond bond energy ionic bond covalent bond polar covalent bond

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

VIIIA H PREDICTING CHARGE

VIIIA H PREDICTING CHARGE 58 IA PREDICTING CHARGE VIIIA H IIA IIIA IVA VA VIA VIIA You can reliably determine the charge using our method for Groups IA, IIA, IIIB, Aluminum, and the Group VA, VIA, and VIIA NONMETALS Li Be B C N

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table 8.1 Early Periodic Tables CHAPTER 8 Periodic Relationships Among the Elements 1772: de Morveau table of chemically simple substances 1803: Dalton atomic theory, simple table of atomic masses 1817: Döbreiner's

More information

6.3 Classifying Elements with the Periodic Table

6.3 Classifying Elements with the Periodic Table 6.3 Classifying Elements with the Periodic Table The Periodic Table was developed by scientists to organize elements in such a way as to make sense of the growing information about their properties. The

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Honors Chemistry Unit 4 ( )

Honors Chemistry Unit 4 ( ) Honors Chemistry Unit 4 (2017-2018) Families (research and present) Metals/nonmetals Trends o Atomic radius o Electronegativity o Ionization energy o Metallic and nonmetallic character Review Ions Oxidation

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

EXAMPLES. He VIA VIIA Li Be B C N O F Ne

EXAMPLES. He VIA VIIA Li Be B C N O F Ne 59 IA EXAMPLES VIIIA H IIA IIIA IVA VA He VIA VIIA Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Chapter 8. forces of attraction which hold atoms or ions together. 3 fundamental types of bonding. Ionic - metals & nonmetals

Chapter 8. forces of attraction which hold atoms or ions together. 3 fundamental types of bonding. Ionic - metals & nonmetals Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds forces of attraction which hold atoms or ions together 3 fundamental types of bonding Ionic - metals & nonmetals Covalent - nonmetals (semimetals)

More information

E4 Acids, Bases, and Salts

E4 Acids, Bases, and Salts E4 Acids, Bases, and Salts Session One of two session lab Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3. Acids and Bases Q. Are acid-base properties of substances predictable

More information

LET S FIRST REVIEW IONIC BONDING

LET S FIRST REVIEW IONIC BONDING COVALENT BONDING LET S FIRST REVIEW IONIC BONDING In an IONIC bond, electrons are lost or gained, resulting in the formation of IONS in ionic compounds. K F K F K F K F K F K F K + F _ The compound potassium

More information

Read The First Periodic Table and answer the following questions: 1. What was the first way that Mendeleev organized his element cards?

Read The First Periodic Table and answer the following questions: 1. What was the first way that Mendeleev organized his element cards? Chemistry Name Date Block Read The First Periodic Table and answer the following questions: 1. What was the first way that Mendeleev organized his element cards? 2. Why did Mendeleev organize the element

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

Electrons. Unit H Chapter 6

Electrons. Unit H Chapter 6 Electrons Unit H Chapter 6 1 Electrons were discovered by 1. Dalton 2. Lavoisier 3. Proust 4. Mendeleev 6. Rutherford 7. Bohr 8. Schrodinger 9. Dirac 5. Thomson 2 Electrons were discovered by 1. Dalton

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides Chem. 125-126: Feb. 19, 20 and March 3 Experiment 3 Session 2 (Three hour lab) Complete Experiment 3 Parts 2B and 3 Complete team report Complete discussion presentation Parts 2A and 2B Compare the properties

More information

Bonding Test pg 1 of 4 Name: Pd. Date:

Bonding Test pg 1 of 4 Name: Pd. Date: Bonding Test pg 1 of 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many electrons are shared in a single covalent bond? 1. A) 2 B) 3 C)

More information

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1 Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical species

More information

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions E5 Lewis Acids and Bases: lab 2 Session one lab Parts 1and 2A Session two lab Parts 2B, 3, and 4 Part 2B. Complexation, Structure and Periodicity Compare the reactivity of aquo complex ions containing

More information

Fill in the chart below to determine the valence electrons of elements 3-10

Fill in the chart below to determine the valence electrons of elements 3-10 Chemistry 11 Atomic Theory IV Name: Date: Block: 1. Lewis Diagrams 2. VSEPR Lewis Diagrams Lewis diagrams show the bonding between atoms of a molecule. Only the outermost electrons of an atom (called electrons)

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

properties) YOU NEED TO KNOW THESE!!!!

properties) YOU NEED TO KNOW THESE!!!! 4.2.A ReIntro to Bonding I Pledge : ( Initial ) DON T FORGET WHAT THIS REPRESENTS. Instructions: Provide a response for each question that is well thought out, satisfies the prompt, is clearly explained,

More information

Chapter 6. The Chemical Bond

Chapter 6. The Chemical Bond Chapter 6 The Chemical Bond Some questions Why do noble gases rarely bond to other elements? How does this relate to why the atoms of other elements do form bonds? Why do certain elements combine to form

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

E4 Acids, Bases, and Salts

E4 Acids, Bases, and Salts E4 Acids, Bases, and Salts Session One of two session lab Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3. Reminder: Pre-lab report, page 112, due at start of lab. Acids and Bases

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

Chapter 6 - The Periodic Table and Periodic Law

Chapter 6 - The Periodic Table and Periodic Law Chapter 6 - The Periodic Table and Periodic Law Objectives: Identify different key features of the periodic table. Explain why elements in a group have similar properties. Relate the group and period trends

More information

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table!

THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! THE PERIODIC TABLE & PERIODIC LAW! Development of the Modern Periodic Table! Development of the Periodic Table! Main Idea: The periodic table evolved over time as scientists discovered more useful ways

More information

Chapter Eight. p328. Bonding: General Concepts

Chapter Eight. p328. Bonding: General Concepts Chapter Eight p328 Bonding: General Concepts 1 Contents 8-1 Types of Chemical Bonds p330 Coulomb s law The energy of interaction between a pair of ions can be calculated using Coulomb s law: E 19 Q1Q 2

More information

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1

CHEMISTRY 102 Fall 2014 HOUR EXAM I Page 1 OUR EXAM I Page 1 1. Draw the Lewis structure for ICl5. ow many of the following four statements (I-IV) is/are true regarding ICl5? I. The central atom in ICl5 has one lone pair of electrons. II. Some

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Lewis Structures & Resonance Structures Last chapter we studied ionic compounds. In ionic compounds electrons are gained or lost. In this chapter we are going to study covalent

More information

Compounds. C. Compounds: Pure substances formed when at least elements combine in specific ratios. The combining is when the atoms form some kind of.

Compounds. C. Compounds: Pure substances formed when at least elements combine in specific ratios. The combining is when the atoms form some kind of. ompounds Read from on-line textbook: hap 4.1-4.3, 4.5 and hap 5.1, 5.2 (first part, but don t worry about naming), 5.3-5.5, 5.7 http://chemwiki.ucdavis.edu/wikitexts/sacramento_ity_ollege/s%3a_hem_309/hapters

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Name PRACTICE Unit 3: Periodic Table

Name PRACTICE Unit 3: Periodic Table 1. Compared to the atoms of nonmetals in Period 3, the atoms of metals in Period 3 have (1) fewer valence electrons (2) more valence electrons (3) fewer electron shells (4) more electron shells 2. On the

More information

In 1808, John Dalton introduced the idea of atoms and supported it with experiments.

In 1808, John Dalton introduced the idea of atoms and supported it with experiments. Chemistry 11 Unit VIII Atomic Theory and the Periodic Table Notes Development of the Atom Dalton s Atomic Theory In 1808, John Dalton introduced the idea of atoms and supported it with experiments. Dalton

More information

2. Write the electron configuration notation and the electron dot notation for each: (a) Ni atom (b) Ni 2+ ion (c) Ni 3+ ion

2. Write the electron configuration notation and the electron dot notation for each: (a) Ni atom (b) Ni 2+ ion (c) Ni 3+ ion EXTRA HOMEWORK 2A 1. Predict whether each of the following types of matter will be bonded with ionic, covalent, or metallic bonds, and identify whether each will be composed of atoms, ions, or molcules

More information

Chapter 3: Compounds

Chapter 3: Compounds Chapter 3: Compounds Chapter 3 Educational Goals 1. Understand where electrons are located in atoms and how the locations of electrons affect the energy of the atom. 2. Define the term valence electron

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.2 Electronegativity 8.3 Bond Polarity and Dipole Moments 8.4 Ions: Electron Configurations and Sizes 8.5 Energy

More information

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3

Experiment Three. Lab two: Parts 2B and 3. Halogens used in Parts 2 and 3. Lab one: Parts 1 and 2A. Halogens (Family VIIA) used in Parts 2 and 3 Experiment Three Lab one: Parts 1 and 2A Lab two: Parts 2B and 3 1 1A 1 H 1s 1 2 IIA 3 Li 2s 1 1 1 Na 3s 1 1 9 K 4s 1 3 7 Rb 5s 1 5 5 Cs 6s 1 8 7 Fr 7s 1 4 Be 2s 2 1 2 Mg 3s 2 3 IIIB 4 IVB 5 VB 6 VIB 7

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

10/6/2014. The MACROSCOPIC world we are familiar with is governed by interactions at the atomic & molecular scale. Core Electrons & Valence Electrons:

10/6/2014. The MACROSCOPIC world we are familiar with is governed by interactions at the atomic & molecular scale. Core Electrons & Valence Electrons: Today: Summary of Quantum Mechanics: Core vs. Valence Electrons Ionic vs. Covalent Bonding: Electron transfer from one element to another Sharing Electrons Lewis Dot Structures: Following Octet Rule Drawing

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Compounds. I. Classify different forms of matter. A. Classification based on purity (of sorts)

Compounds. I. Classify different forms of matter. A. Classification based on purity (of sorts) ompounds On-line: 1. http://chem.libretexts.org/libretexts/sacramento_ity_ollege/s%3a_hem_309_(ben nett)/hapters Read from on-line textbook: hap 4.1-4.3, 4.5 and hap 5.1, 5.2 (first part, but don t worry

More information

Periodic Table. Engr. Yvonne Ligaya F. Musico 1

Periodic Table. Engr. Yvonne Ligaya F. Musico 1 Periodic Table Engr. Yvonne Ligaya F. Musico 1 TOPIC Definition of Periodic Table Historical Development of the Periodic Table The Periodic Law and Organization of Elements in a Periodic Table Periodic

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

CHAPTER 6. Table & Periodic Law. John Newlands

CHAPTER 6. Table & Periodic Law. John Newlands CHAPTER 6 Table & Periodic Law 6.1 Developing a Periodic Table The periodic table was developed to show the properties of an element by simply looking at it's location. In 1860, chemists agreed on a way

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Lesson 1: Stability and Energy in Bonding Introduction

Lesson 1: Stability and Energy in Bonding Introduction Lesson 1: Stability and Energy in Bonding Introduction Chemical bonding is the simultaneous attraction of two positive nuclei to negative electrons. Chemical bonding is said to be the glue that holds particles

More information

E4 Acids, Bases, and Salts

E4 Acids, Bases, and Salts E4 Acids, Bases, and Salts Session One of two session lab Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3. Reminder: Prelab report, page 112, due at start of lab. Acids and Bases

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chapter 6: The Periodic Table

Chapter 6: The Periodic Table Chapter 6: The Periodic Table (Lecture Notes) Russian chemist Mendeleev proposed that properties of elements repeat at regular intervals when they are arranged in order of increasing atomic mass. He is

More information

Chem 106 Midterm Study Questions Chapters 1-5,11-12

Chem 106 Midterm Study Questions Chapters 1-5,11-12 Chem 106 Midterm Study Questions Chapters 1-5,11-12 Name: Review Mon 10/12/15 Due 10/13/15 (Midterm exam) This is a homework assignment. Please show your work for full credit. If you do work on separate

More information

The 18 Electron Rule. References: Gray: chapter 5 OGN: chapter 18

The 18 Electron Rule. References: Gray: chapter 5 OGN: chapter 18 The 18 Electron Rule References: Gray: chapter 5 OGN: chapter 18 Element Groups Alkali metals nert or Noble gases Alkali earths alogens e Li Na Be Mg Transition metals B Al Si N P O S F l Ne Ar K Rb s

More information

Fall 2011 CHEM Test 4, Form A

Fall 2011 CHEM Test 4, Form A Fall 2011 CHEM 1110.40413 Test 4, Form A Part I. Multiple Choice: Clearly circle the best answer. (60 pts) Name: 1. The common constituent in all acid solutions is A) H 2 SO 4 B) H 2 C) H + D) OH 2. Which

More information

Bronsted: Acids are proton donors. Session one Pre-lab (p.151) due 1st hour discussion of E4 Lab (Parts 1and 2A)

Bronsted: Acids are proton donors. Session one Pre-lab (p.151) due 1st hour discussion of E4 Lab (Parts 1and 2A) E5 Lewis Acids and Bases (Session 1) November 5-11 Acids Bronsted: Acids are proton donors. Session one Pre-lab (p.151) due 1st hour discussion of E4 Lab (Parts 1and 2A) Problem Compounds containing cations

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Chemistry 1 Second Lecture Exam Fall Abbasi Khajo Kruft Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

Chemistry 1 Second Lecture Exam Fall Abbasi Khajo Kruft Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman Page 1 of 9 Chemistry 1 Second Lecture Exam Fall 2011 Name Circle the name of your recitation/lab instructor(s) Abbasi Khajo Kruft Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

More information

1869 Mendeleev: method of organizing the elements according to both their masses and their properties. The Old Table

1869 Mendeleev: method of organizing the elements according to both their masses and their properties. The Old Table The Periodic Table 1869 Mendeleev: method of organizing the elements according to both their masses and their properties. The Old Table Vertical Columns: Elements arranged in groups each group shares similar

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS CAPTR 11 CMICAL BDS: T FRMATI F CMPUDS FRM ATMS SLUTIS T RVIW QUSTIS 1. smallest, Mg, a,, Rb largest. 2. More energy is required for neon because it has a very stable outer electron structure consisting

More information

The Periodic Table. Unit 4

The Periodic Table. Unit 4 The Periodic Table Unit 4 I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic mass Groups: vertical groups-elements have similar

More information

Chemistry 51 Chapter 5 OCTET RULE & IONS

Chemistry 51 Chapter 5 OCTET RULE & IONS OCTET RULE & IONS Most elements, except noble gases, combine to form compounds. Compounds are the result of the formation of chemical bonds between two or more different elements. In the formation of a

More information

Chemistry Chapter 6 Test Review

Chemistry Chapter 6 Test Review Chemistry Chapter 6 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mutual electrical attraction between the nuclei and valence electrons

More information

Name: Hr: 8 Basic Concepts of Chemical Bonding

Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1-8.2 8.3-8.5 8.5-8.7 8.8 Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule State the type of bond (ionic, covalent, or metallic) formed between any

More information