Orbitals, Shapes and Polarity Quiz

Size: px
Start display at page:

Download "Orbitals, Shapes and Polarity Quiz"

Transcription

1 Orbital, Shae and Polarity Quiz Name: /17 Knowledge. Anwer the following quetion on foolca. /2 1. Exlain why the ub-level can aear to be herical like the ub-level? /2 2.a) What i the maximum number of i bond that a ub-level can form? Exlain. /2 b) A bond form between a 2 hybridized orbital from one atom and a 2 hybridized orbital from another atom. I thi bond likely to be a igma or i bond? Exlain your reaoning. /7. With the aid of diagram, redict the mot table hae of a 2 SO molecule. /2 4. Arrange the following molecule/ion in order of decreaing angle between the marked (curved line) bonded atom? /2 5. Exlain what effect loing 1 electron from N in N would have on it hae. /20 Communication. Anwer the following quetion on foolca. /2 6. Draw the orbital diagram to rereent 4. /5 7.a) Draw orbital diagram to how the bonding in the mot table redicted NC 2 molecule. /5 b) Label each bond and orbital in your diagram. /8 8. For each of the following combination of molecule: i) IO ii) XeOF 4 (Xe electronegativity = 2.6) a) draw and name the geometric hae of the molecule. b) illutrate the bond olarity and tate whether or not the molecule i olar.

2 Orbital, Shae and Polarity Quiz Name: /17 Knowledge. Anwer the following quetion on foolca. /2 1. Exlain why the ub-level can aear to be herical like the ub-level? electron motly found at the ti of the orbital but the orbital are contantly moving around the nucleu creating the aearance of herical hae (like a inning triangle look like a here) /2 2.a) What i the maximum number of i bond that a ub-level can form? Exlain. 2 there are orbital and 1 mut form a igma bond to allow any i bonding leaving only the remaining 2 available for i bonding /2 b) A bond form between a 2 hybridized orbital from one atom and a 2 hybridized orbital from another atom. I thi bond likely to be a igma or i bond? Exlain your reaoning. igma bond becaue a i bond involving ideway overlaing and the bond forming between 2 orbital contrain the hared electron into the one ignificant 2 lobe from each atom would require too much energy comared to the direct overla of the igma bond that could form /7. With the aid of diagram, redict the mot table hae of a 2 SO molecule. O S ulfur could ingle bond to an and the O and then the other could ingle bond to the O (recall eaily bond to very electronegative atom) thi create a line of bent hae a the S and O both have 4 electron air with 2 bonding air and 2 non-bonding air each from left to right F.C: S: = 0 O: = 0 OR work ince there i no electron ditribution iue in that there are no atom with formal charge and all atom have table electron configuration O S ulfur could ingle bond to the atom and then hybridize a air of electron, ingle bond to the O and then reditribute the lone remaining electron to the O create a trigonal yramid hae (reult in 4 electron air around S, igma bond and 1 lone-air) from to to bottom F.C: O: = -1 S: = 1 OR even though all atom have table electron configuration, thi i not a likely due to an electron deficit on S and electron loading on O

3 O S ulfur ingle bond to the atom and then hybridize a air of electron and double bond to the O thi create a trigonal yramid hae (5 electron around S with igma bond, 1 lone air and 1 i bond the igma and 1 lone air create a tetrahedral hae (4,1), but only air are actual bond) from to to bottom F.C: O: = 0 S: = 0 work ince there i no electron ditribution iue and all atom have table electron configuration (well ort of, the i bond ull one air of electron further away from the other 4 air making them le reulive than if there were jut 5 air of electron in igma oition meaning ulfur can tolerate 10 outer electron) o you would not likely redict thi one a being a table oibility but if told it did work, you could now exlain it o, in the end, two oible configuration but you would ick the firt one a being mot table /2 4. Arrange the following molecule/ion in order of decreaing angle between the marked (curved line) bonded atom? b, a, c in b, reulion on bonding air but the F draw it hared electron air away from P o the reulion between F-Cl atom i le allowing the reulion between the Cl to be felt more and they uh away from each other creating an angle bigger than 120 in a, all the reulion are equal and the angle i 120 in c, the lone air of electron are mot reulive ince they are very cloe to P making the lone air- Cl reulion ignificant uhing the Cl atom together making the angle le than 120 /2 5. Exlain what effect loing 1 electron from N in N would have on it hae. there will be a lone electron on N which mean it will be le reulive than when there wa a air of electron thu, the angle between the atom will relax omewhat and become lightly larger, but not a in the tetrahedral

4 /20 Communication. Anwer the following quetion on foolca. /2 6. Draw the orbital diagram to rereent 4. all look the ame and you mut draw all orbital (full and emty) /5 7.a) Draw orbital diagram to how the bonding in the mot table redicted NC 2 molecule. /5 b) Label each bond and orbital in your diagram hae, alignment, labelling and filling are very ecific notice full of N and C not included ince they do not bond notice lobe only labelled once becaue they are comlete a a bi-lobe notice bonded lobe have ooite facing electron note i bond labelled once but dahed line curve inward to both lobe /8 8. For each of the following combination of molecule: i) IO ii) XeOF 4 (Xe electronegativity = 2.6) a) draw and name the geometric hae of the molecule. b) illutrate the bond olarity and tate whether or not the molecule i olar. i) IO oibilitie: I hybridize twice, all O atom ingle bond with electron hifting from I to O but F.C. oor I hybridize twice, one O atom double bond and two O atom ingle bond with an electron hifting from I to one of the O atom but F.C. oor I hybridize twice, two O atom double bond and the other O atom ingle bond and F.C. i bet o I ha 6 electron air, but only igma and one non-bonding air o I ha an architecture of (4,1) trigonal yramidal vector create a net olarity o the molecule i olar notice wedge drawing i very ecific (bold olid triangle = coming outward o get larger moving outward while hahed triangle i not olid and get maller a it fade backward)

5 ii) XeOF 4 2 oibilitie Xe hybridize three time, all atom ingle bond and twice, with an electron hifting from Xe to the O but F.C. oor Xe hybridize three time, all F atom ingle bond and O atom double bond F.C. i bet Xe ha 7 electron air, but only 5 igma and 1 non-bonding air o Xe ha an architecture of (6,1) quare yramidal vector create a net olarity o the molecule i olar (F ha more ull and unymmetrical hae) utting O i unlikely ince it i much more electronegative than Xe attaching a F to O i oible but then the hae would not have a name o it i imlied that a better, more likely anwer hould be ued note that there i often more than one way to do thee and ometime thi create different anwer the mot table verion i the mot likely, but thi wa not art of the quetion (o you don t actually have to do all the F.C. work jut ick one and go from there) Preared by K. Zuber

Orbitals, Shapes and Polarity Quiz

Orbitals, Shapes and Polarity Quiz rbitals, Shapes and Polarity Quiz Name: /21 Knowledge. Answer the following questions on foolscap. /2 1. Explain why the p sub-level can appear to be spherical like the s sub-level? /2 2.a) What is the

More information

Worksheet 14 - Hybridization

Worksheet 14 - Hybridization Workheet 4 - ybridization When atom bond to form molecule, they ue molecular orbital. Thee are formed through the of the atomic orbital that we have already dicued,,, and d orbital. The hybridized molecular

More information

4/5/2010. Orbitals. Figure 12.18: Three representations of the hydrogen 1s. Figure 12.19b: Representation of the 2p orbitals.

4/5/2010. Orbitals. Figure 12.18: Three representations of the hydrogen 1s. Figure 12.19b: Representation of the 2p orbitals. The Central Theme of VB Theory Baic Princile Covalent Bonding: rbital A covalent bond form when the of two atom overla and are occuied by a air of electron that have the highet robability of being located

More information

Chapter 4 Electron Configurations and Quantum Chemistry

Chapter 4 Electron Configurations and Quantum Chemistry Chater 4 Electron Configuration and Quantum Chemitry Electron configuration determine how an atom behave in bonding with other atom! Toic rearranged from your text, age 90-11. Atomic Emiion/Abortion removed

More information

Chapter 6. Quantum Mechanics & Molecular Structure. Chapter Outline

Chapter 6. Quantum Mechanics & Molecular Structure. Chapter Outline Chater 6 Quantum Mechanic & Molecular Structure 6. Chater Outline 6. Quantum icture of the chemical bond Simlet molecule : H orn-oenheimer roximation Electronic wave function for H electronic denity in

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

CHAPTER 10 CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER 10 CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS APTER 10 EMIAL BNDING II: MLEULAR GEMETRY AND YBRIDIZATIN ATMI RBITALS 10.7 (a) The Lewi tructure of P 3 i hown below. Since in the VSEPR method the number of bonding pair and lone pair of electron around

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

CHAPTER 10 CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER 10 CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS APTER 10 EMIAL BNDING II: MLEULAR GEMETRY AND YBRIDIZATIN ATMI RBITALS 10.7 (a) The Lewi tructure of P 3 i hown below. Since in the VSEPR method the number of bonding pair and lone pair of electron around

More information

CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS

CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS 4.1 General Several tud trength rediction method have been develoed ince the 1970. Three o thee method are art o

More information

1 t year n0te chemitry new CHAPTER 6 CHEMICAL BONDING MCQ Q.1 An ionic compound A+ B i mot likely to be formed when (a) The ionization energy of A i high and electron affinity of B i low (b) The ionization

More information

The Hand of God, Building the Universe and Multiverse

The Hand of God, Building the Universe and Multiverse 1.0 Abtract What i the mathematical bai for the contruction of the univere? Thi paper intend to how a tart of how the univere i contructed. It alo anwer the quetion, did the hand of God build the univere?

More information

Midterm 3 Review Solutions by CC

Midterm 3 Review Solutions by CC Midterm Review Solution by CC Problem Set u (but do not evaluate) the iterated integral to rereent each of the following. (a) The volume of the olid encloed by the arabaloid z x + y and the lane z, x :

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...4

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

Comparing Means: t-tests for Two Independent Samples

Comparing Means: t-tests for Two Independent Samples Comparing ean: t-tet for Two Independent Sample Independent-eaure Deign t-tet for Two Independent Sample Allow reearcher to evaluate the mean difference between two population uing data from two eparate

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vector 1 Vector have Direction and Magnitude Mike ailey mjb@c.oregontate.edu Magnitude: V V V V x y z vector.pptx Vector Can lo e Defined a the oitional Difference etween Two oint 3 Unit Vector have a

More information

EC381/MN308 Probability and Some Statistics. Lecture 7 - Outline. Chapter Cumulative Distribution Function (CDF) Continuous Random Variables

EC381/MN308 Probability and Some Statistics. Lecture 7 - Outline. Chapter Cumulative Distribution Function (CDF) Continuous Random Variables EC38/MN38 Probability and Some Statitic Yanni Pachalidi yannip@bu.edu, http://ionia.bu.edu/ Lecture 7 - Outline. Continuou Random Variable Dept. of Manufacturing Engineering Dept. of Electrical and Computer

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL =

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL = Our online Tutor are available 4*7 to provide Help with Proce control ytem Homework/Aignment or a long term Graduate/Undergraduate Proce control ytem Project. Our Tutor being experienced and proficient

More information

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3 CEE 34 Aut 004 Midterm # Anwer all quetion. Some data that might be ueful are a follow: ρ water = 1000 kg/m 3 = 1.94 lug/ft 3 water = 9810 N/m 3 = 6.4 lb/ft 3 1 kw = 1000 N-m/ 1. (10) A 1-in. and a 4-in.

More information

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

MODEL 1: Molecule Shapes Simulation (http://phet.colorado.edu/en/simulation/molecule- shapes)

MODEL 1: Molecule Shapes Simulation (http://phet.colorado.edu/en/simulation/molecule- shapes) Molecule Shapes MODEL 1: Molecule Shapes Simulation (http://phet.colorado.edu/en/simulation/molecule- shapes) PART I: ELECTRON DOMAINS 1. Explore the Model screen of the simulation. As you explore, answer

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

USEFUL TECHNIQUES FOR FIELD ANALYSTS IN THE DESIGN AND OPTIMIZATION OF LINEAR INDUCTION MOTORS

USEFUL TECHNIQUES FOR FIELD ANALYSTS IN THE DESIGN AND OPTIMIZATION OF LINEAR INDUCTION MOTORS USEFUL TECHNIQUES FOR FIELD ANALYSTS IN THE DESIGN AND OPTIMIZATION OF LINEAR INDUCTION MOTORS By: K.R. Davey R.C. Zowarka Twelfth Biennial IEEE Conference on Electromagnetic Field Comutation (CEFC 006),

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

Fair Game Review. Chapter 6 A B C D E Complete the number sentence with <, >, or =

Fair Game Review. Chapter 6 A B C D E Complete the number sentence with <, >, or = Name Date Chapter 6 Fair Game Review Complete the number entence with , or =. 1..4.45. 6.01 6.1..50.5 4. 0.84 0.91 Find three decimal that make the number entence true. 5. 5. 6..65 > 7..18 8. 0.0

More information

Solution to Test #1.

Solution to Test #1. Solution to Tet #. Problem #. Lited below are recorded peed (in mile per hour, mph) of randomly elected car on a ection of Freeway 5 in Lo Angele. Data are orted. 56 58 58 59 60 60 6 6 65 65 65 65 66 66

More information

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4

Example: Write the Lewis structure of XeF 4. Example: Write the Lewis structure of I 3-. Example: Select the favored resonance structure of the PO 4 Expanded valence shells (extended octets) more than 8e - around a central atom Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)

More information

Q.4 Which of the following of will have the same number of

Q.4 Which of the following of will have the same number of year n0te chemitry new t Chapter 3rd GASES MCQ Q.1 The order of the rate of diffuion of gae NH3, SO2, Cl2 and CO2 i: (a) NH3 > SO2 > Cl2 > CO2 (b) NH3 > CO2 > SO2 > Cl2 Cl2> SO2 > CO2 > NH3 None of thee

More information

Ch 13: Covalent Bonding

Ch 13: Covalent Bonding Ch 13: Covalent Bonding Section 13: Valence-Shell Electron-Pair Repulsion 1. Recall the rules for drawing Lewis dot structures 2. Remember the special situations: - Resonance structures - ormal charges

More information

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

66 Lecture 3 Random Search Tree i unique. Lemma 3. Let X and Y be totally ordered et, and let be a function aigning a ditinct riority in Y to each ele

66 Lecture 3 Random Search Tree i unique. Lemma 3. Let X and Y be totally ordered et, and let be a function aigning a ditinct riority in Y to each ele Lecture 3 Random Search Tree In thi lecture we will decribe a very imle robabilitic data tructure that allow inert, delete, and memberhi tet (among other oeration) in exected logarithmic time. Thee reult

More information

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement.

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement. NAME: AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4 (Questions 1-13) Choose the letter that best answers the question or completes the statement. (Questions 1-2) Consider atoms of the following elements.

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chemical Bonding polarity & Dipole Moments. Chapter 8 Part III

Chemical Bonding polarity & Dipole Moments. Chapter 8 Part III Chemical Bonding polarity & Dipole Moments Chapter 8 Part III Exercise Arrange the following bonds from most to least polar: a) N F O F C F b) C F N O Si F c) Cl Cl B Cl S Cl Exercise a) C F, N F, O F

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1

Chapter 10 Molecular Geometry and Chemical Bonding Theory. Copyright Cengage Learning. All rights reserved. 10 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory Copyright Cengage Learning. All rights reserved. 10 1 Molecular geometry is the general shape of a molecule, as determined by the relative positions

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

10: Modeling Molecular Structure CH141L November 24, 2015

10: Modeling Molecular Structure CH141L November 24, 2015 10: Modeling Molecular Structure CH141L November 24, 2015 This week, we ll use ball and stick models to explore molecular structure. At the end of the lab period, hand in the completed packet of Molecular

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2

Do now: Brainstorm how you would draw the Lewis diagram for: H 2 O CO 2 Do now: Brainstorm how you would draw the Lewis diagram for: 2 O CO 2 Shapes of molecules C 4 N 3 2 O C 2 O CO 2 Shapes of molecules Shapes of molecules are determined by the number of bonding and non-bonding

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations.

Name: Period: Date: What Is VSEPR? Now explore the Compare Two Structures link. Try changing the display to explore different combinations. Name: Period: Date: What Is VSEPR? Exploring The Valence Shell Electron Pair Repulsion (VSEPR) model. Go to the Purdue University website to explore VSEPR theory. http://www.chem.purdue.edu/gchelp/vsepr/structur2.html

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Chang & Goldsby Modified by Dr. Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

QUESTION (2012:1) The 3-dimensional diagrams of two molecules are shown below.

QUESTION (2012:1) The 3-dimensional diagrams of two molecules are shown below. QUESTION (2012:1) (c) The 3-dimensional diagrams of two molecules are shown below. Circle the word that describes the polarity of each of the molecules CBr 4 and CH 3 Br. CBr 4 Polar Non-polar CH 3 Br

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Solved problems 4 th exercise

Solved problems 4 th exercise Soled roblem th exercie Soled roblem.. On a circular conduit there are different diameter: diameter D = m change into D = m. The elocity in the entrance rofile wa meaured: = m -. Calculate the dicharge

More information

Lewis Structures and Molecular Shapes

Lewis Structures and Molecular Shapes Lewis Structures and Molecular Shapes Drawing Lewis Structures Determine from formula if ionic or covalent Count the electrons If ionic : add valence # to charge if (-), subtract if (+) - = 7+1 electrons;

More information

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion.

Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. VSEPR & Geometry Lewis structures show the number and type of bonds between atoms in a molecule or polyatomic ion. Lewis structures are not intended to show the 3-dimensional structure (i.e. shape or geometry)

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Carbon Compounds. Chemical Bonding Part 1b

Carbon Compounds. Chemical Bonding Part 1b Carbon Compounds Chemical Bonding Part 1b Board Notes Introduction to VSEPR Organic Formulas Various Representations " dimethyl ether C 2 H 6 O " propyl alcohol C 3 H 8 O 3D representations " Wedges and

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

4.Chemical bonding and Molecular Structure

4.Chemical bonding and Molecular Structure 4.Chemical bonding and Molecular Structure Some Imortant Points and Terms of the Chater 1. Lewis dot structures are shorthand to reresent the valence electrons of an atom. The structures are written as

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

/University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009

/University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009 Lecture 0 /6/09 /Univerity of Wahington Department of Chemitry Chemitry 453 Winter Quarter 009. Wave Function and Molecule Can quantum mechanic explain the tructure of molecule by determining wave function

More information

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( )

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( ) Chemical Bonding Lewis Theory Valence Bond VSEPR Molecular rbital Theory 1 "...he [his father] knew the difference between knowing the name of something and knowing something" Richard Philips eynman, Nobel

More information

Discovery Mass Reach for Excited Quarks at Hadron Colliders

Discovery Mass Reach for Excited Quarks at Hadron Colliders Dicovery Ma Reach for Excited Quark at Hadron Collider Robert M. Harri Fermilab, Batavia, IL 60510 ABSTRACT If quark are comoite article then excited tate are exected. We etimate the dicovery ma reach

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Molecular Polarity Guided Inquiry (Textbook 10.4) Essential Questions How do the bonds between atoms, as well as electron location, determine

Molecular Polarity Guided Inquiry (Textbook 10.4) Essential Questions How do the bonds between atoms, as well as electron location, determine Polarity Guided Inquiry (Textbook 10.4) Essential Questions How do the bonds between atoms, as well as electron location, determine interactions between molecules? How do electronegativity and molecular

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chang & Goldsby Modified by Dr. Juliet Hahn Copyright McGraw-Hill Education. All rights reserved. No reproduction

More information

Z a>2 s 1n = X L - m. X L = m + Z a>2 s 1n X L = The decision rule for this one-tail test is

Z a>2 s 1n = X L - m. X L = m + Z a>2 s 1n X L = The decision rule for this one-tail test is M09_BERE8380_12_OM_C09.QD 2/21/11 3:44 PM Page 1 9.6 The Power of a Tet 9.6 The Power of a Tet 1 Section 9.1 defined Type I and Type II error and their aociated rik. Recall that a repreent the probability

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS

MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS MANUFACTURING TOLERANCES AS A CAUSE FOR AUDIBLE NOISE OF INDUCTION MOTORS Delaere K., Franen J., Hameyer K., Belman R. Katholieke Univeriteit Leuven, De. EE (ESAT) Div. ELEN, Kardinaal Mercierlaan 94,

More information

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or =

Fair Game Review. Chapter 7 A B C D E Name Date. Complete the number sentence with <, >, or = Name Date Chapter 7 Fair Game Review Complete the number entence with , or =. 1. 3.4 3.45 2. 6.01 6.1 3. 3.50 3.5 4. 0.84 0.91 Find three decimal that make the number entence true. 5. 5.2 6. 2.65 >

More information

The Laplace Transform (Intro)

The Laplace Transform (Intro) 4 The Laplace Tranform (Intro) The Laplace tranform i a mathematical tool baed on integration that ha a number of application It particular, it can implify the olving of many differential equation We will

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

10-1. The Shapes of Molecules, chapter 10

10-1. The Shapes of Molecules, chapter 10 10-1 The Shapes of Molecules, chapter 10 The Shapes of Molecules; Goals 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory 10.3 Molecular

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( )

11/14/2014. Chemical Bonding. Richard Philips Feynman, Nobel Laureate in Physics ( ) Chemical Bonding Lewis Theory Valence Bond VSEPR Molecular Orbital Theory 1 "...he [his father] knew the difference between knowing the name of something and knowing something" Richard Philips Feynman,

More information

skipping section 6.6 / 5.6 (generating permutations and combinations) concludes basic counting in Chapter 6 / 5

skipping section 6.6 / 5.6 (generating permutations and combinations) concludes basic counting in Chapter 6 / 5 kiing ection 6.6 / 5.6 generating ermutation and combination conclude baic counting in Chater 6 / 5 on to Chater 7 / 6: Dicrete robability before we go to trickier counting in Chater 8 / 7 age 431-475

More information

p. (The electron is a point particle with radius r = 0.)

p. (The electron is a point particle with radius r = 0.) - pin ½ Recall that in the H-atom olution, we howed that the fact that the wavefunction Ψ(r) i ingle-valued require that the angular momentum quantum nbr be integer: l = 0,,.. However, operator algebra

More information

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1

AP CHEM WKST KEY: Atomic Structure Unit Review p. 1 AP CHEM WKST KEY: Atoic Structure Unit Review p. 1 1) a) ΔE = 2.178 x 10 18 J 1 2 nf 1 n 2i = 2.178 x 10 18 1 1 J 2 2 6 2 = 4.840 x 10 19 J b) E = λ hc λ = E hc = (6.626 x 10 34 J )(2.9979 x 10 4.840 x

More information

Quantitative Information Leakage. Lecture 9

Quantitative Information Leakage. Lecture 9 Quantitative Information Leakage Lecture 9 1 The baic model: Sytem = Information-Theoretic channel Secret Information Obervable 1 o1... Sytem... m on Input Output 2 Toward a quantitative notion of leakage

More information

px3 All bonding with all hybrid orbitals will occur on the larger lobe for each hybrid.

px3 All bonding with all hybrid orbitals will occur on the larger lobe for each hybrid. Reasons for ybridization 1. Allows atoms to have the correct number of unpaired electrons to make necessary number of bonds. 2. Best spatial orientation achieved least amount of electron repulsions 3.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.73 Quantum Mechanic I Fall, 00 Profeor Robert W. Field FINAL EXAMINATION DUE: December 11, 00 at 11:00AM. Thi i an open book, open note, open computer, unlimited

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Chapter 6 PRETEST: Chemical Bonding

Chapter 6 PRETEST: Chemical Bonding Chapter 6 PRETEST: Chemical In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.The charge on an ion is a. always positive.

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Chemical Bonding Outline 1. Lewis Dot Structures 2. Bonds 3. Formal Charges 4. VSEPR (Molecular Geometry and Hybridzation) 5. Common Resonance Structures and Dimerization Review 1. Lewis Dot Structures

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information