Non-Evaporable Getters

Size: px
Start display at page:

Download "Non-Evaporable Getters"

Transcription

1 Non-Evaporable Getters Dr. Oleg B. Malyshev Senior Vacuum Scientist ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK VS-2, October 2011, Ricoh Arena, Coventry 1

2 Sorption and diffusion Gas atoms or molecules (adsorbate) Solid surface (adsorbent) Gas, adsorbate Sticking probability s 1 Physisorption (dipole or van der Waals forces) Chemisorption (covalent linkage) adsorbate desorption surface diffusion Binding energy Reflecting probability (1 s) Solid adsorbent Handbook of vacuum technology. Ed. K. Jousten, Weley-VCH, Weinheim, 2008, Chapters 6,11 diffusion absorbed molecules VS-2, October 2011, Ricoh Arena, Coventry 2/40

3 Classification of sorption pumps Sorption pumps Adsorption pumps (physi- and cryosorption ) Getter pumps (physi- and chemisorption) With ionisation Without ionisation Orbitron pumps Ion getter pump Evaporation pumps Bulk getter pumps NEG pumps NEG coating VS-2, October 2011, Ricoh Arena, Coventry 3/40

4 Getters Gas accumulation in getter materials due to: Adsorption at the surface Absorption (i.e. solvation) in the bulk Due to diffusion, reversible process Chemical binding Irreversible process Evaporation pumps Adsorption mainly Chemical binding at surface Covering with a fresh material after saturation Bulk (non-evaporable) getter pumps Bulk getter not only adsorb gases at the surface but also employs an effect of gas diffusion into a getter material Re-activation by heating to an activation temperature VS-2, October 2011, Ricoh Arena, Coventry 4

5 Complications in studying and using NEG Complexity of getter material and processes: Oxide layers Surface roughness Bulk structure and morphology Temperature (activation and operation) History of using the getter Gas-solid combinations Optimum condition of operation depends on applications VS-2, October 2011, Ricoh Arena, Coventry 5/40

6 NEG structure Zr, V, Ti as active metals mixed with Fe, Al Developed surface area and boundaries between grains Protective oxide layer before activation NEG powder Metal substrate VS-2, October 2011, Ricoh Arena, Coventry 6/40/

7 How adsorption works Sticking coefficient Local parameter, depends on incident angle and surface orientation Sticking probability Statistically averaged value for the surface Capture probability β Statistical value for a pump with a given geometry Q β Cannel with sorbing walls L/d=10 β α α α α VS-2, October 2011, Ricoh Arena, Coventry 7/40

8 Types of NEGs (SAES getters) St707 Strip The thickness of the getter layer is about 70 micrometers on each side of the strip Compressed getter pills and washers for various applications Getter Wafer Modules (based on St101 or St707 getter strips) are specifically designed to maximize hydrogen pumping speed. Cartridge pumps can be mounted on CF flanges VS-2, October 2011, Ricoh Arena, Coventry 8/40/

9 Pumping What can be pumped by NEG M + O 2 MO M + N 2 MN M + CO 2 CO + MO MC + MO M + CO MC + MO M + H 2 O H + MO MO + H (bulk) M + H 2 M + H (bulk) M + C x H y MC + H (bulk) at T > 500 C What can t be pumped Hydrocarbons, C x H y, etc. at T < 500 C He, Ne, Ar, Kr, Xe (inert gases) VS-2, October 2011, Ricoh Arena, Coventry 9/40

10 Activation H 2 sorption regeneration cycle First activation consiredations: If capacity Q=5000 mbar l Activation pressure P a = 10-4 mbar Pumping speed during activation S eff = 100 l/s Duration of activation t: P a = 10-2 mbar and S eff = 100 l/s t P a = 10-3 mbar and S eff = 10 l/s t P Q S act 5 10 eff s 140hr s 1.4 hr 6days VS-2, October 2011, Ricoh Arena, Coventry 10/40

11 Activation temperature and duration (SAES Getters) Short (tens minutes) activation used for independent activation T 300 C allows activation during vacuum system bakeout (without special arrangement) NEG partially activated during bakeout at T 250 C VS-2, October 2011, Ricoh Arena, Coventry 11/40

12 Problems and limitations Limited capacity for pumping Aging (limited number of activation cycles before full saturation) Hydrogen enbrittlement (2 x pumping capacity) Thermal fatigue (number of activation cycles before initial peel-off) Storage (in vacuum, N 2 or inert gas atmosphere) VS-2, October 2011, Ricoh Arena, Coventry 12/40

13 Operation at high temperature Below activation temperature High temperature increases the diffusion Continues re-activation Operation at activation temperature for high pumping speed and capacity. Requires another pump for H 2 pumping VS-2, October 2011, Ricoh Arena, Coventry 13/40

14 Use of NEGs High gas load UHV/XHV application In combination with a pump for noble gases and hydrocarbons, ex. such as TMP and SIP Purification of noble gases The only gases that can t be pumped by NEG Low power consumption Power used for activation only Hydrogen pressure regulator in UHV system By changing the NEG temperature VS-2, October 2011, Ricoh Arena, Coventry 14/40

15 NEG application in accelerators VS-2, October 2011, Ricoh Arena, Coventry 15/40

16 Usual accelerator vacuum chamber Long tube with length L >> a, where a - transversal dimension Average pressure depends on vacuum conductance u(l,a) of the beam vacuum chamber P L 1 P ql kbt 12u 2S eff z L WS-63, September 2010, Ávila, Spain 16

17 Vacuum chamber cross sections Beam pipe Circular or elliptical 4 mm d, a, b 200 mm Vacuum chamber with an antechamber for larger vacuum conductance, U b d a In dipole magnetic field Distributed pumping With NEG strips (LEP in CERN) WS-63, September 2010, Ávila, Spain 17/

18 Two concepts of the ideal vacuum chamber Traditional: surface which outgasses as little as possible ( nil ideally) surface which does not pump otherwise that surface is contaminated over time Results in Surface cleaning, conditioning, coatings Vacuum firing, ex-situ baling Baking in-situ to up to 300 C Separate pumps New (C. Benvenuti, CERN, ~1998): surface which outgasses as little as possible ( nil ideally) a surface which does pump, however, will not be contaminated due to a very low outgassing rate Results in NEG coated surface There should be no un-coated parts Activating (baking) in-situ at C Small pumps for C x H y and noble gases VS-2, October 2011, Ricoh Arena, Coventry 18/40

19 Stainless steel vs NEG coated vacuum chamber under SR V.V. Anashin et al. Vacuum 75 (2004), p EVC-11, September 2010, Salamanca, Spain 19/40

20 NEG coating for accelerators First used in the ESRF (France); ELETTRA (Italy), Diamond LS (UK); Soleil (France) first fully NEG coated; LHC (Switzerland) longest NEG coated vacuum chamber; SIS-18 (Germany) and many others. NEG film capacity for CO and CO 2 is ~1ML: If P = 10-9 mbar then 1 ML can be sorbed just in ~ s; Lab measurements of different NEG coatings often don t repeat CERN s data on sticking probability and capacity; However, NEG coated parts of accelerators work well. EVC-11, September 2010, Salamanca, Spain 20/40

21 NEG coating for accelerators (2) What is required: Input data for accelerator design: (D,E,T a ), (M, T a ), pumping capacity; Better understanding: what and why; practical do s and don t s; Further development of this coating: lower, T a, SEY; higher (M), pumping capacity; optimising for an application. EVC-11, September 2010, Salamanca, Spain 21/40

22 What NEG coating does Reduces gas desorption: A pure metal film ~1- m thick without contaminants. A barrier for molecules from the bulk of vacuum chamber. Vacuum NEG Subsurface Bulk Coating Layers Increases distributed pumping speed, S: where A sorbing surface on whole vacuum chamber surface S = A v/4; sticking probability, A surface area, v mean molecular velocity EVC-11, September 2010, Salamanca, Spain 22/40

23 Deposition method Cylindrical magnetron deposition Planar magnetron deposition Details are in the talk A3.TM.OR.13 by Dr. R. Valizadeh EVC-11, September 2010, Salamanca, Spain 23/40

24 ASTeC activation procedure O.B. Malyshev, K.J. Middleman, J.S. Colligon and R. Valizadeh. J. Vac. Sci. Technol. A 27 (2009), p WS-63, September 2010, Ávila, Spain 24

25 NEG pumping properties Pressure ratio P1/P2 measured during gas injection is used to estimate: initial sticking probability and sorption capacity WS-63, September 2010, Ávila, Spain 25

26 Films deposited on Si test sample from a single metal wire Zr film. Average grain size nm. Hexagonal lattice structure Ti film Average grain size nm. V film Average grain size nm. Hexagonal lattice structure WS-63, September 2010, Ávila, Spain 26

27 CO pumping capacity [ML] CO sticking probability H2 sticking probability Single metal pumping properties Ti Zr V Hf Activation temperature [ C] Ti Zr V Hf Ti Zr V Hf WS-63, September 2010, Ávila, Spain Zr is best: Lowest activation Temp. and highest capacity Hf Ti V has highest activation temperature 27/40 27

28 Binary films deposited on Si test sample from twisted wires. Ti-Zr film. Average grain size nm. Hexagonal lattice structure. Zr-V Average grain size nm Ti-V film. Average grain size nm. Hexagonal lattice structure. WS-63, September 2010, Ávila, Spain 28

29 CO pumping capacity [ML] CO sticking probability H2 sticking probability Binary alloy pumping properties Ti-Zr Ti-V Zr-V Ti-Zr Ti-V Zr-V Activation temperature [ C] Zr-V is best Ti-Zr activation temperature is lower than for Ti-V 0.01 Ti-Zr Ti-V Zr-V WS-63, September 2010, Ávila, Spain Zr-Hf was not studied 29/40

30 Ternary NEG film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires and TiZrV alloy wire Ti-Hf-Zr twisted wire V-Hf-Zr twisted wire Ti-Zr-V alloy wire Ti-Zr-V twisted wire Cylindrical Magnetron: Power = 60 W, P Kr = 10-2 mbar, deposition rate = 0.12 nm/s, T = 120 C. 30 Average grain size 5 nm. Hexagonal lattice structure.

31 CO pumping capacity CO sticking probability H2 sticking probability Ternary alloy pumping properties Ti-Zr-V Hf-Zr-V Ti-Zr-Hf Ti-Hf-V Activation temperature [ C] 1 Hf-Zr-V, Ti-Zr-Hf and Ti-Hf-V are comparable Ti-Zr-V has the highest activation temperature WS-63, September 2010, Ávila, Spain 31

32 CO sticking probability Twisted wires vs. alloy target: reducing Ta 1.E+00 1.E-01 TiZrV(twisted wires) TiZrV (alloy wire) TiZrV (alloy wire) 1.E Activation temperature, o C R. Valizadeh, O.B. Malyshev, J.S. Colligon, V. Vishnyakov. Accepted by J. Vac. Sci. Technol. Aug WS-63, September 2010, Ávila, Spain 32

33 Quaternary NEG alloy film deposited on Si test sample from twisted Ti, V, Zr, and Hf wires. Cylindrical Magnetron: Power = 60 W, P Kr = 10-2 mbar, deposition rate = 0.12 nm/s, T = 120 C. Very glassy structure. 33

34 CO pumping capacity CO sticking probability H2 sticking probability Quaternary alloy pumping properties Ti-Zr-Hf-V Hf-Zr-V Ti-Zr-Hf Ti-Hf-V Ti-Zr-V Ti-Zr Zr-V Zr Activation temperature [ C] Ti-Zr-Hf-V is the best Hf-Zr-V, Ti-Zr-Hf, Ti-Hf-V and Zr are comparable Ti-Zr-V is lower Zr-V (best binary alloy) has the lowest activation temperature WS-63, September 2010, Ávila, Spain 34

35 Pressure in the accelerator vacuum chamber P where - desorption yield - sticking probability Improving pumping properties is limited: < H2 < < CO < < CO2 < 0.6 Reducing the desorption yields. in orders of magnitude is a realistic task WS-63, September 2010, Ávila, Spain 35

36 Reducing the gas desorption from the NEG coatings Main gases in the NEG coated vacuum chamber are H 2 and CH 4 Only H 2 can diffuse through the NEG film under bombardment or heat CH 4 is most likely created on the NEG surface from diffused H 2 and C (originally from sorbed CO and CO 2 ) Therefore the H 2 diffusion must be suppressed Where H 2 come from? WS-63, September 2010, Ávila, Spain 36

37 Reducing the gas desorption from the NEG coatings Gas molecules are contained on the NEG coating surface after exposure to air Vacuum inside the NEG coating trapped during deposition NEG Coating in subsurface substrate layer in the substrate bulk Subsurface Layers Bulk WS-63, September 2010, Ávila, Spain 37

38 Reducing the gas desorption from the NEG coatings Gas molecules are contained on the NEG coating surface after exposure to air minimise exposure to air inside the NEG coating trapped during deposition purity of discharge gas background pressure in subsurface substrate layer substrate bakeout before NEG deposition in the substrate bulk vacuum firing WS-63, September 2010, Ávila, Spain Vacuum NEG Coating Subsurface Layers 38 Bulk

39 SEM images of films (film morphology ) columnar Best for pumping dense A first candidate for a barrier O.B. Malyshev, R. Valizadeh, J.S. Colligon et al. J. Vac. Sci. Technol. A 27 (2009), p WS-63, September 2010, Ávila, Spain 39

40 Electron stimulated desorption Modified NEG pumping properties evaluation rig: To measure sticking probability To measure electron stimulated gas desorption as a function of Electron energy Dose Wall temperature ( C) Activation/bakeout temperature Can be used for samples with: NEG coating Low desorption coating No coatings WS-63, September 2010, Ávila, Spain 40

41 Electron Stimulated Desorption (ESD) studies programme ESD as a function of Activation/bakeout temperature Electron energy Electron dose Coating density, morphology and structure Deposition conditions Substrate WS-63, September 2010, Ávila, Spain 41

42 yield [molecules/electron] yield [molecules/electron] ESD: stainless steel vs activated NEG coated vacuum chamber H2 CH4 H2O CO O2 Ar CO dose [electrons/m2] Baked to 250 C for 24 hrs dose [electrons/m2] Activated to 180 C for 24 hrs O.B. Malyshev, A. Smith, R. Valizadeh, A. Hannah. Accepted by J. Vac. Sci. Technol., Aug WS-63, September 2010, Ávila, Spain 42

43 Electron stimulated NEG activation P1 P2 Activated at 180 C Electron bombardment 1 Electron bombardment Non-activated NEG 10 G1 G The electron stimulated NEG activation efficiency estimated as < 1 < Surface coverage -3 [CO/e [monolayers] - ] WS-63, September 2010, Ávila, Spain CO 1 e D 43 CO

44 (E e- ) for different gases for NEG coating EVC-11, September 2010, Salamanca, Spain 44

45 NEG cartridges vs films Bulk NEG NEG film Thickness 50 m 5 mm Materials Zr-V-Fe (St 707) Zr-Al (St 101) Ti-Zr-V (CERN) Ti-Zr-Hf-V (ASTeC) Activation T C C Pumping capacity Large 1 ML for CO, CO 2 No. activation cycles before full staturations A few hundreds < 100 Working range HV, UHV, XHV UHV, XHV Activation by photon or electron bombamdment n/a possible Main purpose pumping Barrier coating to reduce outgassing + pumping VS-2, October 2011, Ricoh Arena, Coventry 45/40/

46 Conclusions NEGs pay and increasingly important role in vacuum technology including UHV/XHV They have wide range of applications, including particle accelerators NEG can be activated in vacuum by heat, NEG films can also be activated by photon or electron bombardment Ones activated no power or controllers required for operation No noise and cooling channels In some applications no cables, feedthroughs To use them some special knowledge of NEG installation, activation operation are essential VS-2, October 2011, Ricoh Arena, Coventry 46/40

Beam induced desorption

Beam induced desorption Accelerators in a new light Beam induced desorption Dr. Oleg B. Malyshev, ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK oleg.malyshev@stfc.ac.uk CAS on Vacuum for Particle Accelerators 2017

More information

Vacuum and mechanical design of ILC DR

Vacuum and mechanical design of ILC DR Vacuum and mechanical design of ILC DR O. B. Malyshev ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK Low Emittance Ring Workshop 2010 12-15 January 2010 Integration design: usual consideration

More information

NEXTorr HV 100 HIGHLIGHTS

NEXTorr HV 100 HIGHLIGHTS NEXTorr HV 100 HIGHLIGHTS General Features High pumping speed for all active gases Pumping speed for noble gases and methane High sorption capacity and increased lifetime Constant pumping speed in HV and

More information

λ = 5 10 p (i.e. 5 cm at 10 3 Torr, or ( )

λ = 5 10 p (i.e. 5 cm at 10 3 Torr, or ( ) Getter pumping C. Benvenuti R&B Energy Research, Geneva, Switzerland Abstract A surface may provide a useful pumping action when able to retain adsorbed gas molecules for the duration of a given experiment.

More information

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps Agilent Technologies 1957-59 Varian Associates invents the first

More information

Experience from the LEP Vacuum System

Experience from the LEP Vacuum System Experience from the LEP Vacuum System O. Gröbner CERN, LHC-VAC Workshop on an e + e - Ring at VLHC ITT, 9-11 March 2001 3/4/01 O. Gröbner, CERN-LHC/VAC References 1) LEP Design Report, Vol.II, CERN-LEP/84-01,

More information

Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the MAX IV Light Sources

Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the MAX IV Light Sources CERN-ACC-2014-0259 marton.ady@cern.ch Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the MAX IV Light Sources M. Ady, R. Kersevan CERN, Geneva, Switzerland M. Grabski MAX IV,

More information

CapaciTorr HV Pumps. making innovation happen,together

CapaciTorr HV Pumps. making innovation happen,together CapaciTorr HV Pumps making innovation happen,together CapaciTorr HV HIGHLIGHTS General Features High pumping speed for all active gases High sorption capacity and increased lifetime Constant pumping speed

More information

A Vacuum point of view

A Vacuum point of view Beam-Surface Interaction A Vacuum point of view F. Le Pimpec SLAC/NLC SSRL April 2004 1 Dynamic Vacuum You want to address the terms of this formula How to measure the Pressure? F. Le Pimpec - SLAC 2 Outline

More information

NEXTorr Z 100 HIGHLIGHTS

NEXTorr Z 100 HIGHLIGHTS NEXTorr Z 00 HIGHLIGHTS General Features High pumping speed for all active gases Pumping speed for noble gases and methane Constant pumping speed for active gases in UHV-XHV No intrinsic pressure limitations

More information

Vacuum for Accelerators

Vacuum for Accelerators Vacuum for Accelerators Oswald Gröbner Baden, 22 September 2004 1) Introduction and some basics 2) Pumps used in accelerators 3) Desorption phenomena 4) Practical examples Oswald Gröbner, Retired from

More information

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s Ultra-High Vacuum Technology 30-400 l/s 181.06.01 Excerpt from the Product Chapter C15 Edition November 2007 Contents General General..........................................................................

More information

The Vacuum Case for KATRIN

The Vacuum Case for KATRIN The Vacuum Case for KATRIN Institute of Nuclear Physics, Forschungszentrum Karlsruhe,Germany, for the KATRIN Collaboration Lutz.Bornschein@ik.fzk.de The vacuum requirements of the KATRIN experiment have

More information

Vacuum System of Synchrotron radiation sources

Vacuum System of Synchrotron radiation sources 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Vacuum System of Synchrotron radiation sources Prepared by: Omid Seify, Vacuum group, ILSF project Institute

More information

MOLECULAR SURFACE PUMPING: CRYOPUMPING

MOLECULAR SURFACE PUMPING: CRYOPUMPING 51 MOLECULAR SURFACE PUMPING: CRYOPUMPING C. Benvenuti CERN, Geneva, Switzerland Abstract Weak van der Waals attractive forces may provide molecular gas pumping on surfaces cooled at sufficiently low temperatures.

More information

CapaciTorr HV 200 HIGHLIGHTS

CapaciTorr HV 200 HIGHLIGHTS CapaciTorr HV 200 General Features High pumping speed for all active gases High sorption capacity and increased lifetime Costant pumping speed in HV, UHV and XHV Reversible pumping of hydrogen and its

More information

Repetition: Physical Deposition Processes

Repetition: Physical Deposition Processes Repetition: Physical Deposition Processes PVD (Physical Vapour Deposition) Evaporation Sputtering Diode-system Triode-system Magnetron-system ("balanced/unbalanced") Ion beam-system Ionplating DC-glow-discharge

More information

SORB-AC Getter Wafer Modules and Panels. We support your innovation

SORB-AC Getter Wafer Modules and Panels. We support your innovation SORB-AC Getter Wafer Modules and Panels SORB-AC Getter Wafer Modules and Panels GENERAL INFORMATION The volume getter pump known as the Wafer Module has been developed for use in plasma machines and associated

More information

Lecture 4. Ultrahigh Vacuum Science and Technology

Lecture 4. Ultrahigh Vacuum Science and Technology Lecture 4 Ultrahigh Vacuum Science and Technology Why do we need UHV? 1 Atmosphere = 760 torr; 1 torr = 133 Pa; N ~ 2.5 10 19 molecules/cm 3 Hertz-Knudsen equation p ZW 1/ 2 ( 2mk T) At p = 10-6 Torr it

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

UHV - Technology. Oswald Gröbner

UHV - Technology. Oswald Gröbner School on Synchrotron Radiation UHV - Technology Trieste, 20-21 April 2004 1) Introduction and some basics 2) Building blocks of a vacuum system 3) How to get clean ultra high vacuum 4) Desorption phenomena

More information

A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC

A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC A. Rossi, G. Rumolo and F. Ziermann, CERN, Geneva, Switzerland Abstract The LHC experimental regions (ATLAS, ALICE, CMS and LHC

More information

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior.

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior. Vacuum Residual pressure can thwart the best cryogenic design Each gas molecule collision carries ~kt from the hot exterior to the cold interior. 1 millitorr = 3.5x10¹³/cm³ Gas atoms leaving the hot surfaces

More information

Industrial Surfaces Behaviour Related to the Adsorption and Desorption of Hydrogen at Cryogenic Temperature

Industrial Surfaces Behaviour Related to the Adsorption and Desorption of Hydrogen at Cryogenic Temperature EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 375 Industrial Surfaces Behaviour Related to the Adsorption and Desorption

More information

Vacuum II. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1

Vacuum II. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1 Vacuum II G. Franchetti CAS Bilbao 30/5/2011 G. Franchetti 1 Index Creating Vacuum (continuation) Measuring Vacuum Partial Pressure Measurements 30/5/2011 G. Franchetti 2 Laminar flow Cold surface Diffusion

More information

Vacuum Technology for Particle Accelerators

Vacuum Technology for Particle Accelerators Vacuum Technology for Particle Accelerators (Max IV laboratory) CERN Accelerator School: Introduction to Accelerator Physics 8 th October 2016, Budapest, Hungary 1 Contents What is vacuum and why do we

More information

1. SYNCHROTRON RADIATION-INDUCED DESORPTION

1. SYNCHROTRON RADIATION-INDUCED DESORPTION 127 DYNAMIC OUTGASSING Oswald Gröbner CERN, Geneva, Switzerland Abstract Outgassing stimulated by photons, ions and electrons created by highenergy and high-intensity particle beams in accelerators and

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

( KS A ) (1) , vapour, vapor (USA) , saturation vapour pressure. , standard reference conditions for gases. , degree of saturation

( KS A ) (1) , vapour, vapor (USA) , saturation vapour pressure. , standard reference conditions for gases. , degree of saturation ( KS A 3014-91 ) (1), standard reference conditions for gases 0, 101325 Pa (1 =760mmHg ), vacuum, low ( rough ) vacuum 100Pa, medium vacuum 100 01 Pa, high vacuum 01 10 5 Pa, ultra high vacuum ( UHV )

More information

GP 50 2F HIGHLIGHTS General features High pumping speed for all active gases We support your innovation Constant pumping speed in HV and UHV pressure region No low pressure limitation (down to -12 Torr

More information

CapaciTorr B MK5

CapaciTorr B MK5 CapaciTorr B - MK HIGHLIGHTS General features High pumping speed for all active gases We support your innovation Constant pumping speed in HV and UHV pressure region No low pressure limitation (down to

More information

Hydrogen Sorption in Zirconium and Relevant Surface Phenomena

Hydrogen Sorption in Zirconium and Relevant Surface Phenomena Materials Transactions, Vol. 48, No. 5 (2007) pp. 1012 to 1016 #2007 The Japan Institute of Metals Hydrogen Sorption in Zirconium and Relevant Surface Phenomena Jeshin Park 1, Wonbaek Kim 1; * and Misook

More information

Vacuum gas dynamics investigation and experimental results on the TRASCO-ADS Windowless Interface

Vacuum gas dynamics investigation and experimental results on the TRASCO-ADS Windowless Interface Vacuum gas dynamics investigation and experimental results on the TRASCO-ADS Windowless Interface P. Michelato, E. Bari, E. Cavaliere, L. Monaco, D. Sertore; INFN Milano - LASA - Italy A. Bonucci, R. Giannantonio,

More information

Vacuum. Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006

Vacuum. Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006 Physics,, Technology and Techniques of the Vacuum Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006 Outline Introduction and basics Defintion of Vacuum Vacuum A vacuum is a volume

More information

Wafer holders. Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer

Wafer holders. Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer Wafer holders Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer Image: In-free, 3-inch sample holder fitting a quarter of a 2- inch wafer Reflection High Energy Electron

More information

Magnetic and Electric Field Effects on the Photoelectron Emission from Prototype LHC Beam Screen Material

Magnetic and Electric Field Effects on the Photoelectron Emission from Prototype LHC Beam Screen Material EUOPEAN OGANIZATION FO NUCLEA ESEACH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project eport 373 Magnetic and Electric Field Effects on the Photoelectron Emission from

More information

Sputter Ion Pump (Ion Pump) By Biswajit

Sputter Ion Pump (Ion Pump) By Biswajit Sputter Ion Pump (Ion Pump) By Biswajit 08-07-17 Sputter Ion Pump (Ion Pump) An ion pump is a type of vacuum pump capable of reaching pressures as low as 10 11 mbar under ideal conditions. An ion pump

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf by S. Wolf Chapter 15 ALUMINUM THIN-FILMS and SPUTTER-DEPOSITION 2004 by LATTICE PRESS CHAPTER 15 - CONTENTS Aluminum Thin-Films Sputter-Deposition Process Steps Physics of Sputter-Deposition Magnetron-Sputtering

More information

Partial Pressure Analysis for Large Vacuum Systems

Partial Pressure Analysis for Large Vacuum Systems Partial Pressure Analysis for Large Vacuum Systems Robert E. Ellefson REVac Consulting Dayton OH 45459 USA OLAV IV NSRRC Hsinchu, Taiwan 4 April, 2014 REVac Consulting E-mail: Robert.Ellefson@sbcglobal.net

More information

Continued Work toward XHV for the Jefferson Lab Polarized Electron Source

Continued Work toward XHV for the Jefferson Lab Polarized Electron Source Continued Work toward XHV for the Jefferson Lab Polarized Electron Source Marcy Stutzman, Philip Adderley, Matt Poelker Thomas Jefferson National Accelerator Facility Newport News, VA 23601 Thomas Jefferson

More information

Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

Optimized Annular Triode Ion Pump for Experimental Areas in the LHC See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41059758 Optimized Annular Triode Ion Pump for Experimental Areas in the LHC Article in Vacuum

More information

SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material

SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material SLAC TN-06-031-Rev September, 2006 SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material Robert E. Kirby Surface and Materials Science Dept. Stanford Linear Accelerator

More information

Vacuum System in Accelerator

Vacuum System in Accelerator Vacuum System in Accelerator -- geometrical structure effects on the pumping delay time -- Y. Saito, KEK, Tsukuba, Japan N. Matuda, Tokyo Denki Univ., Tokyo, Japan 1. Required vacuum condition; what kind

More information

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

PHYSICAL VAPOR DEPOSITION OF THIN FILMS PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

AND LIMITATIONS K. BALOGH

AND LIMITATIONS K. BALOGH SENSITIVITY OF THE 40 Ar 39 Ar METHOD: NEW POSSIBILITIES AND LIMITATIONS K. BALOGH Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen, Bem t. 18/c, Hungary; balogh@moon.atomki.hu

More information

Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud

Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud V. Baglin, B. Jenninger CERN AT-VAC, Geneva 1. Introduction LHC & Electron Cloud LHC cryogenic vacuum system 2.

More information

Accelerator Vacuum Technology Challenges for Next-Generation Synchrotron-Light Sources

Accelerator Vacuum Technology Challenges for Next-Generation Synchrotron-Light Sources Accelerator Vacuum Technology Challenges for Next-Generation P. He (IHEP) 14-19 May 2017, IPAC 2017, Copenhagen, Denmark 14-19 May 2017, IPAC 2017, Copenhagen, Denmark Content 1. Introduction: Goals and

More information

In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis

In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis GE Global Research Vincent S. Smentkowski, Cameron Moore and Hong Piao 04GRC955, October 04 Public (Class ) Technical Information Series

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Vacuum Technology and film growth. Diffusion Resistor

Vacuum Technology and film growth. Diffusion Resistor Vacuum Technology and film growth Poly Gate pmos Polycrystaline Silicon Source Gate p-channel Metal-Oxide-Semiconductor (MOSFET) Drain polysilicon n-si ion-implanted Diffusion Resistor Poly Si Resistor

More information

Effects of Energy-Assistance on Coating Microstructure

Effects of Energy-Assistance on Coating Microstructure 4 th Vacuum Symposium 16 th October 2013 Effects of Energy-Assistance on Coating Microstructure JOHN S COLLIGON Dalton Research Institute Manchester Metropolitan University Manchester M15GD, UK email:

More information

Cold / sticky system. Vincent Baglin. CERN AT-VAC, Geneva

Cold / sticky system. Vincent Baglin. CERN AT-VAC, Geneva Cold / sticky system Vincent Baglin CERN AT-VAC, Geneva 1 Cold / sticky system?? Vacuum?? 2 Eureka?? 3 Cold / sticky system Outline 1. Cryopumping 2. Adsorption isotherms 3. Cryosorbers in cold systems

More information

Electron Cloud Studies

Electron Cloud Studies Electron Cloud Studies Tom Kroyer, Edgar Mahner,, Fritz Caspers, CERN LHC MAC, 7. December 2007 Agenda Introduction to electron cloud effects Overview over possible remedies surface coatings rough surfaces

More information

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless )

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless ) III. Gas flow. The nature of the gas : Knudsen s number K n λ d 2. Relative flow : U ρ d η U : stream velocity ρ : mass density Reynold s number R ( dimensionless ) 3. Flow regions - turbulent : R > 2200

More information

Pumping Speed in the Drydown Zone

Pumping Speed in the Drydown Zone A Journal of Practical and Useful Vacuum Technology From By Phil Danielson Pumping Speed in the Drydown Zone The extended pumpdown time through the water vapor-dominated drydown zone is a complex process

More information

ADSORPTION ON SURFACES. Kinetics of small molecule binding to solid surfaces

ADSORPTION ON SURFACES. Kinetics of small molecule binding to solid surfaces ADSORPTION ON SURFACES Kinetics of small molecule binding to solid surfaces When the reactants arrive at the catalyst surface, reactions are accelerated Physisorption and Chemisorption 1- diffusion to

More information

The vacuum insulated transfer lines for CMS CO 2 cooling: performances and lessons learnt

The vacuum insulated transfer lines for CMS CO 2 cooling: performances and lessons learnt The vacuum insulated transfer lines for CMS CO 2 cooling: performances and lessons learnt Forum on Tracker Detector Mechanics Bonn 23-26 May 2016 P. Tropea, J. Daguin, N. Frank, H. Postema today following

More information

Table 1: Residence time (τ) in seconds for adsorbed molecules

Table 1: Residence time (τ) in seconds for adsorbed molecules 1 Surfaces We got our first hint of the importance of surface processes in the mass spectrum of a high vacuum environment. The spectrum was dominated by water and carbon monoxide, species that represent

More information

POSITRON ACCUMULATOR SCHEME for AEGIS

POSITRON ACCUMULATOR SCHEME for AEGIS POSITRON ACCUMULATOR SCHEME for AEGIS A. S. Belov, S. N. Gninenko INR RAS, Moscow 1 What positron beam is requiered for AEGIS? Number of antihydrogen atoms produced with AEGIS scheme: N Hbar ~ ce n H-

More information

SMOG: an internal gas target in LHCb?

SMOG: an internal gas target in LHCb? System for Measuring the Overlap with Gas SMOG: an internal gas target in LHCb? intro: LHCb/VELO luminosity calibration what we use the SMOG for hardware implementation operational aspects impact on LHC

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Study of Distributed Ion-Pumps in CESR 1

Study of Distributed Ion-Pumps in CESR 1 Study of Distributed Ion-Pumps in CESR 1 Yulin Li, Roberto Kersevan, Nariman Mistry Laboratory of Nuclear Studies, Cornell University Ithaca, NY 153-001 Abstract It is desirable to reduce anode voltage

More information

Vacuum Systems. V. Baglin. CERN TE-VSC, Geneva. Vacuum, Surfaces & Coatings Group Technology Department

Vacuum Systems. V. Baglin. CERN TE-VSC, Geneva. Vacuum, Surfaces & Coatings Group Technology Department Vacuum Systems V. Baglin CERN TE-VSC, Geneva 2 Outline 1. Vacuum Basis 2. Vacuum Components 3. Vacuum with Beams : LHC Example 3 1. Vacuum Basis 4 Units The pressure is the force exerted by a molecule

More information

Hydrogen in the LCLS2 Beamline Vacuum

Hydrogen in the LCLS2 Beamline Vacuum Hydrogen in the LCLS2 Beamline Vacuum Anthony C. Crawford Fermilab Technical Div./SRF Development Dept. acc52@fnal.gov 13Oct15 This note demonstrates that the cold segments of the LCLS2 linac will cryopump

More information

EXPERIMENTAL INVESTIGATIONS OF THE ELECTRON CLOUD KEY PARAMETERS

EXPERIMENTAL INVESTIGATIONS OF THE ELECTRON CLOUD KEY PARAMETERS EXPERIMENTAL INVESTIGATIONS OF THE ELECTRON CLOUD KEY PARAMETERS V. Baglin, I.R. Collins, J. Gómez-Goñi *, O. Gröbner, B. Henrist, N. Hilleret, J M. Laurent, M. Pivi, CERN, Geneva, Switzerland R. Cimino,

More information

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes e -? 2 nd FEBIP Workshop Thun, Switzerland 2008 Howard Fairbrother Johns Hopkins University Baltimore, MD, USA Outline

More information

Conductance of an aperture

Conductance of an aperture n Vacuum φ A 4 How many molecules travel through A in a time t? P P A onductance of an aperture 3 q φa 3.64 0 ( T / M) na Volume of gas passing through A? Q Q Q / ΔP 3.64 ( T / M ) 3 dv/dt q/n 3.64 0 (

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Introduction to Thin Film Processing

Introduction to Thin Film Processing Introduction to Thin Film Processing Deposition Methods Many diverse techniques available Typically based on three different methods for providing a flux of atomic or molecular material Evaporation Sputtering

More information

Effects of methanol on crystallization of water in the deeply super cooled region

Effects of methanol on crystallization of water in the deeply super cooled region Effects of methanol on crystallization of water in the deeply super cooled region Ryutaro Souda Nanoscale Materials Center National Institute for Materials Science Japan PHYSICAL REVIEW B 75, 184116, 2007

More information

THIN FLEXIBLE POLYMER SUBSTRATES COATED BY THICK FILMS IN ROLL-TO-ROLL VACUUM

THIN FLEXIBLE POLYMER SUBSTRATES COATED BY THICK FILMS IN ROLL-TO-ROLL VACUUM ARCOTRONICS INDUSTRIES SpA Via San Lorenzo, 19 40037 Sasso Marconi (BO) Italy Tel. (+39) 051939111 Fax (+39) 051840684 http://www.arcotronics.com THIN FLEXIBLE POLYMER SUBSTRATES COATED BY THICK FILMS

More information

NANOSTRUCTURED CARBON THIN FILMS DEPOSITION USING THERMIONIC VACUUM ARC (TVA) TECHNOLOGY

NANOSTRUCTURED CARBON THIN FILMS DEPOSITION USING THERMIONIC VACUUM ARC (TVA) TECHNOLOGY Journal of Optoelectronics and Advanced Materials Vol. 5, No. 3, September 2003, p. 667-673 NANOSTRUCTURED CARBON THIN FILMS DEPOSITION USING THERMIONIC VACUUM ARC (TVA) TECHNOLOGY G. Musa, I. Mustata,

More information

Modelling of the Target Voltage Behaviour in Reactive Sputtering R. De Gryse*, D. Depla University Ghent, Krijgslaan 281/S1, B-9000 GENT, Belgium

Modelling of the Target Voltage Behaviour in Reactive Sputtering R. De Gryse*, D. Depla University Ghent, Krijgslaan 281/S1, B-9000 GENT, Belgium Modelling of the Target Voltage Behaviour in Reactive Sputtering R. De Gryse*, D. Depla University Ghent, Krijgslaan 28/S, B-9 GENT, Belgium Abstract It has been shown that at least two mechanisms are

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

Thermochemical Storage Technologies

Thermochemical Storage Technologies Thermochemical Storage Technologies Andreas Hauer Ecostock 2006, Stockton, New Jersey, USA Content Thermal energy storage technologies Direct / indirect thermal energy storage Thermochemical Storage: Closed

More information

VACUUM PUMPING METHODS

VACUUM PUMPING METHODS VACUUM PUMPING METHODS VACUUM PUMPS (METHODS) Positive Displacement Vacuum Gas Transfer Vacuum Kinetic Vacuum Entrapment Vacuum Adsorption Reciprocating Displacement Rotary Drag Fluid Entrainment Ion Transfer

More information

Electron Cloud Studies made at CERN in the SPS

Electron Cloud Studies made at CERN in the SPS Electron Cloud Studies made at CERN in the SPS J.M. Jimenez On behalf of the Electron Cloud Study Team, a Collaboration between AT and AB Departments Main Topics Introduction LHC Injectors SPS Running

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

JARA FIT Ferienprakticum Nanoelektronik Experiment: Resonant tunneling in quantum structures

JARA FIT Ferienprakticum Nanoelektronik Experiment: Resonant tunneling in quantum structures JARA FIT Ferienprakticum Nanoelektronik 2013 Experiment: Resonant tunneling in quantum structures Dr. Mihail Ion Lepsa, Peter Grünberg Institut (PGI 9), Forschungszentrum Jülich GmbH 1. Introduction The

More information

TiO2/sapphire Beam Splitter for High-order Harmonics

TiO2/sapphire Beam Splitter for High-order Harmonics Technical Communication TiO2/sapphire Beam Splitter for High-order Harmonics Y. Sanjo*1, M. Murata*1, Y. Tanaka*1, H. Kumagai*1, and M. Chigane*2 *1 Graduate School of Engineering,Osaka City University,

More information

WM 00 Conference, February 27 March 2, 2000, Tucson, AZ

WM 00 Conference, February 27 March 2, 2000, Tucson, AZ MULTI-LAYERED DISTRIBUTED WASTE-FORM OF I-129 - STUDY ON IODINE FIXATION OF IODINE ADSORBED ZEOLITE BY SILICA CVD ABSTRACT J. Izumi, I. Yanagisawa, K. Katurai, N. Oka, N. Tomonaga, H. Tsutaya Mitsubishi

More information

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams Methods of pollution control and waste management - laboratory Adsorptive removal of volatile organic compounds from gases streams Manual for experiment 17 dr Hanna Wilczura-Wachnik and dr inż. Jadwiga

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

Light-Induced Atom Desorption in Alkali Vapor Cells

Light-Induced Atom Desorption in Alkali Vapor Cells Fundamental Physics Using Atoms, 2010/08/09, Osaka Light-Induced Atom Desorption in Alkali Vapor Cells A. Hatakeyama (Tokyo Univ. Agr. Tech.) K. Hosumi K. Kitagami Alkali vapor cells UHV cell for laser

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Experimental Techniques for Studying Surface Chemistry in Smog Chambers

Experimental Techniques for Studying Surface Chemistry in Smog Chambers Experimental Techniques for Studying Surface Chemistry in Smog Chambers Laura T. Iraci, Jeffrey C. Johnston and David M. Golden SRI International, Menlo Park, CA Chemical reactions occurring on the walls

More information

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS O. Goossens, D. Vangeneugden, S. Paulussen and E. Dekempeneer VITO Flemish Institute for Technological Research, Boeretang

More information

To move a particle in a (straight) line over a large distance

To move a particle in a (straight) line over a large distance 2.1 Introduction to Vacuum Technology 2.1.1 Importance of Vacuum Technology for Processing and Characterization Under partial vacuum conditions (pressures orders of magnitude below ambient atmospheric

More information

Vacuum at the ESRF. current activities that benefit from simulation models

Vacuum at the ESRF. current activities that benefit from simulation models Vacuum at the ESRF current activities that benefit from simulation models H.P. Marques - 64th IUVSTA Workshop Leinsweiler 2011 Vacuum at the ESRF Overview of the ESRF Vacuum group activities MC simulation

More information

Results on a-c tubes subjected to synchrotron irradiation

Results on a-c tubes subjected to synchrotron irradiation Results on a-c tubes subjected to synchrotron irradiation V. Baglin, P. Chiggiato, P. Costa-Pinto, B. Henrist (CERN, Geneva) V. Anashin, D. Dorokhov. A. Semenov, A. Krasnov, D. Shwartz, A. Senchenko (,

More information

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures MOF-Workshop, Leipzig, March 2010 Possibilities and Limits for the Determination of Adsorption Data Pure Gases and Gas Mixtures Reiner Staudt Instutut für Nichtklassische Chemie e.v. Permoserstraße 15,

More information

Some more equations describing reactive magnetron sputtering.

Some more equations describing reactive magnetron sputtering. Some more equations describing reactive magnetron sputtering D. Depla, S. Mahieu, W. Leroy, K. Van Aeken, J. Haemers, R. De Gryse www.draft.ugent.be discharge voltage (V) 44 4 36 32 28..5 1. 1.5 S (Pumping

More information

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons)

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons) Statusreport Status of the GSI accelerators for FRS operation Jens Stadlmann (FAIR Synchrotrons) Overview Intensities reached and "candidates" for experiments. Uranium? Upgrade program New developments:

More information

Investigation of H 2 :CH 4 Plasma Composition by Means of Spatially Resolved Optical Spectroscopy

Investigation of H 2 :CH 4 Plasma Composition by Means of Spatially Resolved Optical Spectroscopy Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 6 A Optical and Acoustical Methods in Science and Technology Investigation of H 2 :CH 4 Plasma Composition by Means of Spatially Resolved Optical Spectroscopy

More information

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 24 Tai-Chang Chen University of Washington EDP ETCHING OF SILICON - 1 Ethylene Diamine Pyrocatechol Anisotropy: (100):(111) ~ 35:1 EDP is very corrosive, very carcinogenic,

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information