Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Size: px
Start display at page:

Download "Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information"

Transcription

1 Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New technology, including lab research and line spectroscopy, enabled scientists to easily identify new elements By the end of the 1800 s, the number of isolated elements had doubled A need arose for a way to organize information about the elements Stanislao Canizzaro (1860) Developed a method for accurately measuring the relative masses of atoms Enabled chemists to agree on standard values for atomic mass Dmitri Mendeleev Noticed that when the elements were placed in order of atomic mass Similar properties appeared at regular intervals Created a table with columns of elements with similar properties The First Periodic Table Left holes where it appeared an element should be according to the patterns Many were filled in over time Henry Moseley Recognized patterns were more accurate when based upon Atomic Number Now, the periodic table is ordered by Atomic Number, not Atomic Masses Ar (At# 18, AtW 39.95) K (At# 19, AtW 39.01) Periodic Law properties of elements are periodic functions of their atomic number. Cycles are observed as the Atomic Number increases Modern Periodic Table Arranged in order of increasing atomic number Vertical Columns Groups/Families Have similar properties Horizontal Rows Periods Include the same outer principal energy level Each block contains information on a single element: 6 Atomic Number Atomic Symbol Average Atomic Mass C Carbon Name 1

2 Metals Separates the metals from the non-metals Non-metals Brittle; poor conductors Electron Configuration Blocks Good conductors Malleable able to be hammered into shapes Ductile Able to be drawn into wires Metalloids semiconductors mostly brittle solids metal & non-metal properties Groups/Families Each column (group) shares traits with other group members Many groups have special names Alkali Metals (Group 1) configuration of s 1 Very reactive with water and with group 17 Soft (can cut w/ knife) Not found as Free Elements Less Dense than H 2 O React w/ Non-Metals to form Salts Video: Reactions with Water Alkaline Earth Metals (Group 2) configuration of s 2 Frequently form oxides that are basic (alkaline) in solution with water Harder, Denser, & Less reactive than Gr1 Too Reactive to be found as Free Elements Transition Metals (Groups 3-12) ns 2 (n-1)d 1-10 Doesn t always follow a normal pattern Less reactive than s block metals Used in currency, wires, etc Soft, silver colored metals: 2

3 Metallic Bonding The reason behind a metal s ability to be malleable, ductile, and conduct so well is metallic bonding When metal ions are in close proximity, their electrons can become delocalized and roam freely through the metal Referred to as the electron sea Boron Group (Group 13) configuration of s 2 p 1 Boron is a metalloid, all of the rest are metals Mainly similar in the ways that they bond Carbon Group (Group 14) configuration of s 2 p 2 Most are relatively common elements in everyday life Not necessarily elements found in great abundance Nitrogen Group (Group 15) Also called the pnictogens configuration of s 2 p 3 Form very stable compounds using double and triple bonds Tend to form potentially toxic compounds Oxygen Group (Group 16) Also called the chalcogens configuration of s 2 p 4 Very common in minerals Halogens (Group 17) configuration of s 2 p 5 Very reactive, usually only found as ions or in compounds Diatomic in their elemental states Only group to represent all three matter phases at room temperature 3

4 Noble Gases (Group 18) configuration of s 2 p 6 Generally have no reactions with other elements, very stable Melting points and boiling points are very close together, so they are only liquids over a small range Inner Transition Metals Utilize the f orbital as their outer energy level Most are radioactive, and many are lab created 2 series: Lanthanide Series Actinide Series Lanthanides & Actinides Inner Transition Metals Lanthanides 4f (1-14) Configuration Rare-Earth Metals Which are not actually rare Shiny Luster Reactive Metals All have practical uses Phosphors in TV s contain many Lanthanide metals. Actinides 5f (1-14) Configuration Unstable & Radioactive 1 st four are found in nature The rest are synthetic Not very Practical Uranium is an exception Nuclear Power Elements made in the Stars Hydrogen & Helium Both Non-metals Colorless & Odorless Hydrogen Placed In Group 1 because of the way it bonds Properties do not resemble elements in Group 1 Helium Group 18 even though it has a ns 2 configuration Placed in Group 18 because of its non-reactive nature (similar to the rest of the noble gases) Electron Configuration & The Periodic Table A fully occupied energy level is stable Low Energy Electron Configuration Blocks Every element wants to have a fully occupied outer energy level (like the noble gases) np 6 Electron configurations can be used to determine the reactivity of elements 4

5 Noble Gas Configuration Now that we know about the s, p, d, and f blocks, these are much easier! Uses the closest noble gas that is smaller than the element in question. Place that symbol in brackets. Pick up the electron configuration after the noble gas to the completion of that element Example: Aluminum 1 Ne 3s 2 3p Writing Noble Gas Configurations Write the Noble Gas Configurations for the following using the periodic table: V [Ar] 4s 2 3d 3 Rb [Kr] 5s 1 I [Kr] 5s 2 4d 10 5p 5 Hg [Xe] 6s 2 4f 14 5d 10 U [Rn] 7s 2 5f 4 W [Xe] 6s 2 4f 14 5d 4 Practice Electron Configuration Blocks Identify the following elements: [Rn] 7s 2 5f 10 [Xe] 6s 2 4f 14 5d 9 [Kr] 5s 2 4d 10 5p 3 [Xe] 6s 1 [Ar] 4s 2 3d 10 4p 6 Cf Au Sb Cs Kr Element Characteristics Atomic Radius ½ the distance between the nuclei of identical atoms joined in a molecule Ionization energy the energy required to remove an electron from an atom Electronegativity The ability of an atom in a compound to attract electrons Periodicity The idea that properties are a function of the periods of the periodic table Periodic Law properties of elements are periodic functions of their atomic number. Cycles are observed as the Atomic Number increases 5

6 Periodic Trends Elements are grouped according to their Physical and Chemical Properties. Periodic Trends how a characteristic increases/decreases across a period Group Trends how a characteristic increases/decreases up & down a group Atomic Radii Atomic Radius ½ the distance between the nuclei of identical atoms joined in a molecule Period Trend Decreases L to R Greater # of p + pulls electrons closer Group Trend Increases T to B Increase in energy level greater size Ato m ic R ad ii Atomic Number Use the trends to answer: Which has the largest atomic radius? Al or S Rb or Na P or O Al Rb P Which has the smallest atomic radius? Se or O O Ag or Sn Sn S or As S Put in order of increasing atomic radius: Ca, Sr, Mg Mg, Ca, Sr Se, Ge, Br Br, Se, Ge Mo, Mn, Ta Mn, Mo, Ta Valence Electrons Valence Electrons electrons available to be lost, gained, or shared in the formation of compounds. Electrons in the outer energy shell 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4-6 V.E. Electrons in the outer s & p sublevels Representative Group Valence Electrons Group Number Valence Electrons Ions atoms that have gained or lost electrons and have an overall charge. Cations Atoms that need to lose electrons to reach a complete valence shell. Positively charged Na will lose 1e- to become Na 1+ Na = 1s 2 2s 2 2p 6 3s 1 Na 1+ = 1s 2 2s 2 2p 6 Anions Atoms that need to gain electrons to reach a complete valence shell. Negatively charged Cl will gain 1e- to become Cl 1- Cl = 1s 2 2s 2 2p 6 3s 2 3p 5 Cl 1- = 1s 2 2s 2 2p 6 3s 2 3p 6 6

7 Ionic Radii Ionic Radii 2 Types of Ions Cations ( + Charge) Anions ( - Charge) In comparison: Cations are smaller than neutral counterpart Less electrons Anions are larger than neutral counterpart More Electrons Ionization Energy Ionization any process that results in the formation of an ion. Ionization energy the energy required to remove an electron from an atom Is going to be related to the size of the atom (how tightly electrons are attracted to the nucleus) Period Trend Increase from L to R Group Trend Decreases from T to B First Ionization Energy (K J/m ole) Atomic Number Use the trends to answer: Which has the largest ionization energy? Si or P Ti or Zr Ga or N P Ti N Which has the smallest ionization energy? F or Br Br Pt or Au Pt W or Fe W Put in order of decreasing ionization energy: Cd, Zn, Hg Zn, Cd, Hg I, Sn, Sb I, Sb, Sn Pd, Cu, Ir Cu, Pd, Ir Multiple Ionization Energies 1 st ionization energy, Ability to remove one electron from an atom s valence shell. 2 nd ionization energy, Ability to remove the first and second electron from an atom s valence shell. 3 rd ionization energy, Ability to remove three electrons from an atom s valence shell. More electrons = more energy needed. Usually there is a large jump in ionization energy when an atom loses an entire energy level. Example: Sodium has 1 electron in valence shell. 1 st = nd = rd = 6912 Electron Affinity The energy change that occurs when an electron is acquired by a neutral atom. Some atoms want electrons, and give off energy when they receive them (Exothermic) Some atoms do not want electrons, so it requires energy for them to take extra electrons (Endothermic) Will be unstable & lose electron spontaneously Periodic Trend More easily acquires electrons from L to R ( More Negative/ More Exothermic) Group Trend More easily acquires electrons from B to T 7

8 Use the trends to answer: Which has the largest electron affinity? Si or S V or Nb As or S S V S Which has the smallest electron affinity? Ga or In In Fe or Cu Fe Pt or Ag Pt Put in order of decreasing electron affinity: Ga, Al, In Al, Ga, In Ca, Sc, K Sc, Ca, K As, S, Sn S, As, Sn Electronegativity The ability of an atom in a compound to attract electrons Fluorine has the strongest electronegativity Smallest Halogen, and needs only one electron to achieve a noble gas configuration Arbitrarily assigned a value of 4 All other atoms were then compared to F Periodic Trend increases from L to R Group Trend decreases from T to B Use the trends to answer: 3.5 Electroneg ativity Atomic Number Which has the largest electronegativity? Al or S Rb or Na P or O S Na O Which has the smallest electronegativity? Se or O Se Ag or Sn Ag S or As As Put in order of increasing electronegativity: Ca, Sr, Mg Sr, Ca, Mg Se, Ge, Br Ge, Se, Br Mo, Mn, Ta Ta, Mo, Mn Trend Summary Ionization Energy Electron Affinity Electronegativity Atomic Radius and Ionic Radius 8

Organizing the Periodic Table

Organizing the Periodic Table Organizing the Periodic Table How did chemists begin to organize the known elements? Chemists used the properties of the elements to sort them into groups. The Organizers JW Dobereiner grouped the elements

More information

Chapter 6 - The Periodic Table and Periodic Law

Chapter 6 - The Periodic Table and Periodic Law Chapter 6 - The Periodic Table and Periodic Law Objectives: Identify different key features of the periodic table. Explain why elements in a group have similar properties. Relate the group and period trends

More information

The Periodic Law Notes (Chapter 5)

The Periodic Law Notes (Chapter 5) The Periodic Law Notes (Chapter 5) I. History of the Periodic Table About 70 elements were known by 1850 (no noble gases) but there didn t appear to be a good way of arranging or relating them to study.

More information

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Patterns What Patterns have you observed in your life? Where to Get Help If you don t understand concepts in chapter

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Chapter #2 The Periodic Table

Chapter #2 The Periodic Table Chapter #2 The Periodic Table Mendeleeve (1834 1907), arranged the elements within a group in order of their atomic mass. He noted repeating patterns in their physical and chemical properties Periodic

More information

Advanced Chemistry. Mrs. Klingaman. Chapter 5: Name:

Advanced Chemistry. Mrs. Klingaman. Chapter 5: Name: Advanced Chemistry Mrs. Klingaman Chapter 5: The Periodic Law Name: _ Mods: Chapter 5: The Periodic Law Reading Guide 5.1 History of the Periodic Table (pgs. 125-129) 1) What did Dimitri Mendeleev notice

More information

A few elements, including copper, silver, and gold, have been known for thousands of years

A few elements, including copper, silver, and gold, have been known for thousands of years A few elements, including copper, silver, and gold, have been known for thousands of years There were only 13 elements identified by the year 1700. Chemists suspected that other elements existed. As chemists

More information

Chapter 5 The Periodic Law

Chapter 5 The Periodic Law z Chapter 5 The Periodic Law z Section 5-1 History of the Periodic Table Mendeleev noticed that when the elements were arranged in order of increasing atomic mass, certain similarities in their chemical

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

Regents Chemistry Unit 2 The Periodic Table Text Chapter 5

Regents Chemistry Unit 2 The Periodic Table Text Chapter 5 Regents Chemistry Unit 2 The Periodic Table Text Chapter 5 I. Historical Development of the Periodic Table Stanislao Cannizzarro- In1860 presented a convincing method for accurately measuring relative

More information

CHAPTER 5 THE PERIODIC LAW. What types of useful information can you find on the Periodic Table?

CHAPTER 5 THE PERIODIC LAW. What types of useful information can you find on the Periodic Table? CHAPTER 5 THE PERIODIC LAW What types of useful information can you find on the Periodic Table? I. History of the Periodic Table A. Before the Periodic Table was invented, about 63 elements were known.

More information

History German J. W. Dobereiner Grouped elements into triads

History German J. W. Dobereiner Grouped elements into triads The Periodic Table History 1829 German J. W. Dobereiner Grouped elements into triads One of these triads included chlorine, bromine, and iodine; another consisted of calcium, strontium, and barium. In

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Section 6.1 Organizing the Elements OBJECTIVES: Explain how elements are organized in a periodic table. Section 6.1 Organizing the Elements OBJECTIVES: Compare early and modern

More information

Section 6-1 Notes. Organizing the Elements

Section 6-1 Notes. Organizing the Elements Section 6-1 Notes Organizing the Elements Organizing the Elements As new elements were discovered chemists needed to find a logical way to organize them Properties of elements were used to sort them in

More information

History of The Periodic Table

History of The Periodic Table History of The Periodic Table Organizing the Elements Chemists used the properties of elements to sort them into groups. JW. Dobreiner grouped elements into triads. A triad is a set of three elements with

More information

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you. DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg, answer questions. Use the section. to help you. Chapter test is FRIDAY. The Periodic Table of Elements 8 Uuo Uus Uuh

More information

CHAPTER 6. Table & Periodic Law. John Newlands

CHAPTER 6. Table & Periodic Law. John Newlands CHAPTER 6 Table & Periodic Law 6.1 Developing a Periodic Table The periodic table was developed to show the properties of an element by simply looking at it's location. In 1860, chemists agreed on a way

More information

Development of the Periodic Table

Development of the Periodic Table Development of the Periodic Table John Newlands - Law of Octaves 1864 When arranged in order of atomic mass, every eighth element had similar properties. Dimitri Mendeleev / Lothar Meyer 1869 organized

More information

Section 5.1 History of the Periodic Table

Section 5.1 History of the Periodic Table Section 5.1 History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table. Explain how the periodic law

More information

Unit 2 Part 2: Periodic Trends

Unit 2 Part 2: Periodic Trends Unit 2 Part 2: Periodic Trends Outline Classification of elements using properties Representative elements, transition elements Metals, nonmetals and metalloids Classification of elements using electron

More information

Periodic Table and Periodicity. BHS Chemistry 2013

Periodic Table and Periodicity. BHS Chemistry 2013 Periodic Table and Periodicity BHS Chemistry 2013 In 1869, Dmitri Mendeleev, a Russian chemist noticed patterns in certain elements. He discovered a way to arrange the elements so that they were organized

More information

Mendeleev s Table (1871) While it was the first periodic table, Mendeleev had very different elements, such as the very reactive potassium and the

Mendeleev s Table (1871) While it was the first periodic table, Mendeleev had very different elements, such as the very reactive potassium and the Periodic Table Mendeleev s Table (1871) While it was the first periodic table, Mendeleev had very different elements, such as the very reactive potassium and the very stable copper, in the same family.

More information

Periodic Table Workbook

Periodic Table Workbook Key Ideas: The placement or location of elements on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order

More information

CHAPTER 6 The Periodic Table

CHAPTER 6 The Periodic Table CHAPTER 6 The Periodic Table 6.1 Organizing the Elements Mendeleev: listed the elements in order of increasing atomic mass and in vertical columns according to their properties. Left blank spaces for undiscovered

More information

Dobereiner developed concept of Triads (groups of 3 elements with similar chemical properties) Average of 1st and 3rd

Dobereiner developed concept of Triads (groups of 3 elements with similar chemical properties) Average of 1st and 3rd Unit Early 800's Dobereiner developed concept of Triads (groups of elements with similar chemical properties) atomic mass atomic mass Ca 0. S. Sr Average of st and rd Se Ba 7. Te 7. *useful for predicting

More information

spins. As shown in the following table, the sublevels s, p, d, and f have 1, 3, 5, and 7 available orbitals, respectively.

spins. As shown in the following table, the sublevels s, p, d, and f have 1, 3, 5, and 7 available orbitals, respectively. Math Tutor The arrangement of elements in the periodic table reflects the arrangement of electrons in an atom. Each period begins with an atom that has an electron in a new energy level and with the exception

More information

Unit Five: The Periodic Table Ref:

Unit Five: The Periodic Table Ref: Unit Five: The Periodic Table Ref: 10.11 11.2 11.4 History of P.T. Chlorine Bromine Iodine Dobrenier- (1829) Triads groups of three elements of similar chemical and physical properties. Cannizzarro (1860)

More information

MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements)

MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) 1 PERIODS: Period number = Number of basic energy levels = The principal quantum number The horizontal lines in the periodic system

More information

-discovered set of patterns that applied to all elements published 1st periodic table. -wrote properties of each on note cards (density, color)

-discovered set of patterns that applied to all elements published 1st periodic table. -wrote properties of each on note cards (density, color) Dmitri Mendeleev -discovered set of patterns that applied to all elements -1869 published 1st periodic table -total of 63 elements discovered -wrote properties of each on note cards (density, color) -noticed

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

[3.4] The Periodic Table and Periodic Trends

[3.4] The Periodic Table and Periodic Trends [3.4] The Periodic Table and Periodic Trends Father of the Periodic Table Dmitri Mendeleev: Scientist who did a lot of work in the development of the modern periodic table Early periodic tables were arranged

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8 th element had similar properties

More information

Periodic Table. Modern periodic table

Periodic Table. Modern periodic table 41 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

Chapter 5. Preview. Lesson Starter Objectives Mendeleev and Chemical Periodicity Moseley and the Periodic Law The Modern Periodic Table

Chapter 5. Preview. Lesson Starter Objectives Mendeleev and Chemical Periodicity Moseley and the Periodic Law The Modern Periodic Table Preview Lesson Starter Objectives Mendeleev and Chemical Periodicity Moseley and the Periodic Law The Modern Periodic Table Section 1 History of the Periodic Table Lesson Starter Share what you have learned

More information

Unit 5. The Periodic Table

Unit 5. The Periodic Table Unit 5 The Periodic Table I. Development of Periodic Table Periodic law: when elements are arranged in order of increasing atomic number, their physical and chemical properties show a periodic pattern.

More information

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements?

Searching for an Organizing Principle. Searching for an Organizing Principle. How did chemists begin to organize the known elements? Searching for an Organizing Principle Searching for an Organizing Principle How did chemists begin to organize the known elements? Searching for an Organizing Principle A few elements, including copper,

More information

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Atomic terms. Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the atomic

More information

Nihal İKİZOĞLU. MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1

Nihal İKİZOĞLU. MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1 MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1 PERIODS: Period number = Number of basic energy levels = The principal quantum number The horizontal lines

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

2/15/2013. Chapter 6 6.1

2/15/2013. Chapter 6 6.1 Chapter 6 In a self-service store, the products are grouped according to similar characteristics. With a logical classification system, finding and comparing products is easy. You will learn how elements

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Periodic Table. Modern periodic table

Periodic Table. Modern periodic table 41 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

Honors Chemistry Unit 4 ( )

Honors Chemistry Unit 4 ( ) Honors Chemistry Unit 4 (2017-2018) Families (research and present) Metals/nonmetals Trends o Atomic radius o Electronegativity o Ionization energy o Metallic and nonmetallic character Review Ions Oxidation

More information

NUCLEAR MODEL. Electron cloud. Electron cloud. Nucleus. Nucleus

NUCLEAR MODEL. Electron cloud. Electron cloud. Nucleus. Nucleus 37 NUCLEAR MODEL - Atoms are mostly empty space - NUCLEUS, at the center of the atom, contains protons and neutrons. This accounts for almost all the mass of an atom - Electrons are located in a diffuse

More information

A little history. When and How? Sir William Ramsey. ü 12/5/13. ü 1. Who put together the first useable Periodic Table?

A little history. When and How? Sir William Ramsey. ü 12/5/13. ü 1. Who put together the first useable Periodic Table? ü // A little history Johahann Dobereiner (80-89) o Triads John Newlands (8-898) o Law of Octaves Who put together the first useable ic Table? Mendeleev you remember him right? When and How? You know it

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8th element had similar properties

More information

Periodic Trends. Name: Class: Date: ID: A. Matching

Periodic Trends. Name: Class: Date: ID: A. Matching Name: Class: Date: Periodic Trends Matching Match each item with the correct statement below. a. electronegativity f. periodic law b. ionization energy g. atomic mass c. atomic radius h. period d. metal

More information

Chapter 8: Periodic Properties of the Elements

Chapter 8: Periodic Properties of the Elements C h e m i s t r y 1 A : C h a p t e r 8 P a g e 1 Chapter 8: Periodic Properties of the Elements Homework: Read Chapter 8. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Chapter 4 Atoms Practice Problems

Chapter 4 Atoms Practice Problems Chapter 4 Atoms Practice Problems 1) The primary substances of which all other things are composed are A) molecules. B) compounds. C) elements. D) electrons. E) protons. 2) Which of the following is a

More information

Chemistry B11 Chapter 3 Atoms

Chemistry B11 Chapter 3 Atoms Chapter 3 Atoms Element: is a substance that consists of identical atoms (hydrogen, oxygen, and Iron). 116 elements are known (88 occur in nature and chemist have made the others in the lab). Compound:

More information

The Periodic Table. Unit 4

The Periodic Table. Unit 4 The Periodic Table Unit 4 I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic mass Groups: vertical groups-elements have similar

More information

Periodic Table. - Mendeleev was able to predict the properties of previously unknown elements using his "periodic law" Modern periodic table

Periodic Table. - Mendeleev was able to predict the properties of previously unknown elements using his periodic law Modern periodic table 74 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

The Periodic Table. run vertically on the periodic table (up and down).

The Periodic Table. run vertically on the periodic table (up and down). Lesson Objective: The Periodic Table Science 8.5B Interpret the arrangement of the Periodic Table, including groups and periods, to explain how properties are used to classify elements 8.2E Analyze data

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

Name:& Regents Chemistry: Dr. Shanzer. Practice&Packet& Chapter&6:&Periodic&Table&

Name:& Regents Chemistry: Dr. Shanzer. Practice&Packet& Chapter&6:&Periodic&Table& Name: Regents Chemistry: Dr. Shanzer PracticePacket Chapter6:PeriodicTable 1 History of the Periodic Table Objectives By the end of the video you should be able to o Define and explain periodicity (or

More information

Atomic structure. The subatomic particles. - a small, but relatively massive particle that carres an overall unit POSITIVE CHARGE

Atomic structure. The subatomic particles. - a small, but relatively massive particle that carres an overall unit POSITIVE CHARGE 35 Atomic structure - Until the early 20th century, chemists considered atoms to be indivisible particles. - The discovery of SUBATOMIC PARTICLES changed the way we view atoms! PROTON NEUTRON ELECTRON

More information

The Periodic Table and Periodic Trends

The Periodic Table and Periodic Trends The Periodic Table and Periodic Trends The properties of the elements exhibit trends and these trends can be predicted with the help of the periodic table. They can also be explained and understood by

More information

Periodic Table. Engr. Yvonne Ligaya F. Musico 1

Periodic Table. Engr. Yvonne Ligaya F. Musico 1 Periodic Table Engr. Yvonne Ligaya F. Musico 1 TOPIC Definition of Periodic Table Historical Development of the Periodic Table The Periodic Law and Organization of Elements in a Periodic Table Periodic

More information

Chapter 5 Notes Chemistry; The Periodic Law The Periodic Table The periodic table is used to organize the elements in a meaningful way.

Chapter 5 Notes Chemistry; The Periodic Law The Periodic Table The periodic table is used to organize the elements in a meaningful way. Chapter 5 Notes Chemistry; The Periodic Law The Periodic Table The periodic table is used to organize the elements in a meaningful way. As a consequence of this organization, there are periodic properties

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) CAPTER 6: TE PERIODIC TABLE Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom) The Periodic Table (Mendeleev) In 1872, Dmitri

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

CHEM 103 CHEMISTRY I

CHEM 103 CHEMISTRY I CHEM 103 CHEMISTRY I CHAPTER 7 PERIODIC PROPERTIES OF ELEMENTS Inst. Dr. Dilek IŞIK TAŞGIN Inter-Curricular Courses Department Çankaya University, Inc. Development Table Dmitri Mendeleev and Lothar Meyer

More information

(FIRST) IONIZATION ENERGY

(FIRST) IONIZATION ENERGY 181 (FIRST) IONIZATION ENERGY - The amount of energy required to remove a single electron from the outer shell of an atom. - Relates to reactivity for metals. The easier it is to remove an electron, the

More information

Chapter 6 The Periodic Table The how and why History. Mendeleev s Table

Chapter 6 The Periodic Table The how and why History. Mendeleev s Table Chapter 6 The Periodic Table The how and why History 1829 German J. W. Dobereiner grouped elements into triads Three elements with similar properties Properties followed a pattern The same element was

More information

Chapter 7. Electron Configuration and the Periodic Table

Chapter 7. Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Topics Development of the periodic table The modern periodic table Effective nuclear charge Periodic trends in properties of elements Electron configuration

More information

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom?

Note that the protons and neutrons are each almost 2,000 times more massive than an electron; What is the approximate diameter of an atom? Atomic Structure and the Periodic Table Evolution of Atomic Theory The ancient Greek scientist Democritus is often credited with developing the idea of the atom Democritus proposed that matter was, on

More information

Ch 7: Periodic Properties of the Elements

Ch 7: Periodic Properties of the Elements AP Chemistry: Periodic Properties of the Elements Lecture Outline 7.1 Development of the Periodic Table The majority of the elements were discovered between 1735 and 1843. Discovery of new elements in

More information

Test Review # 4. Chemistry: Form TR4-9A

Test Review # 4. Chemistry: Form TR4-9A Chemistry: Form TR4-9A REVIEW Name Date Period Test Review # 4 Location of electrons. Electrons are in regions of the atom known as orbitals, which are found in subdivisions of the principal energy levels

More information

1.02 Elements, Symbols and Periodic Table

1.02 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry Miramar College.0 Elements, Symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of the

More information

Ch. 7- Periodic Properties of the Elements

Ch. 7- Periodic Properties of the Elements Ch. 7- Periodic Properties of the Elements 7.1 Introduction A. The periodic nature of the periodic table arises from repeating patterns in the electron configurations of the elements. B. Elements in the

More information

Introduction period group

Introduction period group The Periodic Table Introduction The periodic table is made up of rows of elements and columns. An element is identified by its chemical symbol. The number above the symbol is the atomic number The number

More information

Regents Chemistry PRACTICE PACKET

Regents Chemistry PRACTICE PACKET *KEY* *KEY* Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 1 Copyright 2015 Tim Dolgos 2 Copyright 2015 Tim Dolgos 3 Copyright 2015 Tim Dolgos It s Elemental DIRECTIONS: Use the reading below

More information

Chapter 7. Periodic Properties of the Elements. Lecture Outline

Chapter 7. Periodic Properties of the Elements. Lecture Outline Chapter 7. Periodic Properties of the Elements Periodic Properties of the Elements 1 Lecture Outline 7.1 Development of the Periodic Table The periodic table is the most significant tool that chemists

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information

CHAPTER 2. Atoms,Elements, Periodic Table

CHAPTER 2. Atoms,Elements, Periodic Table CHAPTER Atoms,Elements, Periodic Table 1 Vocabulary Chemistry Science that describes matter its properties, the changes it undergoes, and the energy changes that accompany those processes Matter Anything

More information

Unit 4: The Periodic Table

Unit 4: The Periodic Table Unit 4 Periodic Table Notes (filled in).notebook Unit 4: The Periodic Table Review Book: Topic 2 Textbook: Ch. 5 & 14 What is an example of something that is "periodic"? school schedule, sunrise/sunset

More information

PERIODIC PROPERTIES OF THE ELEMENTS

PERIODIC PROPERTIES OF THE ELEMENTS PERIODIC PROPERTIES OF THE ELEMENTS DEVELOPMENT OF PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. DEVELOPMENT OF PERIODIC TABLE

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

THE PERIODIC LAW. History of the Periodic Table

THE PERIODIC LAW. History of the Periodic Table THE PERIODIC LAW History of the Periodic Table CHAPTER 5 Mendeleev & Chemical Periodicity Russian chemist Dmitri Mendeleev accepts atomic mass values discussed at the First International Congress of Chemists

More information

THE PERIODIC LAW CHAPTER 5

THE PERIODIC LAW CHAPTER 5 THE PERIODIC LAW CHAPTER 5 History of the Periodic Table In September 1860, scientists gathered together for the First International Congress of Chemists to settle the issue of atomic mass. Italian scientist

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory Review of the Discovery of the Atom 1803 John Dalton discovered that elements are made of atoms. He thought that atoms were solid, like a marble. 1875 Crooks discovered the electron.

More information

Chapter 5 - The Periodic Law

Chapter 5 - The Periodic Law Chapter 5 - The Periodic Law 5-1 History of the Periodic Table I. Mendeleev's Periodic Table A. Organization 1. Vertical columns in atomic weight order a. Mendeleev made some exceptions to place elements

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

Families of the Periodic Table of The Elements

Families of the Periodic Table of The Elements Families of the Periodic Table of The Elements Families aka Groups Groups Aka columns or families They are numbered from 1 18 (18 groups) groups numbers tell us how many valence electrons in the outer

More information

Periodic Nomenclature Columns are called groups or families o 18 columns in standard periodic table o Traditionally numbered I-VIII, followed by A or

Periodic Nomenclature Columns are called groups or families o 18 columns in standard periodic table o Traditionally numbered I-VIII, followed by A or 6.1 Development of the Modern Periodic Table Objectives: 1. Describe the major advancements in development of the periodic table 2. Describe the organization of the elements on the periodic table 3. Classify

More information

Name Unit 4: Periodic Table Period. Unit 4 Vocabulary.Due Test Day

Name Unit 4: Periodic Table Period. Unit 4 Vocabulary.Due Test Day Name Unit 4: Periodic Table Period 1. History and Language of the Periodic Table 2. Identifying PROPERTIES OF METALS, METALLOIDS, & NONMETALS 3. Identifying GROUP PROPERTIES 4. Classifying elements 5.

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements The periodic table is one of the most useful tools available to chemists. Elements are arranged to emphasize the similarities and variations in properties.

More information

Periodic Table Practice 11/29

Periodic Table Practice 11/29 Periodic Table Practice 11/29 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the

More information

Periodicity SL (answers) IB CHEMISTRY SL

Periodicity SL (answers) IB CHEMISTRY SL (answers) IB CHEMISTRY SL Syllabus objectives 3.1 Periodic table Understandings: The periodic table is arranged into four blocks associated with the four sublevels s, p, d, and f. The periodic table consists

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Z eff, and how Z eff depends on nuclear charge and electron configuration. Predict the

More information

Unit 4: The Periodic Table Text Questions from Corwin

Unit 4: The Periodic Table Text Questions from Corwin Unit 4: The Periodic Table Name: KEY Text Questions from Corwin 4.4 1. List five properties of metals. solid, has luster, highly dense, has high melting point, and is a good conductor of heat and electricity

More information

Unit 2 Periodic Table

Unit 2 Periodic Table 2-1 Unit 2 Periodic Table At the end of this unit, you ll be able to Describe the origin of the periodic table State the modern periodic law Key the periodic table according to metals vs. nonmetals and

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The energy of the electron

More information