SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 DOI: 1.138/NCHEM.2363 Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers Yang Wang,,, Sergio Díaz-Tendero, Manuel Alcamí,, and Fernando Martín,,, Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 2849 Madrid, Spain, Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Cantoblanco, 2849 Madrid, Spain, and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 2849 Madrid, Spain To whom correspondence should be addressed Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 2849 Madrid, Spain Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Cantoblanco, 2849 Madrid, Spain Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 2849 Madrid, Spain NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

2 DOI: 1.138/NCHEM.2363 Contents 1 Comparison of the energies obtained from SCC-DFTB and B3LYP/6-31G(d) 3 2 Correlation between the SCC-DFTB and the simple Hückel molecular orbital (HMO) methods 4 3 The role of electron-electron repulsion in the simple HMO method 6 4 The lowest-energy isomers of neutral fullerenes 8 Predictions by CSI q i compared with experimental and DFT data 9 6 Energy penalty per adjacent pentagon pair 2 7 Bond orders in the HMO theory 22 8 Variation of bond orders resulting from charging a fullerene 23 9 Experimentally identified EMFs 26 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

3 DOI: 1.138/NCHEM Comparison of the energies obtained from SCC-DFTB and B3LYP/6-31G(d) The self-consistent charge density functional tight-binding (SCC-DFTB) 1 calculations have been performed by using the DFTB+ (version 1.2) code. 2 The method implemented in this work is based on the second-order expansion of the Kohn-Sham energy in terms of the charge density fluctuation. 3,4 The resulting energy terms are calculated by applying the tight-binding approximation and some approximate treatments similar to semiempirical quantum chemistry methods. A set of Slater-Koster parameters 1 have been utilized for carbon atoms. The DFTB method has been shown to predict geometries and relative energies for neutral fullerene isomers in good agreement with the results of density functional theory (DFT) using the B3LYP functional. It has also been shown to provide energies in good agreement with the B3LYP/6-31G(d) ones in fullerene dimers. 6 To verify the performance of the SCC-DFTB method for charged fullerenes, we have selected 48 isomers of C 8 and calculated the energies (with fully optimized geometry) in various charge states using the DFT method (B3LYP/6-31G(d)). 7,8 The relative energies with respect to the most stable isomer obtained from SCC-DFTB and DFT methods are compared in Figure S1. As can be seen, the correlation between both sets of data is very close to one E B3LYP (kcal/mol) C 2! C 4! C 6! C E DFTB (kcal/mol) E B3LYP (kcal/mol) C C C 6+ 8 IPR 1 APP 2 APPs 3 APPs E DFTB (kcal/mol) E DFTB (kcal/mol) E DFTB (kcal/mol) Figure S1. Energies of 48 isomers of C q 8 (q =,±2,±4,±6) with respect to the energy of the most stable isomer. The results obtained by using the SCC-DFTB method are compared with those calculated at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level. The data correspond to the isomers containing (IPR), 1, 2 and 3 APPs, indicated by magenta circles, orange triangles, green crosses and blue squares, respectively. NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

4 DOI: 1.138/NCHEM Correlation between the SCC-DFTB and the simple Hückel molecular orbital (HMO) methods In Figure 3 of the manuscript, we have shown the correlation of charge stabilization energy between the SCC-DFTB and the simple HMO methods for isomers of C q 8 (q = ±2,±4,±6). We have also found similar correlations for other cage sizes. Here we present the results for two more cage sizes, C 74 and C 9, as shown in Figure S2 and Figure S3, respectively. As can be seen, in both cases, a good correlation of the charge stabilization energy between the SCC-DFTB and the HMO methods is also observed CSE q (kcal/mol) 4 2!2 R 2 =.89 q =!2 2!2!4 R 2 =.9 q =!4 2!2!4 R 2 =.9 q =!6!4!1.!1.!..!6!1.!1.!..!6!1.!1.!.. CSE q (kcal/mol) 6 4 2!2!4 R 2 =.8 q = X q 4 2!2!4 R 2 =.9 q = X q 4 2!2!4 R 2 =.91 q = +6! X q Figure S2. Correlation between the charge stabilization energy, CSE q i, calculated by using the SCC-DFTB method, and the sum of the eigenvalues resulting from diagonalization of the connectivity matrix, X q i (in units of β), for isomers of C q± 74 (q = 2,4,6) containing no more than 3 APPs and no triple fused pentagons. See text for the definitions of the two quantities, CSE q i and X q i. The color code is the same as in Figure S1. 4 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

5 DOI: 1.138/NCHEM.2363 CSE q (kcal/mol) 6 4 2!2!4 R 2 =.9 q =!2!1.!.. 4 2!2!4 R 2 =.97 q =!4!1.!1.!.. 4 2!2!4 R 2 =.98 q =!6!6!1.!1.!.. CSE q (kcal/mol) 4 2!2!4 R 2 =.84 q = X q 4 2!2!4 R 2 =.88 q = +4! X q 4 2!2!4!6 R 2 =.9 q = X q Figure S3. Same as Figure S2 for C q± 9 (q = 2,4,6). NATURE CHEMISTRY 21 Macmillan Publishers Limited. All rights reserved

6 DOI: 1.138/NCHEM The role of electron-electron repulsion in the simple HMO method As shown in previous work (see, e.g., Ref. 9 ), the charge distribution in charged fullerenes is not strictly uniform. However, charge inhomogeneities, which are of the order of.e- in the vicinity of the atomic centers according to our DFT/B3LYP calculations, represent a very small fraction of the total number of electrons occupying the π orbitals. Therefore, contribution of charge inhomogeneities to the total electron-electron interaction energy from all the 2n-q electrons lying in the π orbitals is comparatively very small and, therefore, it is not expected to play a significant role. For this reason, it has been proposed that the π electron density can be represented to zero order by a uniform electron density distribution (or a conducting sphere). This has been used in earlier work to study the ionization of fullerenes, 1 the fragmentation dynamics of charged fullerenes, 11 and to reproduce the experimental/dft ionization potentials and electron affinities for various fullerenes, such as C 6, 12 C 76,C 78 and C As we will show below, the CSI model can only work if the electron-electron repulsion energy is very similar for all isomers in the same charge state and containing the same number of carbon atoms, so that it does not play a relevant role in comparing the relative stability of different isomers with the same size. In this section we will use the conducting sphere model to illustrate this point. The Hamiltonian for the π system of a fullerene C 2n with charge q is, Ĥ q = ( 2n q 2 i i 2 2n Z A A r ia n q j i ) 1 where Z A is the nuclear charge on carbon atom A, r ia the electron-nucleus distance, r ij the distance between electrons i and j. For the i-th electron, the electron-electron repulsion term, 1 2 2n q 1 j i r ij, will be calculated classically by assuming that the distribution of π electrons in all fullerene isomers of a given charge is nearly spherical. Therefore, for the i-th electron, the Coulomb potential induced by all the other π electrons (totally 2n q 1 electrons) is spherical and can be calculated, according to Gaussian law, as (2n q 1)/R (R is the effective radius of the conducting sphere). The Hamiltonian can then be simplified as Ĥ q ( 2n q 2 i i 2 2n Z A A r ij ) + 2n q 1 r ia 2R (1) (2) 6 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

7 DOI: 1.138/NCHEM.2363 and can be written as the sum of single-electron Hamiltonians where ĥ q i = 2 i 2 Ĥ q = 2n q ĥ q i (3) i 2n Z A A + 2n q 1 r ia 2R = ĥ i q 2R. () By applying the same procedures as in the simple HMO model, the secular equation for π electrons is 2n A and the corresponding Hückel determinant is where the Coulomb integral is and the resonance integral is [( HAB S AB ε q ) ] i cia = (6) det ( H AB S AB ε q ) i =, (7) α q H AA = φ A ĥ q i φ A = α q 2R, (8) β q H AB = φ A ĥ q i φ B = β β. (9) As can be seen, including the electron-electron repulsion in this way only affects the Coulomb integral, which depends on charge q, and the resonance integral is independent of charge. Solving Eq. (6), we obtain, ε q i = α q βχ i = α βχ i q 2R. (1) This implies that the charge on the cage shifts all the effective energy levels by the same value q/2r. Combining Eq. (1) and Eq. (3), one obtains the single-electron orbital energy (4) ε q i = ψ i ĥ q i ψ i = ε i q R (11) 7 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

8 DOI: 1.138/NCHEM.2363 indicating that the fullerene charge shifts all the single-electron orbital energy by the same amount of q/r. This means that, in the framework of the conducting sphere model, the missing electronelectron repulsion term in the standard HMO method is not important in comparing the relative π energies of fullerene isomers in the same charge state. 4 The lowest-energy isomers of neutral fullerenes In the definition of CSI q i, the knowledge of the lowest-energy isomer of neutral fullerenes is required. There have been computational studies based on DFT in determining the lowest-energy neutral isomers We have also determined the lowest-energy neutral isomers for fullerenes from C 66 to C 14, based on the B3LYP/6-31G(d)//B3LYP/6-31G(d) methods. The results are summarized in Table S1. Fullerene isomers are labeled following the conventional nomenclature 17 indicating the symmetry and the isomer number according to Fowler-Manolopoulos spiral algorithm. 18 Table S1. The lowest-energy isomers of neutral fullerenes C 2n, determined at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level. C 2n Isomer C 2n Isomer C 66 C s (4169) C C 2 (17) C C 2 (629) C 2 88 C s (17) C 21,22 7 D 6d (1) C 23 9 C 2 (4) C C 2v (11188) C a 92 D 3 (28) C D 3h (1) C a 94 C 2 (43) C D 2 (1) C a 96 C 2 (181) C C 2v (3) C a 98 C 2 (248) C 19 8 D 2 (2) C a 1 D 2 (449) C C 2 (3) C a 12 C 1 (63) C D 2d (23) C a 14 C s (234) a Our B3LYP/6-31G(d) results are in good agreement with the PBE1PBE/6-311G*//DFTB results by Zeng et al. 1 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

9 DOI: 1.138/NCHEM.2363 Predictions by CSI q i compared with experimental and DFT data Here we present CSI q i for fullerene isomers in a wide range of sizes (C 66 to C 14 ) and charge states (q=±2 to ±6). The results are compared with experimental (see Table S2 and Table S3) and DFT data. In those cases where there are no experimental data, the lowest-energy isomers are determined at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level. The isomers are considered to be degenerate in energy if the energy differences between them is less than kcal/mol. For fullerene sizes in the range C 28 -C we have only considered negatively charged species, since due to their small size and the rather large number of APPs in this case, most positively charged species are unstable. 9 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

10 DOI: 1.138/NCHEM.2363 DFT: C 2v(4348) ΔCSI (2 β ) isomers C DFT: C s(441) DFT: C 1(4398) C DFT: C 1(4398) DFT: C s(441) DFT: C 2(444) DFT: C 2(4417) Exp: C 2v(49) C ".2 ".4 ".6 ".2 ".4 ".6 DFT: D h(1) ΔCSI (2 β ) isomers DFT: C s(694) 6332 isomers C C isomers DFT: C 2v(11188) DFT: C 2(1612) C Exp: D h(1) Exp: C 2v(673) C C DFT: C 2v(11188) Exp: C 2(1612) DFT: C s(128) C DFT: D h(1) DFT: C 2(797) Exp: C 2(7892) DFT: C 1(781) DFT: C 2(7887) C 6 68 DFT: C 2v(673) Exp: D 3(614) DFT: C 1(782) C Exp: C s(128) Exp: D 2(1611) Exp: C s(1616) C Exp: C 2v(784) C Exp: D 2(1611) C Figure S4. CSI q i values for the charged fullerenes isomers C q 2n (2n = 66 72,q = 2, 3, 4, 6). Only negative values of CSI q i are shown. For a better visualization, the different isomers are classified in columns according to the s. The experimentally identified cage isomers in the form of EMFs and, in the absence of experimental data, the lowest energy isomers determined by DFT (at B3LYP/6-31G(d) level) are highlighted by a black contour, and labeled as Exp and DFT, respectively. The numbers in the bottom part of the left panel for each fullerene size gives the total number of possible isomers. 1 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

11 DOI: 1.138/NCHEM.2363 DFT: D 3h (1) DFT: D 3h (1) DFT: D 3h (1) ".2 " isomers C C C " Exp: D 3h (1) Exp: D 3h (1) DFT: D 3h (1) DFT: C 2 (13333) DFT: C 2 (1329) ".2 ".4 C 2 74 C 3 74 C 4 74 C 6 74 " DFT: C 2v (19138) DFT: C 1 (1749) ".2 DFT: T d (2) DFT: C 2v (19138) " isomers C 2 76 DFT: T d (2) C 4 76 Exp: T d (2) Exp: C s (1749) C 6 76 " DFT: C 2v (3) DFT: D 3h () DFT: D 3h () ".2 ".4 Exp: D 3h () Exp: C 2 (221) 2419 isomers C 2 78 C 4 78 C 6 78 " Figure S. Same as Figure S4 for C q 2n (2n = 74 78,q = ±2, 3,±4,±6). 11 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

12 DOI: 1.138/NCHEM.2363 DFT: D 3 (4) DFT: C 2v (3) DFT: D d (1) ".2 DFT: C 2v () DFT: C 2v () DFT: D h (6) DFT: D h (6) ".4 ".6 ".2 ".4 ".6 ".8 "1. DFT: C 2v () DFT: D h (6) Exp: C 2v (3) isomers C Exp: C 2v (3) DFT: C 2v () DFT: D h (6) C Exp: C 2v () DFT: D h (6) DFT: I h (7) C ".8 "1. C C C Exp: D h (6) Exp: I h (7) C DFT: C s (4) DFT: C 2 (3) DFT: C 2 (3) DFT: C 2 (1) DFT: C 2 () ".2 " isomers C C C " ".2 ".4 Exp: C 2 () Exp: C s (6) Exp: C 3v (7) Exp: C 2v (9) Exp: C 3v (7) Exp: C s (6) Exp: C 2v (9) DFT: C 3v (8) Exp: C s (6) Exp: C 2v (9) Exp: C 3v (8) Exp: C s (6) Exp: C s (39663) C 2 82 C 3 82 Exp: C 3v (8) C 4 82 Exp: C 2v (9) C 6 82 " Figure S6. Same as Figure S4 for C q 2n (2n = 8 82,q = ±2, 3,±4,±6). 12 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

13 DOI: 1.138/NCHEM.2363 ".2 ".4 DFT: C 2v (7) DFT: D 2d (23) DFT: C s (1) DFT: C s (8) DFT: D 2 (21) DFT: D 2d (23) DFT: D 2 (21) DFT: C 2v (7) DFT: C s (3) DFT: D 2 (22) DFT: D 2d (23) DFT: D 3d (19) DFT: C s (1) DFT: C 2v (6) DFT: C 2 (8) 192 isomers C C C " ".2 ".4 Exp: C 2 (11) Exp: C 1 (12) Exp: D 3d (19) DFT: C s (8) DFT: C 2 (9) Exp: C 2 (13) DFT: C s (1) DFT: D 2 (22) Exp: D 2d (23) DFT: C 1 (12) DFT: D 2 (21) Exp: C 1 (1383) DFT: D 2 (21) Exp: C s (136) C 2 84 C 4 84 C 6 84 " DFT: C 2 (17) DFT: C 1 (11) DFT: C 1 (12) DFT: C 1 (7) ".2 " isomers Exp: D 3 (19) C 2 86 DFT: C 2v (9) C 4 86 C 6 86 " ".2 ".4 DFT: C s (17) DFT: C 1 (1) DFT: C 1 (3) DFT: C 2 (2) DFT: C 2 (27) DFT: C 1 (18) DFT: C s (32) isomers C 2 88 Exp: D 2 (3) C 4 88 Exp: D 2 (3) C 6 88 " Figure S7. Same as Figure S4 for C q 2n (2n = 84 88,q = ±2,±4,±6). 13 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

14 DOI: 1.138/NCHEM.2363 ".2 ".4 DFT: C 2 (23) DFT: C 2 (18) DFT: C 2 (28) DFT: C 1 (2) DFT: C 2 (18) DFT: C 1 (2) DFT: C 2 (28) DFT: C 2 (18) DFT: C 1 (2) DFT: C 2 (28) isomers C 6+ 9 C 4+ 9 C 2+ 9 " Exp: C 2v (46) Exp: C 2 (4) Exp: C 2 (42) ".2 ".4 Exp: C 2 (4) DFT: C 2 (41) Exp: C 1 (21) DFT: C 2 (41) DFT: C 2 (43) DFT: C 2 (44) DFT: C 2 (43) C 2 9 C 4 9 C 6 9 " ".2 ".4 ".6 DFT: T(86) DFT: D 3 (28) DFT: D 2 (81) DFT: D 3 (71) DFT: C 2 (9) DFT: D 3 (83) DFT: C 1 (72) DFT: C 2 (7) DFT: C 2 (7) DFT: D 2 (82) DFT: C 1 (72) DFT: D 2 (81) DFT: D 2 (82) DFT: C 2 (9) DFT: C 1 (12) DFT: C 2 (79) DFT: C 2 (46) DFT: D 3 (83) DFT: D 3 (78) " isomers C C C " DFT: D 3 (78) ".2 ".4 ".6 Exp: C s (24) Exp: C 1 (42) DFT: C 2 (79) DFT: C 2 (8) DFT: C 2 (69) DFT: C s (1) Exp: T(86) ".8 C 2 92 Exp: D 3 (8) C 4 92 DFT: D 3 (8) C 6 92 " Figure S8. Same as Figure S4 for C q 2n (2n = 9 92,q = ±2,±4,±6). 14 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

15 DOI: 1.138/NCHEM.2363 ΔCSI (2 β ).2.4 DFT: C 1 (132) DFT: C 2 (124) Exp: C 3v (134) isomers C 2 94 DFT: C s (12) C 4 94 DFT: C 2 (121) DFT: C 2 (117) C DFT: C 2 (181) DFT: C 1 (114) ".2 ".4 DFT: C 2 (124) isomers DFT: D 2 (183) DFT: C 1 (164) DFT: C 1 (7) DFT: C 1 (91) DFT: C s (161) DFT: C 2 (16) DFT: C 1 (1) DFT: C 1 (11) DFT: C 1 (9) DFT: C 1 (7) C 2 96 DFT: C 2 (18) DFT: C 1 (16) DFT: D 2d (163) DFT: D 2 (186) DFT: C 2 (17) C 4 96 Exp: D 2 (186) C 6 96 " ".2 ".4 ".6 DFT: C 1 (247) DFT: C 1 (161) DFT: C 1 (226) DFT: C 2 (22) DFT: C 2 (182) DFT: C 2 (22) isomers DFT: C 1 (143) DFT: C 3 (23) DFT: C 1 (227) DFT: C 2 (166) DFT: C 1 (137) DFT: C 2 (21) DFT: C 1 (184) DFT: C 1 (14) DFT: C 2 (231) C DFT: C 2 (221) DFT: C 1 (169) DFT: C 2 (183) DFT: C 2 (166) DFT: C 1 (81) DFT: C 1 (173) DFT: C 1 (18) DFT: C 1 (168) DFT: C 2v (167) DFT: C 1 (17) C DFT: C 1 (247) DFT: C 2 (166) C DFT: C 1 (427) DFT: C 1 (441) ".2 ".4 DFT: C 2 (43) DFT: C 2 (439) DFT: C 2 (42) DFT: C 2 (33) DFT: D (4) DFT: C 2 (41) isomers C 2 1 C 4 1 Exp: D (4) C 6 1 " Figure S9. Same as Figure S4 for C q 2n (2n = 94 1,q = 2, 4, 6). 1 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

16 DOI: 1.138/NCHEM.2363 ".2 ".4 DFT: C 2v (43) isomers C 2 12 DFT: C 2 (12) DFT: C 1 (4) DFT: C 2 (42) DFT: C 1 (437) DFT: C 1 (47) DFT: C 1 (424) DFT: C 2 (1) DFT: C s (127) DFT: C 1 (434) C 4 12 DFT: C 2 (1) C 6 12 " DFT: C 2 (766) DFT: C 2 (674) ".2 ".4 DFT: D 3 (81) isomers C 2 14 Exp: D 3d (822) C 4 14 DFT: D 3d (822) DFT: D 2 (821) C 6 14 " Figure S1. Same as Figure S4 for C q 2n (2n = 12 and 14,q = 2, 4, 6). 16 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

17 DOI: 1.138/NCHEM CSI ( 2β) DFTB: T d (2) DFT: T d (2) DFTB: T d (2) 2 isomers 2 C C C CSI ( 2β) CSI ( 2β) DFTB: C 2v (3) 3 isomers 2 C DFTB: D 3 (6) 6 isomers 2 C DFT: C 2v (3) DFTB: C 2v (3) 4 C DFT: C 2 (4) DFT: D 3 (6) 4 C C DFTB: C 2 (4) DFTB: D 3 (6) 6 C CSI ( 2β) DFTB: C 2v () 6 isomers 2 C DFT: C 2v () DFT: C s (2) 4 C DFTB: C 2v () DFTB: C 2 (4) DFTB: C s (2) 6 C Figure S11. CSI q i values for the charged fullerenes isomers C q 2n (2n = 28, 3, 32, 34 and q = 2, 4, 6). For a better visualization, the different isomers are classified in columns according to the. The lowest energy isomers determined by DFT 24 or SCC-DFTB (present work) are highlighted by a black contour, and labeled as DFT or DFTB. The number in the bottom part of the left panel for each fullerene size gives the total number of all possible isomers. 17 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

18 DOI: 1.138/NCHEM DFTB: C 2v (9) CSI ( 2β) CSI ( 2β) CSI ( 2β) DFTB: D 6h (1) DFT: D 6h (1) DFTB: D 6h (1) 1 isomers 2 C DFTB: C 2 (17) 17 isomers 2 C DFTB: D 2 (38) 4 isomers DFTB: C 3v (16) DFTB: C 2 (13) DFTB: C 2 (1) DFTB: C s (31) DFTB: C s (29) 2 C DFT: D 2d (14) 4 C DFT: C 2 (17) DFT: C 2 (1) 4 C DFT: C s (31) DFT: D 2 (38) DFT: C 2 (13) DFT: C s (24) DFT: T d (4) 4 C DFTB: D 2d (14) 6 C DFTB: C 2 (17) 6 C DFTB: D 2 (38) DFTB: C s (31) 6 C CSI ( 2β) DFTB: D 3 (4) 4 isomers 2 C DFT: D 3 (4) DFT: C 1 (33) DFT: C 1 (32) 4 C DFTB: D 3 (4) 6 C Figure S12. Same as Figure S11 for C q 2n (2n = 36,38,4,42 and q = 2, 4, 6). 18 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

19 DOI: 1.138/NCHEM CSI ( 2β) DFTB: D 2 (7) DFTB: D 3h (72) DFTB: D 2 (89) DFTB: D 2 (7) 89 isomers 2 C DFT: D 2 (89) 4 C C CSI ( 2β) DFTB: C 2 (116) DFTB: C 1 (114) DFTB: C s (18) DFTB: C 2 (19) 116 isomers 2 C DFT: C 1 (114) DFT: C 2 (116) 4 C DFTB: C 2 (116) DFTB: C 2 (19) DFTB: C 1 (114) 6 C CSI ( 2β) CSI ( 2β) DFTB: C 2 (199) 199 isomers 2 C isomers DFTB: D h (271) 2 C DFT: C 1 (196) DFT: C s (197) 4 C DFT: C 2 (26) DFT: D h (271) DFT: C 2 (199) DFT: C s (266) 4 C DFTB: C 2 (199) 6 C DFTB: D h (271) DFTB: D 3 (27) 6 C Figure S13. Same as Figure S11 for C q 2n (2n = 44,46,48, and q = 2, 4, 6). 19 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

20 DOI: 1.138/NCHEM Energy penalty per adjacent pentagon pair To keep the CSI model as simple as possible, in the manuscript we have chosen a characteristic value of the energy penalty per APP, namely.2 (in units of -2β) for all fullerene isomers, irrespective of the cage size. However, the actual value of this energy penalty varies with the fullerene size (see, e.g., Ref. 2 ). We have computed the actual energy penalty per APP, ε P, as explained by Albertazzi et al 26 using our calculated SCC-DFTB energies for the neutral fullerene isomers. For the smaller cage sizes (C 28 to C 64 ), all possible isomers have been taken into account. For cage sizes from C 66 to C 8, we have included all isomers with 3 and without triple fused pentagons, and for cage sizes from C 82 to C 9, all isomers with 2, since those with 3 never lead to the most stable structure for any charge state. Likewise, for cage sizes from C 9 to C 14, only isomers with 1 have been considered. The calculated energy penalties per APP are shown in Figure S14 below. When possible, our results are compared with those obtained from the QCFF/PI (quantum mechanical consistent force field/π) 2 and the DFTB2 26 methods. The agreement with the existing results is reasonably good. Energy penalty per APP (kcal/mol) Present work (DFTB) Campbell et al (QCFF/PI) Albertazzi et al (DFTB) Cage size 2n Energy penalty per APP (kcal/mol) Present work (DFTB) Cage size 2n Figure S14. Energy penalty per APP obtained from SCC-DFTB calculations for small (left panel) and large (right panel) fullerene cages. Our DFTB results are compared with those obtained from the QCFF/PI (quantum mechanical consistent force field/π 2 ) and the DFTB2 26 methods. To express the above results in units of -2β, we have calculated β, for each size and charge state, from the correlation between the SCC-DFTB charge stabilization energy (CSE q ) and the sum of the eigenvalues of the connectivity matrix, X q, (see Eq. 2 and Fig. 1 of the manuscript, and Figs. S2 and S3 of this SI for specific examples). Figure S1 shows the calculated values of β. As can be seen, the resonance integral β depends both on cage size and on charge state. Figure S16 shows the energy penalty per APP in units of -2β as a function of cage size and charge state. As can be seen, with very few exceptions, the value of the energy penalty per APP lies in the interval In the manuscript we have used.2 (indicated by a dashed line in NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

21 DOI: 1.138/NCHEM Resonance integral β (ev) q = 2 q = 3 q = 4 q = 6 q = +2 q = +4 q = Cage size 2n Figure S1. Resonance integral β as a function of cage size and charge state, obtained from the SCC-DFTB and HMO calculations. the figure), which is a lower bound for the calculated values. We have checked that, by using the average value.23 or the actual values given in Figure S16, the predictions of the relative ordering of the different isomers are nearly identical to those reported in Fig. 4 of the manuscript and in Figs. S4-S13 of this SI. Therefore, the use of a constant value for this energy penalty, which is what makes this model so simple and useful, is fully justified. Nevertheless, the model can be trivially refined by just replacing the value.2 in Eq. 3 of the manuscript by the numbers given in Figure S16. Energy penalty per APP ( 2β) q = 2 q = 3 q = 4 q = 6 q = +2 q = +4 q = Cage size 2n Figure S16. Energy penalty per APP in units of -2β, as a function of cage size and charge state. The value.2 used in the definition of CSI in the manuscript is indicated by a dashed line. NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

22 DOI: 1.138/NCHEM Bond orders in the HMO theory In the HMO theory, the energy of the k-th π molecular orbital (MO) is ε k = α + βχ k (12) where α is the Coulomb integral, β is resonance integral, and χ k is the k-th eigenvalue of the adjacency matrix in descending order. On the other hand, ε k =< Ψ k Ĥ Ψ k > (13) where Ψ k is the wave function of the k-th MO, which is written as a linear combination of p z atomic orbitals φ A centered in every atom A: Substituting Eq. (14) in Eq. (13), one obtains ε k = A Ψ k = c k, A φ A (14) A c k, A c k, B < φ A Ĥ φ B > (1) B c 2 k, A < φ A Ĥ φ A > + c k, A c k, B < φ A Ĥ φ B > + c k, A c k, B < φ A Ĥ φ B > (16) A A B A B where A B represents the sum over all bonded atom pairs, and A B the sum over all nonbonded atom pairs. According to the HMO theory, < φ A Ĥ φ A >= α, and < φ A Ĥ φ B > equals β if atoms A and B are bonded, and zero if A and B are not bonded. Since A c 2 k, A = 1 as a result of the normalization of Ψ k, Eq. (16) thus becomes Comparing Eq. (17) and Eq. (12), one obtains The bond order, BO, for a given A B bond is defined as ε k = α + β c k, A c k, B (17) A B χ k = c k, A c k, B (18) A B BO A B = c k, A c k, B (19) k where the sum runs over all π molecular orbitals. Thus Eq. (18) implies that the adjacent matrix 22 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

23 DOI: 1.138/NCHEM.2363 eigenvalue χ k is the sum over all bond order contributions BO k,a B = c k, A c k, B resulting from the k-th MO. The variation of the bond order in a given A B bond as a result of charging a fullerene of size 2n is given by BO q A B = n k=n q/2+1 c k, A c k, B : q > n q/2 c k, A c k, B : q < k=n+1 where q is the charge of the system. Thus, the π contribution to CSI q i for the i-th isomer with charge q can be related with the variations of bond order according to the equation: (2) X q i = BO q A B (21) A B 8 Variation of bond orders resulting from charging a fullerene Using Eq. (19), we have evaluated the bond orders for all carbon-carbon bonds in the following neutral and charged species: C 82,C 84 and C 9. Figure S17 and Figure S18 show the variation of bond orders when particular neutral isomers get negative and positive charge, respectively. The charged isomers that have been considered are those leading to the most stable structures in the charged state (left panels) and in the neutral state (right panels). To simplify the analysis, the different bonds have been grouped in the six categories shown in the central part of the figure. These are the only types of bonds that can be found in fullerene cages containing no more than 3 APPs and no triple fused pentagons. The bar diagrams show the changes in bond order with respect to the corresponding neutral isomer in each category. NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

24 DOI: 1.138/NCHEM.2363 Most stable isomer in charge state q = ±6 Most stable isomer in charge state q = C 6 82: C 2v (9) Counts of bonds 1 pp hh ph ph 1 ph hh hh pp 1 hh ph x 2 hh hh Bond order variation ( 2β) 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) C 6 82: C 2 (3) C 6 84: C s (136) Counts of bonds 1 pp hh ph ph 1 ph hh x 2 hh pp 1 hh ph x 2 hh hh Bond order variation ( 2β) 1 pp hh ph ph 1 ph hh x 2 hh pp 1 hh ph x 2 hh hh Bond order variation ( 2β) C 6 84: D 2d (23) C 6 9: C 2 (43) Counts of bonds 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) 1 pp hh ph ph 1 ph hh x 2 hh pp 1 hh ph x 2 hh hh Bond order variation ( 2β) C 6 9: C 2 (4) Figure S17. Changes in bond orders (in units of 2β) resulting from negatively charging the C 82, C 84 and C 9 fullerenes. The shown charged isomers are those leading to the most stable structures in the corresponding charged state (left panels) and in the neutral state (right panels). Each isomer is identified by its group symmetry and index according to the spiral algorithm. The different bonds have been grouped in the six categories shown in the central part of the figure. These categories are denoted inside the bar diagrams as pp-hh, ph-ph, ph-hh, hh-pp, hh-ph, and hh-hh, where the h and p labels refer to hexagonal and pentagonal rings, respectively, and the first two labels indicate the two rings sharing the bond and the last two labels the other two rings surrounding that bond. The bar diagrams show the changes in bond order with respect to the corresponding neutral isomer in each category. The values of these changes in bond order are also indicated in the three-dimensional (3D) representations by using the color scales shown on top of the bar diagrams. 24 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

25 DOI: 1.138/NCHEM.2363 Most stable isomer in charge state q = ±6 Most stable isomer in charge state q = C 6+ 82: C s (4) Counts of bonds 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) C 6+ 82: C 2 (3) C 6+ 84: D 2 (21) Counts of bonds 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) C 6+ 84: D 2d (23) C 6+ 9: C 2 (23) Counts of bonds 1 pp hh ph ph 1 ph hh hh pp 1 hh ph hh hh Bond order variation ( 2β) pp hh ph ph ph hh 1 hh pp hh ph 1 hh hh Bond order variation ( 2β) C 6+ 9: C 2 (4) Figure S18. Same as Figure S17 for positively charging the C 82,C 84 and C 9 fullerenes. 2 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

26 DOI: 1.138/NCHEM Experimentally identified EMFs The experimentally identified EMFs are summarized in Table S2 and Table S3. NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

27 DOI: 1.138/NCHEM.2363 Table S2. Experimentally isolated and identified EMFs with carbon cages from C 66 to C 82 and formal charge transfer q = 2, 4, 6 to the cage. C 2n Isomer q = 2 q = 4 q = 6 C 66 C 2v (4348) Sc C 68 C 2v (673) Sc 2 C 2 3 D 3 (614) Sc 3 N, DySc 2, 34 LuSc 2, 34 Lu 2 Sc 34 C 7 D h (1) C 2 (7892) Sc 2 S 24 C 2v (784) Sc 3 N 3 C 72 C s (1612) C s (128) Sc 2 S 36 D 2 (1611) La 2, Ce 2, 41,42 Pr 2 43,44 C 74 D 3h (1) Ca, 4 Sr, 46 Ba, 47,48 Sm, 49 Eu,,1 Yb 2,3 C 76 T d (2) Lu 2 4 C s (1749) La 2, DySc 2 N 6 C 78 Sc 3 N D 3h () La 2, 41,7,8 Ce 2, 41,9 Ti 2 C 2, 6 63 C 2 (221) Y 3 N, 7,71 Gd 3 N, 72 Dy 3 N, 73 C 2v (3) Sm, 77,78 Yb 79,8 C 2v () Sc 2 C 2 68,81 83 Tm 3 N, 73 CeSc 2 N, 74 GdSc 2 N, 7 Sc 3 NC 76 D h (6) Ce 2, 84,8 Sc 3 N, 68,86 9 Y 3 N, 74,91 Tb 3 N, 92 Tm 3 N 93,94 Gd x Sc 3 x N, 9 Dy x Sc 3 x N, 96 Ho x Sc 3 x N 97 C 8 I h (7) Lu x Sc 3 x N 96 La 2, 41,98 18 C 2 () Ca, 14 Sm, 1 17 Tm, 18 Eu, 19 Yb 79,16,161 Ce 2, 41,8,13,18 11 Pr 2, 111 Sc 3 N, 9,1,18, Y 3 N, 74,18,124, Gd 3 N, 13 Tb 3 N, 129 Dy 3 N, 131,132 Ho 3 N, 129 Er 3 N, 69 Tm 3 N, 93,94,133 Lu 3 N, 18,113 TiSc 2 N, 134 LaSc 2 N, 13 CeSc 2 N, 136 Nd x Sc 3 x N, 96 Gd x Sc 3 x N, 137,138 TbSc 2 N, 138 Dy x Sc 3 x N, 96 Ho x Sc 3 x N, 97 Er x Sc 3 x N, 129,139 Lu x Sc 3 x N, 14 Ce x Y 3 x N, 74 Lu x Y 3 x N, 14 CeSc 2 N, 141 CeY 2 N, 141 CeLu 2 N, 141,142 Sc 3 NC, 18,143 Sc 4 O 2, 69,18,144,14 Sc 4 O 3, 146 Sc 3 C 2, 69,18, Sc 4 C 2, 1 Sc 3 CH 11 Sc 4 C 2 H, 12 Sc 4 (µ 3 -C 2 )(µ 3 -CN) 13 C s (6) Ca, 14 Sm, 1,17 Tm, 18 Sc 2 C 2, 162,163 Y 2 C 2, 164,16 Er 2, 69,166,167 Tm Eu,, 19,169 Yb 79,16,161 Tb 2 C 2, 17 Dy 2 C 2, 171 Er 2 C 2, 167 ErYC 2, 172 Sc 2 O, 68,173 Sc 2 S 174,17 C 3v (7) Ca, 14 Sm 17 C 82 C 3v (8) Sc 2, 68,176 Y Tm 2, 168,177 Er 2, 69,167,178 HoTm 168 Sc 2 C 2, 83,148, Y 2 C 2, 164,16,18,186 Dy 2 C 2, 171 Er 2 C 2, 167 Tm 2 C 2, 177 ErYC 2, 172 Y 2 S, 187 Dy 2 S,, 187 Lu 2 S 187 C 2v (9) Ca, 14 Sm, 1 Eu, 19,169 Sc 2 C 2, 163,188 Y 2 C 2, 164 Er 2, 167 Tm 2, 168 HoTm 168 Tm, 18 Yb 79,16,161 Dy 2 C 2, 171 Er 2 C C s (39663) Y 3 N, 91 Gd 3 N 189,19 NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

28 DOI: 1.138/NCHEM.2363 Table S3. Experimentally isolated and identified EMFs with carbon cages from C 84 to C 14 and formal charge transfer q = 2, 4, 6 to the cage. C 2n Isomer q = 2 q = 4 q = 6 C 2 (11) Sm, 191 Yb 79 C 1 (12) Yb 79 C 2 (13) Sm, 191 Yb 3,79,192 C 84 D 3d (19) Sm 191 D 2d (23) Sc 2 C 2 83,148,193,194 C 1 (1383) Y 2 C 2 16,19 C s (136) Y 3 N, 91 Gd 3 N, 189,196 Tb 3 N, 197 Tm 3 N 196 Ce x Sc 3 x N, 74 Ce x Y 3 x N, 74 CeLu 2 N 74 C 86 D 3 (19) Y 3 N, 91 Gd 3 N, 189,198 Tb 3 N 92 Ce x Sc 3 x N, 74 Ce x Y 3 x N 74 C 88 D 2 (3) Sm 2, 199 Gd 2 C 199,2 2 Y 3 N, 189,21 Gd 3 N, 189 Tb 3 N, 92 Tm 3 N, 22 Lu 3 N, 23 C 2 (4) Sm 24 C 2 (42) Sm 24 Ce x Sc 3 x N, 74 Ce x Y 3 x N, 74 Lu 3 C 2 23 C 9 C 2 (4) Sm 24 C 2v (46) Sm 24 C 1 (21) Sm 2, 199 Gd 2 C 199,2 2 C s (24) Sm 2 C 92 C 1 (42) Sm 2 D 3 (8) Sm 2, 199 Y 2 C 2, 16,26 Gd 2 C 2 2 T (86) La 3 N 27 C 94 C 3v (134) Ca, 28 Sm, 2 Tm 28 C 96 D 2 (186) La 3 N 27 C 1 D (4) La 29 2 C 14 D 3d (822) Sm 21 2 References (1) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 8, (2) Aradi, B.; Hourahine, B.; Frauenheim, T. J. Phys. Chem. A 27, 111, 678. (3) Koskinen, P.; Mäkinen, V. Comput. Mater. Sci. 29, 47, (4) Seifert, G.; Joswig, J.-O. Wiley Interdisciplinary Reviews: Computational Molecular Science 212, 2, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

29 DOI: 1.138/NCHEM.2363 () Zheng, G.; Irle, S.; Morokuma, K. Chem. Phys. Lett. 2, 412, (6) Wang, Y.; Zettergren, H.; Rousseau, P.; Chen, T.; Gatchell, M.; Stockett, M. H.; Domaracka, A.; Adoui, L.; Huber, B. A.; Cederquist, H.; Alcamí, M.; Martín, F. Phys. Rev. A 214, 89, (7) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 78. (8) Becke, A. D. J. Chem. Phys. 1993, 98, 648. (9) Rodríguez-Fortea, A.; Alegret, N.; Balch, A. L.; Poblet, J. M. Nat Chem 21, 2, (1) Thumm, U. J. Phys. B 1994, 27, 31. (11) Stace, A. J.; Bichoutskaia, E. Phys. Chem. Chem. Phys 211, 13, (12) Zettergren, H.; Forsberg, B. O.; Cederquist, H. Phys. Chem. Chem. Phys. 212, 14, (13) Ehrler, O. T.; Furche, F.; Mathias Weber, J.; Kappes, M. M. The Journal of Chemical Physics 2, 122, (14) Díaz-Tendero, S.; Sánchez, G.; Alcamí, M.; Martín, F. International Journal of Mass Spectrometry 26, 22, (1) Shao, N.; Gao, Y.; Yoo, S.; An, W.; Zeng, X. C. The Journal of Physical Chemistry A 26, 11, , PMID: (16) Popov, A. In Handbook of Computational Chemistry; Leszczynski, J., Ed.; Springer Netherlands, 212; pp (17) Popov, A. A.; Yang, S.; Dunsch, L. Chemical Reviews 213, 113, (18) Fowler, P.; Manolopoulos, D. E. An Atlas of Fullerenes; Clarendon Press: Oxford, U.K., 199. (19) Chen, Z.; Cioslowski, J.; Rao, N.; Moncrieff, D.; Bühl, M.; Hirsch, A.; Thiel, W. Theoretical Chemistry Accounts 21, 16, (2) Sun, G. Chemical Physics Letters 23, 367, (21) Zettergren, H.; Sánchez, G.; Díaz-Tendero, S.; Alcamí, M.; Martín, F. The Journal of Chemical Physics 27, 127, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

30 DOI: 1.138/NCHEM.2363 (22) Zettergren, H.; Alcam ı, M.; Mart ın, F. Phys. Rev. A 27, 76, 432. (23) Sun, G. Chemical Physics 23, 289, (24) Chen, N.; Mulet-Gas, M.; Li, Y.-Y.; Stene, R. E.; Atherton, C. W.; Rodriguez-Fortea, A.; Poblet, J. M.; Echegoyen, L. Chem. Sci. 213, 4, (2) Campbell, E.; Fowler, P.; Mitchell, D.; Zerbetto, F. Chemical Physics Letters 1996, 2, (26) Albertazzi, E.; Domene, C.; W. Fowler, P.; Heine, T.; Seifert, G.; Van Alsenoy, C.; Zerbetto, F. Phys. Chem. Chem. Phys. 1999, 1, (27) Wang, C.-R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. Nature 2, 48, (28) Takata, M.; Nishibori, E.; Sakata, M.; R-Wang, C.; Shinohara, H. Chemical Physics Letters 23, 372, (29) Yamada, M.; Kurihara, H.; Suzuki, M.; Guo, J. D.; Waelchli, M.; Olmstead, M. M.; Balch, A. L.; Nagase, S.; Maeda, Y.; Hasegawa, T.; Lu, X.; Akasaka, T. J. Am. Chem. Soc. 214, 136, (3) Shi, Z.-Q.; Wu, X.; Wang, C.-R.; Lu, X.; Shinohara, H. Angewandte Chemie International Edition 26, 4, (31) Stevenson, S.; Fowler, P. W.; Heine, T.; Duchamp, J. C.; Rice, G.; Glass, T.; Harich, K.; Hajdu, E.; Bible, R.; Dorn, H. C. Nature 2, 48, (32) Olmstead, M. M.; Lee, H. M.; Duchamp, J. C.; Stevenson, S.; Marciu, D.; Dorn, H. C.; Balch, A. L. Angewandte Chemie International Edition 23, 42, (33) Yang, S.; Kalbac, M.; Popov, A.; Dunsch, L. Chemistry A European Journal 26, 12, (34) Yang, S.; Popov, A. A.; Dunsch, L. Chem. Commun. 28, (3) Yang, S.; Popov, A. A.; Dunsch, L. Angewandte Chemie International Edition 27, 46, (36) Chen, N.; Beavers, C. M.; Mulet-Gas, M.; Rodríguez-Fortea, A.; Munoz, E. J.; Li, Y.-Y.; Olmstead, M. M.; Balch, A. L.; Poblet, J. M.; Echegoyen, L. Journal of the American Chemical Society 212, 134, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

31 DOI: 1.138/NCHEM.2363 (37) Kato, H.; Taninaka, A.; Sugai, T.; Shinohara, H. Journal of the American Chemical Society 23, 12, , PMID: (38) Lu, X.; Nikawa, H.; Nakahodo, T.; Tsuchiya, T.; Ishitsuka, M. O.; Maeda, Y.; Akasaka, T.; Toki, M.; Sawa, H.; Slanina, Z.; Mizorogi, N.; Nagase, S. Journal of the American Chemical Society 28, 13, (39) Lu, X.; Nikawa, H.; Tsuchiya, T.; Maeda, Y.; Ishitsuka, M.; Akasaka, T.; Toki, M.; Sawa, H.; Slanina, Z.; Mizorogi, N.; Nagase, S. Angewandte Chemie International Edition 28, 47, (4) Dunsch, L.; Bartl, A.; Georgi, P.; Kuran, P. Synthetic Metals 21, 121, , Proceedings of the International Conference on the Science and Technology of Synthetic Metals. (41) Popov, A. A.; Kästner, C.; Krause, M.; Dunsch, L. Fullerenes, Nanotubes and Carbon Nanostructures 214, 22, (42) Yamada, M.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Mizorogi, N.; Nagase, S. The Journal of Physical Chemistry A 28, 112, (43) Plant, S. R.; Ng, T. C.; Warner, J. H.; Dantelle, G.; Ardavan, A.; Briggs, G. A. D.; Porfyrakis, K. Chem. Commun. 29, (44) Nicholls, R. J.; Sader, K.; Warner, J. H.; Plant, S. R.; Porfyrakis, K.; Nellist, P. D.; Briggs, G. A. D.; Cockayne, D. J. H. ACS Nano 21, 4, (4) Kodama, T.; Fujii, R.; Miyake, Y.; Suzuki, S.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Achiba, Y. Chemical Physics Letters 24, 399, (46) Haufe, O.; Hecht, M.; Grupp, A.; Mehring, M.; Jansen, M. Zeitschrift für anorganische und allgemeine Chemie 2, 631, (47) Friese, K.; Panthöfer, M.; Wu, G.; Jansen, M. Acta Crystallographica Section B 24, 6, (48) Reich, A.; Panthöfer, M.; Modrow, H.; Wedig, U.; Jansen, M. Journal of the American Chemical Society 24, 126, , PMID: (49) Xu, W.; Hao, Y.; Uhlik, F.; Shi, Z.; Slanina, Z.; Feng, L. Nanoscale 213,, () Kuran, P.; Krause, M.; Bartl, A.; Dunsch, L. Chemical Physics Letters 1998, 292, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

32 DOI: 1.138/NCHEM.2363 (1) Rappoport, D.; Furche, F. Phys. Chem. Chem. Phys. 29, 11, (2) Xu, J.; Tsuchiya, T.; Hao, C.; Shi, Z.; Wakahara, T.; Mi, W.; Gu, Z.; Akasaka, T. Chemical Physics Letters 26, 419, (3) Ruan, J.; Xie, Y.; Cai, W.; Slanina, Z.; Mizorogi, N.; Nagase, S.; Akasaka, T.; Lu, X. Fullerenes, Nanotubes and Carbon Nanostructures 214, 22, (4) Umemoto, H.; Ohashi, K.; Inoue, T.; Fukui, N.; Sugai, T.; Shinohara, H. Chem. Commun. 21, 46, () Suzuki, M.; Mizorogi, N.; Yang, T.; Uhlik, F.; Slanina, Z.; Zhao, X.; Yamada, M.; Maeda, Y.; Hasegawa, T.; Nagase, S.; Lu, X.; Akasaka, T. Chemistry A European Journal 213, 19, (6) Yang, S.; Popov, A. A.; Dunsch, L. The Journal of Physical Chemistry B 27, 111, , PMID: (7) Cao, B.; Wakahara, T.; Tsuchiya, T.; Kondo, M.; Maeda, Y.; Aminur Rahman, G. M.; Akasaka, T.; Kobayashi, K.; Nagase, S.; Yamamoto, K. Journal of the American Chemical Society 24, 126, (8) Cao, B.; Nikawa, H.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Sawa, H.; Slanina, Z.; Mizorogi, N.; Nagase, S. Journal of the American Chemical Society 28, 13, (9) Yamada, M.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Kako, M.; Akasaka, T.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S. Chem. Commun. 28, 8 6. (6) Cao, B.; Hasegawa, M.; Okada, K.; Tomiyama, T.; Okazaki, T.; Suenaga, K.; Shinohara, H. Journal of the American Chemical Society 21, 123, (61) Tan, K.; Lu, X. Chem. Commun. 2, (62) Yumura, T.; Sato, Y.; Suenaga, K.; Iijima, S. The Journal of Physical Chemistry B 2, 19, , PMID: (63) Sato, Y.; Yumura, T.; Suenaga, K.; Moribe, H.; Nishide, D.; Ishida, M.; Shinohara, H.; Iijima, S. Phys. Rev. B 26, 73, (64) Olmstead, M. M.; de Bettencourt-Dias, A.; Duchamp, J. C.; Stevenson, S.; Marciu, D.; Dorn, H. C.; Balch, A. L. Angewandte Chemie International Edition 21, 4, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

33 DOI: 1.138/NCHEM.2363 (6) Campanera, J. M.; Bo, C.; Olmstead, M. M.; Balch, A. L.; Poblet, J. M. The Journal of Physical Chemistry A 22, 16, (66) Cai, T.; Xu, L.; Gibson, H. W.; Dorn, H. C.; Chancellor, C. J.; Olmstead, M. M.; Balch, A. L. Journal of the American Chemical Society 27, 129, , PMID: (67) Krause, M.; Popov, A.; Dunsch, L. ChemPhysChem 26, 7, (68) Chen, C.-H.; Lin, D.-Y.; Yeh, W.-Y. Chemistry A European Journal 214, n/a n/a. (69) Stevenson, S.; Rottinger, K. A. Inorganic Chemistry 213, 2, (7) Ma, Y.; Wang, T.; Wu, J.; Feng, Y.; Xu, W.; Jiang, L.; Zheng, J.; Shu, C.; Wang, C. Nanoscale 211, 3, (71) Zhang, J.; Bearden, D. W.; Fuhrer, T.; Xu, L.; Fu, W.; Zuo, T.; Dorn, H. C. Journal of the American Chemical Society 213, 13, (72) Beavers, C. M.; Chaur, M. N.; Olmstead, M. M.; Echegoyen, L.; Balch, A. L. Journal of the American Chemical Society 29, 131, , PMID: (73) Popov, A. A.; Krause, M.; Yang, S.; Wong, J.; Dunsch, L. The Journal of Physical Chemistry B 27, 111, , PMID: (74) Zhang, Y.; Popov, A. A.; Dunsch, L. Nanoscale 214, 6, (7) Svitova, A. L.; Popov, A. A.; Dunsch, L. Inorganic Chemistry 213, 2, (76) Wu, J.; Wang, T.; Ma, Y.; Jiang, L.; Shu, C.; Wang, C. The Journal of Physical Chemistry C 211, 11, (77) Xu, W.; Niu, B.; Shi, Z.; Lian, Y.; Feng, L. Nanoscale 212, 4, (78) Yang, H.; Wang, Z.; Jin, H.; Hong, B.; Liu, Z.; Beavers, C. M.; Olmstead, M. M.; Balch, A. L. Inorganic Chemistry 213, 2, (79) Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. Journal of the American Chemical Society 21, 132, 896 9, PMID: (8) Lu, X.; Lian, Y.; Beavers, C. M.; Mizorogi, N.; Slanina, Z.; Nagase, S.; Akasaka, T. Journal of the American Chemical Society 211, 133, (81) Kurihara, H.; Lu, X.; Iiduka, Y.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Akasaka, T.; Nagase, S. Journal of the American Chemical Society 211, 133, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

34 DOI: 1.138/NCHEM.2363 (82) Kurihara, H.; Lu, X.; Iiduka, Y.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Journal of the American Chemical Society 212, 134, (83) Kurihara, H.; Lu, X.; Iiduka, Y.; Nikawa, H.; Hachiya, M.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Inorganic Chemistry 212, 1, (84) Yamada, M.; Mizorogi, N.; Tsuchiya, T.; Akasaka, T.; Nagase, S. Chemistry A European Journal 29, 1, (8) Feng, L.; Suzuki, M.; Mizorogi, N.; Lu, X.; Yamada, M.; Akasaka, T.; Nagase, S. Chemistry A European Journal 213, 19, (86) Duchamp, J. C.; Demortier, A.; Fletcher, K. R.; Dorn, D.; Iezzi, E. B.; Glass, T.; Dorn, H. C. Chemical Physics Letters 23, 37, (87) Cai, T.; Xu, L.; Anderson, M. R.; Ge, Z.; Zuo, T.; Wang, X.; Olmstead, M. M.; Balch, A. L.; Gibson, H. W.; Dorn, H. C. Journal of the American Chemical Society 26, 128, , PMID: (88) Yang, S.; Chen, C.; Jiao, M.; Tamm, N. B.; Lanskikh, M. A.; Kemnitz, E.; Troyanov, S. I. Inorganic Chemistry 211,, (89) Krause, M.; Dunsch, L. ChemPhysChem 24,, (9) Cerón, M. R.; Li, F.-F.; Echegoyen, L. Chemistry A European Journal 213, 19, (91) Fu, W.; Xu, L.; Azurmendi, H.; Ge, J.; Fuhrer, T.; Zuo, T.; Reid, J.; Shu, C.; Harich, K.; Dorn, H. C. Journal of the American Chemical Society 29, 131, , PMID: (92) Zuo, T.; Beavers, C. M.; Duchamp, J. C.; Campbell, A.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. Journal of the American Chemical Society 27, 129, (93) Zuo, T.; Olmstead, M. M.; Beavers, C. M.; Balch, A. L.; Wang, G.; Yee, G. T.; Shu, C.; Xu, L.; Elliott, B.; Echegoyen, L.; Duchamp, J. C.; Dorn, H. C. Inorganic Chemistry 28, 47, (94) Krause, M.; Wong, J.; Dunsch, L. Chemistry A European Journal 2, 11, (9) Yang, S.; Popov, A.; Kalbac, M.; Dunsch, L. Chemistry A European Journal 28, 14, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

35 DOI: 1.138/NCHEM.2363 (96) Yang, S.; Popov, A. A.; Chen, C.; Dunsch, L. The Journal of Physical Chemistry C 29, 113, (97) Zhang, Y.; Popov, A. A.; Schiemenz, S.; Dunsch, L. Chemistry A European Journal 212, 18, (98) Akasaka, T.; Nagase, S.; Kobayashi, K.; Wälchli, M.; Yamamoto, K.; Funasaka, H.; Kako, M.; Hoshino, T.; Erata, T. Angewandte Chemie International Edition in English 1997, 36, (99) Nishibori, E.; Takata, M.; Sakata, M.; Taninaka, A.; Shinohara, H. Angewandte Chemie International Edition 21, 4, (1) Yamada, M.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S. Journal of the American Chemical Society 26, 128, , PMID: (11) Yamada, M.; Minowa, M.; Sato, S.; Kako, M.; Slanina, Z.; Mizorogi, N.; Tsuchiya, T.; Maeda, Y.; Nagase, S.; Akasaka, T. Journal of the American Chemical Society 21, 132, (12) Yamada, M.; Someya, C.; Wakahara, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Liu, M. T. H.; Mizorogi, N.; Nagase, S. Journal of the American Chemical Society 28, 13, (13) Yamada, M.; Okamura, M.; Sato, S.; Someya, C.; Mizorogi, N.; Tsuchiya, T.; Akasaka, T.; Kato, T.; Nagase, S. Chemistry A European Journal 29, 1, (14) Ishitsuka, M. O.; Sano, S.; Enoki, H.; Sato, S.; Nikawa, H.; Tsuchiya, T.; Slanina, Z.; Mizorogi, N.; Liu, M. T. H.; Akasaka, T.; Nagase, S. Journal of the American Chemical Society 211, 133, (1) Feng, L.; Gayathri Radhakrishnan, S.; Mizorogi, N.; Slanina, Z.; Nikawa, H.; Tsuchiya, T.; Akasaka, T.; Nagase, S.; Martín, N.; Guldi, D. M. Journal of the American Chemical Society 211, 133, (16) Yamada, M.; Minowa, M.; Sato, S.; Slanina, Z.; Tsuchiya, T.; Maeda, Y.; Nagase, S.; Akasaka, T. Journal of the American Chemical Society 211, 133, (17) Wakahara, T.; Yamada, M.; Takahashi, S.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kako, M.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S. Chem. Commun. 27, NATURE CHEMISTRY Macmillan Publishers Limited. All rights reserved

Relative Stability of Highly Charged Fullerenes Produced in Energetic Collisions

Relative Stability of Highly Charged Fullerenes Produced in Energetic Collisions Relative Stability of Highly Charged Fullerenes Produced in Energetic Collisions Yang Wang Departamento de Química, Módulo 13 & Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1748 A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism Jianyuan Zhang, Faye L. Bowles, Daniel

More information

ISSN Article

ISSN Article Molecules 2012, 17, 13146-13156; doi:10.3390/molecules171113146 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Stability Computations for Isomers of La@C n (n = 72, 74, 76)

More information

molecules 72 : Computed Comparable Populations of Two Non-IPR Isomers Article

molecules 72 : Computed Comparable Populations of Two Non-IPR Isomers Article molecules Article Eu@C 72 : Computed Comparable Populations of Two Non-IPR Isomers Zdeněk Slanina 1, *, Filip Uhlík 2, Shigeru Nagase 3, Takeshi Akasaka 1, Ludwik Adamowicz 4 and Xing Lu 1 1 State Key

More information

ON SOME EXAMPLES OF FULLERENES WITH HEPTAGONAL RINGS

ON SOME EXAMPLES OF FULLERENES WITH HEPTAGONAL RINGS www.arpapress.com/volumes/vol14issue3/ijrras_14_3_02.pdf ON SOME EXAMPLES OF FULLERENES WITH HEPTAGONAL RINGS F. J. Sánchez-Bernabe 1,*, Bruno Salcedo 2 & Javier Salcedo 3 1 Universidad Autónoma Metropolitana

More information

Fullerenic Systems for Nanoscience : Computational Screening Illustrated on Metallofullerenes

Fullerenic Systems for Nanoscience : Computational Screening Illustrated on Metallofullerenes Fullerenic Systems for Nanoscience : Computational Screening Illustrated on X@C74 Metallofullerenes Z. Slanina, F. Uhlik, S.-L. Lee, L. Adamowicz, S. Nagase To cite this version: Z. Slanina, F. Uhlik,

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Chemical Reactivity of D 3h C 78 (Metallo)Fullerene: Regioselectivity Changes Induced by Sc 3 N Encapsulation

Chemical Reactivity of D 3h C 78 (Metallo)Fullerene: Regioselectivity Changes Induced by Sc 3 N Encapsulation Published on Web 04/16/2008 Chemical Reactivity of D 3h C 78 (Metallo)Fullerene: Regioselectivity Changes Induced by Sc 3 N Encapsulation Sílvia Osuna, Marcel Swart,*,, Josep M. Campanera, Josep M. Poblet,

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Inclusion of X 3 N (X = Ti, Zr, Hf) in Fullerene C80

Inclusion of X 3 N (X = Ti, Zr, Hf) in Fullerene C80 Journal of Computational Methods in Molecular Design, 2015, 5 (1):33-38 Scholars Research Library (http://scholarsresearchlibrary.com/archive.html) Inclusion of X 3 N (X = Ti, Zr, Hf) in Fullerene C80

More information

SYNTHESIS, ISOLATION, AND X-RAY STRUCTURAL CHARACTERIZATION OF TRIFLUOROMETHYLATED C 90 FULLERENES: C 90 (30)(CF 3 ) 18 AND C 90 (35)(CF 3 ) 14

SYNTHESIS, ISOLATION, AND X-RAY STRUCTURAL CHARACTERIZATION OF TRIFLUOROMETHYLATED C 90 FULLERENES: C 90 (30)(CF 3 ) 18 AND C 90 (35)(CF 3 ) 14 NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2014, 5 (1), P. 39 45 SYNTHESIS, ISOLATION, AND X-RAY STRUCTURAL CHARACTERIZATION OF TRIFLUOROMETHYLATED C 90 FULLERENES: C 90 (30)(CF 3 ) 18 AND C 90 (35)(CF

More information

Bond relaxation, electronic and magnetic behavior of 2D metals. structures Y on Li(110) surface

Bond relaxation, electronic and magnetic behavior of 2D metals. structures Y on Li(110) surface Bond relaxation, electronic and magnetic behavior of 2D metals structures Y on Li(11) surface Maolin Bo, a Li Lei, a Chuang Yao, a Zhongkai Huang, a Cheng Peng, a * Chang Q. Sun a,b*, a Key Laboratory

More information

PAPER:2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY. Module No. 34. Hückel Molecular orbital Theory Application PART IV

PAPER:2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY. Module No. 34. Hückel Molecular orbital Theory Application PART IV Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any), PHYSICAL -II QUANTUM Hückel Molecular orbital Theory Module No. 34 TABLE OF CONTENTS 1. Learning outcomes. Hückel Molecular Orbital (HMO) Theory

More information

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model Yang Jie( ) a), Dong Quan-Li( ) a), Jiang Zhao-Tan( ) b), and Zhang Jie( ) a) a) Beijing

More information

Hyperfine structure of 82 from ESR and DFT

Hyperfine structure of 82 from ESR and DFT Hyperfine structure of Sc@C 82 from ESR and DFT G. W. Morley, 1 B. J. Herbert, 2 S. M. Lee, 1,* K. Porfyrakis, 1 T. J. S. Dennis, 3 D. Nguyen- Manh, 4 R. Scipioni, 1 J. van Tol, 5 A. P. Horsfield, 6 A.

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

Metallofullerene Series: Free-Metal Ionization-Potential Control of the Production Yields

Metallofullerene Series: Free-Metal Ionization-Potential Control of the Production Yields The Open Chemical Physics Journal, 211, 3, 1-5 1 Open Access Metallofullerene Series: Free-Metal Ionization-Potential Control of the Production ields Zdeněk Slanina*,1, Filip Uhlík 2, Shyi-Long Lee 3 and

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Selected Publications of Prof. Dr. Wenjian Liu

Selected Publications of Prof. Dr. Wenjian Liu Selected Publications of Prof. Dr. Wenjian Liu College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 1 Fundamentals of relativistic molecular quantum mechanics 1. Handbook

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Supporting Information

Supporting Information Missing Monometallofullerene with C 80 Cage Hidefumi Nikawa, Tomoya Yamada, Baopeng Cao, Naomi Mizorogi, Slanina Zdenek, Takahiro Tsuchiya, Takeshi Akasaka,* Kenji Yoza, Shigeru Nagase* Center for Tsukuba

More information

PART CHAPTER2. Atomic Bonding

PART CHAPTER2. Atomic Bonding PART O N E APTER2 Atomic Bonding The scanning tunneling microscope (Section 4.7) allows the imaging of individual atoms bonded to a material surface. In this case, the microscope was also used to manipulate

More information

Supporting Information for. Predicting the Stability of Fullerene Allotropes Throughout the Periodic Table MA 02139

Supporting Information for. Predicting the Stability of Fullerene Allotropes Throughout the Periodic Table MA 02139 Supporting Information for Predicting the Stability of Fullerene Allotropes Throughout the Periodic Table Qing Zhao 1, 2, Stanley S. H. Ng 1, and Heather J. Kulik 1, * 1 Department of Chemical Engineering,

More information

Avat Arman TAHERPOUR Chemistry Department, Islamic Azad University, Arak, Iran

Avat Arman TAHERPOUR Chemistry Department, Islamic Azad University, Arak, Iran Fullerenes, Nanotubes and Carbon Nanostructures Volume 17, Issue 2 March 2009, pages 171-186. Structural Relationship Study of Electrochemical Properties of the Nano Structures of Cis-unsaturated Thiocrown

More information

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Matteo Baldoni Fachbereich Chemie, Technische Universität Dresden, Germany Department of Chemistry

More information

Plasmonic eigenmodes in individual and bow-tie. graphene nanotriangles

Plasmonic eigenmodes in individual and bow-tie. graphene nanotriangles Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles Weihua Wang,, Thomas Christensen,, Antti-Pekka Jauho,, Kristian S. Thygesen,, Martijn Wubs,, and N. Asger Mortensen,, DTU Fotonik,

More information

Key word: DensityFunctional Theory, Endohedral Energy gap, Electonic properties.

Key word: DensityFunctional Theory, Endohedral Energy gap, Electonic properties. First Principle Studies of Electronic Properties of Nitrogen-doped Endohedral Fullerene 1 M. R. Benam, 2 N. Shahtahmasbi, 1 H. Arabshahi and 1 Z.Zarei 1 Department of Physics, Payame Noor University, P.

More information

Supplemental Material for Giant exchange interaction in mixed lanthanides. Abstract

Supplemental Material for Giant exchange interaction in mixed lanthanides. Abstract Supplemental Material for Giant exchange interaction in mixed lanthanides Veacheslav Vieru, Naoya Iwahara, Liviu Ungur, and Liviu F. Chibotaru Theory of Nanomaterials Group, Katholieke Universiteit Leuven,

More information

Hückel Molecular orbital Theory Application PART III

Hückel Molecular orbital Theory Application PART III Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any) 2, PHYSICAL -I QUANTUM Hückel Molecular orbital Theory Module No. 33 PAPER: 2, PHYSICAL -I TABLE OF CONTENTS 1. Learning outcomes 2. Hückel

More information

Type of file: PDF Title of file for HTML: Peer Review File Description:

Type of file: PDF Title of file for HTML: Peer Review File Description: Type of file: PDF Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Table, Supplementary Notes and Supplementary References. Type of file: PDF Title of

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

Journal of Theoretical Physics

Journal of Theoretical Physics 1 Journal of Theoretical Physics Founded and Edited by M. Apostol 53 (2000) ISSN 1453-4428 Ionization potential for metallic clusters L. C. Cune and M. Apostol Department of Theoretical Physics, Institute

More information

First-principle studies of the geometries and electronic properties of Cu m Si n (2 m + n 7) clusters

First-principle studies of the geometries and electronic properties of Cu m Si n (2 m + n 7) clusters Vol 16 No 11, November 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(11)/3359-11 Chinese Physics and IOP Publishing Ltd First-principle studies of the geometries and electronic properties of Cu m Si n

More information

Fullerenes with distant pentagons

Fullerenes with distant pentagons Fullerenes with distant pentagons Jan Goedgebeur a, Brendan D. McKay b arxiv:1508.02878v1 [math.co] 12 Aug 2015 a Department of Applied Mathematics, Computer Science & Statistics Ghent University Krijgslaan

More information

The Boron Buckyball has an Unexpected T h Symmetry

The Boron Buckyball has an Unexpected T h Symmetry The Boron Buckyball has an Unexpected T h Symmetry G. Gopakumar, Minh Tho Nguyen, and Arnout Ceulemans* Department of Chemistry and Institute for Nanoscale Physics and Chemistry, University of Leuven,

More information

Ab initio and DFT study of the thermodynamic properties and nuclear magnetic resonance of (4, 4) armchair AlN nanotubes

Ab initio and DFT study of the thermodynamic properties and nuclear magnetic resonance of (4, 4) armchair AlN nanotubes Ab initio and DFT study of the thermodynamic properties and nuclear magnetic resonance of (4, 4) armchair AlN nanotubes Elham Pournamdari * Department of science, Islamshahr Branch, Islamic Azad University,

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table.

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. 1.6. Review of Electronegativity (χ) CONCEPT: Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. There are many definitions

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

A Note on the Smallest Eigenvalue of Fullerenes

A Note on the Smallest Eigenvalue of Fullerenes 1 A Note on the Smallest Eigenvalue of Fullerenes Patrick W. Fowler p.w.fowler@exeter.ac.uk School of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK Pierre Hansen Pierre.Hansen@gerad.ca

More information

Statistical Properties of Carbon Nanostructures

Statistical Properties of Carbon Nanostructures Statistical Properties of Carbon Nanostructures Forrest H. Kaatz, Mesalands Community College, Tucumcari, NM, USA Adhemar Bultheel, Dept. Computer Sci., KU Leuven, Heverlee, Belgium Abstract We look at

More information

Body-centred-cubic (BCC) lattice model of nuclear structure

Body-centred-cubic (BCC) lattice model of nuclear structure Body-centred-cubic (BCC) lattice model of nuclear structure Gamal A. Nasser Faculty of science, Mansoura University, Egypt. E-mail: chem.gamal@hotmail.com. Abstract: This model is development of solid

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Formation Mechanism and Binding Energy for Icosahedral Central Structure of He + 13 Cluster

Formation Mechanism and Binding Energy for Icosahedral Central Structure of He + 13 Cluster Commun. Theor. Phys. Beijing, China) 42 2004) pp. 763 767 c International Academic Publishers Vol. 42, No. 5, November 5, 2004 Formation Mechanism and Binding Energy for Icosahedral Central Structure of

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(4): 589-595 Altering the electronic properties of adamantane

More information

The Edge Termination Controlled Kinetics in Graphene. Chemical Vapor Deposition Growth

The Edge Termination Controlled Kinetics in Graphene. Chemical Vapor Deposition Growth Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information The Edge Termination Controlled Kinetics in Graphene

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

Periodicity & Many-Electron Atoms

Periodicity & Many-Electron Atoms Chap. 8 ELECTRON CONFIGURAT N & CEMICAL PERIODICITY 8.1-8.2 Periodicity & Many-Electron Atoms Understand the correlation of electron configuration and the periodic character of atomic properties such as

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

Structure stability and magnetic properties of Os n B(n = 11 20) clusters

Structure stability and magnetic properties of Os n B(n = 11 20) clusters Bull. Mater. Sci., Vol. 38, No. 2, April 2015, pp. 425 434. c Indian Academy of Sciences. Structure stability and magnetic properties of Os n B(n = 11 20) clusters XIU-RONG ZHANG 1,, MINLUO 2, FU-XING

More information

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries SUPPLEMENTARY INFORMATION Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries Qiang Sun, Bin He, Xiang-Qian Zhang, and An-Hui Lu* State Key Laboratory

More information

Density Functional Theory Calculation of the Electronic Structure for C 20 Cage Fullerene حسابات نظرية دالة الكثافة للتركيب االلكتروني للفوليرين C 20

Density Functional Theory Calculation of the Electronic Structure for C 20 Cage Fullerene حسابات نظرية دالة الكثافة للتركيب االلكتروني للفوليرين C 20 Density Functional Theory Calculation of the Electronic Structure for C 20 Cage Fullerene حسابات نظرية دالة الكثافة للتركيب االلكتروني للفوليرين C 20 محمد اف ارح هادي هاشم نضال هادي طالب ليث عبيس اب ارهيم

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crossover Site-Selectivity in the Adsorption of the Fullerene Derivative PCBM on Au(111) David Écija, a Roberto Otero, a Luis Sánchez, b José

More information

Supporting information for. Stacking dependent electronic structure and optical properties of bilayer. black phosphorus

Supporting information for. Stacking dependent electronic structure and optical properties of bilayer. black phosphorus Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 016 Supporting information for Stacking dependent electronic structure and optical properties

More information

INSTRUCTIONS: 7. Relax and do well.

INSTRUCTIONS: 7. Relax and do well. EM 1314 Name Exam III TA Name John III. Gelder November 16, 1992 Lab Section INSTRUTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and some

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Carbon Dots Supported upon N-doped TiO 2 Nanorod

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195.

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195. 1 Chem 64 Solutions to Problem Set #1, REVIEW 1. AO n l m 1s 1 0 0 2s 2 0 0 2p 2 1 1,0,1 3d 3 2 2, 1,0,1,2 4d 4 2 2, 1,0,1,2 4f 4 3 3, 2, 1,0,1,2,3 2. Penetration relates to the radial probability distribution

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Theoretical Study for the Effect of Hydroxyl Radical on the Electronic Properties of Cyclobutadiene

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

Module:32,Huckel Molecular Orbital theory- Application Part-II PAPER: 2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY

Module:32,Huckel Molecular Orbital theory- Application Part-II PAPER: 2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any) 2, PHYSICAL -I QUANTUM Hückel Molecular orbital Theory Application PART II Module No. 32 TABLE OF CONTENTS 1. Learning outcomes 2. Hückel Molecular

More information

If anything confuses you or is not clear, raise your hand and ask!

If anything confuses you or is not clear, raise your hand and ask! CHM 1045 Dr. Light s Section December 10, 2002 FINAL EXAM Name (please print) Recitation Section Meeting Time This exam consists of six pages. Make sure you have one of each. Print your name at the top

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Density Functional Theory Study on Mechanism of Forming Spiro-Geheterocyclic Ring Compound from Me 2 Ge=Ge: and Acetaldehyde

Density Functional Theory Study on Mechanism of Forming Spiro-Geheterocyclic Ring Compound from Me 2 Ge=Ge: and Acetaldehyde CHINESE JURNAL F CHEMICAL PHYSICS VLUME 26, NUMBER 1 FEBRUARY 27, 2013 ARTICLE Density Functional Theory Study on Mechanism of Forming Spiro-Geheterocyclic Ring Compound from Me 2 Ge=Ge: and Acetaldehyde

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5 BROOKLYN COLLEGE Department of Chemistry Chemistry 1 Second Lecture Exam Nov. 27, 2002 Name Page 1 of 5 Circle the name of your lab instructor Kobrak, Zhou, Girotto, Hussey, Du Before you begin the exam,

More information

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How

No. 2 lectronic state and potential energy function for UH where ρ = r r e, r being the interatomic distance and r e its equilibrium value. How Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0154-05 Chinese Physics and IOP Publishing Ltd lectronic state and potential energy function for UH 2+* Wang Hong-Yan( Ψ) a)y,

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1677 Entangled quantum electronic wavefunctions of the Mn 4 CaO 5 cluster in photosystem II Yuki Kurashige 1 *, Garnet Kin-Lic Chan 2, Takeshi Yanai 1 1 Department of Theoretical and

More information

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals Supporting Information to the manuscript Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals P. Jost and C. van Wüllen Contents Computational Details...

More information

Structural and Electronic Properties of Small Silicon Nanoclusters

Structural and Electronic Properties of Small Silicon Nanoclusters Structural and Electronic Properties of Small Silicon Nanoclusters Prabodh Sahai Saxena a* and Amerendra Singh Sanger b a Physics Department, Lakshmi Narain College of Technology Excellence, Bhopal, India.

More information

Partial Dynamical Symmetry in Deformed Nuclei. Abstract

Partial Dynamical Symmetry in Deformed Nuclei. Abstract Partial Dynamical Symmetry in Deformed Nuclei Amiram Leviatan Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel arxiv:nucl-th/9606049v1 23 Jun 1996 Abstract We discuss the notion

More information

Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model

Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model Wu and Childs Nanoscale es Lett, 6:6 http://www.nanoscalereslett.com/content/6//6 NANO EXPE Open Access Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model Y Wu, PA Childs * Abstract

More information

Universal Associated Legendre Polynomials and Some Useful Definite Integrals

Universal Associated Legendre Polynomials and Some Useful Definite Integrals Commun. Theor. Phys. 66 0) 158 Vol. 66, No., August 1, 0 Universal Associated Legendre Polynomials and Some Useful Definite Integrals Chang-Yuan Chen í ), 1, Yuan You ), 1 Fa-Lin Lu öß ), 1 Dong-Sheng

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES Weiqiao Deng, Jianwei Che, Xin Xu, Tahir Çagin, and William A Goddard, III Materials and Process Simulation Center, Beckman Institute,

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hours. Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Lecture 16 February 20 Transition metals, Pd and Pt

Lecture 16 February 20 Transition metals, Pd and Pt Lecture 16 February 20 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Transversal electric field effect in multilayer graphene nanoribbon

Transversal electric field effect in multilayer graphene nanoribbon Transversal electric field effect in multilayer graphene nanoribbon S. Bala kumar and Jing Guo a) Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32608, USA

More information

In-Plane Intermolecular Interaction Assisted Assembly and Modified Electronic States of Metallofullerene 82

In-Plane Intermolecular Interaction Assisted Assembly and Modified Electronic States of Metallofullerene 82 pubs.acs.org/langmuir In-Plane Intermolecular Interaction Assisted Assembly and Modified Electronic States of Metallofullerene Gd@C 82 Jian Chen, Zhihui Qin,*, Jinbo Pan, Min Huang, Shixuan Du, and Gengyu

More information

Spin-dependent energy gap oscillations in the ultra-short carbon nanotube (5, 5)

Spin-dependent energy gap oscillations in the ultra-short carbon nanotube (5, 5) Journal of Physics: Conference Series PAPER OPEN ACCESS Spin-dependent energy gap oscillations in the ultra-short carbon nanotube (5, 5) To cite this article: A V Tuchin et al 2015 J. Phys.: Conf. Ser.

More information

Density Functional Theory (DFT) modelling of C60 and

Density Functional Theory (DFT) modelling of C60 and ISPUB.COM The Internet Journal of Nanotechnology Volume 3 Number 1 Density Functional Theory (DFT) modelling of C60 and N@C60 N Kuganathan Citation N Kuganathan. Density Functional Theory (DFT) modelling

More information

610B Final Exam Cover Page

610B Final Exam Cover Page 1 st Letter of Last Name NAME: 610B Final Exam Cover Page No notes or calculators of any sort allowed. You have 3 hours to complete the exam. CHEM 610B, 50995 Final Exam Fall 2003 Instructor: Dr. Brian

More information

New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60

New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60 New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60 Jing Wang a and Ying Liu*,a,b a Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050016, Hebei,

More information

Supporting Information. Molecular Selectivity of. Graphene-Enhanced Raman Scattering

Supporting Information. Molecular Selectivity of. Graphene-Enhanced Raman Scattering 1 Supporting Information 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Molecular Selectivity of Graphene-Enhanced Raman Scattering Shengxi Huang,, Xi Ling,,, * Liangbo Liang, ǁ Yi Song,

More information