Repetition: Practical Aspects

Size: px
Start display at page:

Download "Repetition: Practical Aspects"

Transcription

1 Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - + d Cathode Fall: Ions will no more be neutralized by electrons. They are subjected to a high electric field and are accelerated towards the target. Anode x

2 Repetition: Technical Modifications Aims: a) Reduction of the cathode dark space b) Increase of the ion current to increase erosion rate c) Reduction of working gas pressure (purity) d) Extension of the material palette (Semicunuctors/Insulators) Methods: RF-sputtering: c/d Triode sputtering: a-c Magnetron sputtering a-c RF-Magnetron: a-d Ion beam sputtering: c; free choice of ion energy

3 Repetition: RF-Sputtering f = 13,56 MHz (free industry frequency) * Higher electron density * Sputtering of insulators possible * Lower working gas pressure * Different plasma characteristics (EEDF, plasma potential)

4 Repetition: Magnetron-Sputtering Permanent magnets below the target concentrate the plasma in the vicinity of the target. * Smaller dark space * Higher ion density * Reduction of working gas pressure

5 Repetition: Target Erosion

6 Repetition: Ion Gun Advantages of the ion gun: 1. Ion source 2. Target 3. Sputtered species 4. Substrate * Control of ion energy * Control of ion impingement angle * No working gas, i. e. UHV-capable

7 Repetition: Sputter-Cleaning Substrat HV Working gas, ionized or neutral Magnetic field assistance (optional) Sputtering can also be used to clean surfaces, if the substrate, which then acts as "target", is biased with negative high voltage.

8 Ion Plating: Fundamentals I Substrate HV (bis ca. 1kV) Optional + + ionization system Source + Ionized filling gas + Source material, ionized or neutral

9 Ion Plating: Fundamentals II Separated ion source 1. Ion probe 2. Substrate holder 3. Shutter 4. Pumps 5. Ion source 6. Evaporator Ions from gas discharge 1. Substrate holder 2. RF-coil 3. RF-generator 4. Evaporator 5. Pumps 6. Gas inlet

10 Ion Plating: Electron Activated Plasma 1. Substrate 2. Ring electrode 3. Differentially pumped region 4. Electron gun 5. Pumps 6. Gas inlet

11 Ion Plating: Hollow Cathode Arc Discharge 1. Substrate holder 2. Cooling water 3. Hollow cathode discharge (longitudinal magnetic field) 4. Pumps 5. Cooled crucible 6. Reactive gas 7. Electron ray

12 Ion Plating: Low Voltage Arc Discharge

13 Ion Plating: Thermionic Arc

14 Ion Plating: Cluster-Beam

15 Pulsed Magnetron Techniques Pulsed Magnetron Sputtering: Ignition of a short term (µs - ms) magnetron discharge with extremly high power density; due to the short duration of the discharge the average power corresponds to that of a conventional magnetron discharge. Disadvantage: only 30% deposition rate when compared to a conventional magnetron. Modulated Pulse Technique: Igniton of a conventional magnetron discharge; Intentionally introduced voltage peak ignites high power discharge which can be sustained for ms to 0.01 s. Advantage: Average deposition rate is equal or even higher when compared to conventional magnetron.

16 PVD-Methods: Power Densities Method Sputtering Evaporation Electron gun Pulsed Magnetron Low Voltage Arc Discharge Arc-Evaporation Power Density [Wcm -2 ]

17 PVD-Methods: Ionization Degrees Method Evaporation Electron Gun Sputtering Low Voltage-Arc Discharge Arc-Evaporation Pulsed Magnetron Ionization Degree [%] <0.1 < >50 bis 100 Reason of Ionization Therm. excitation Therm. excitation Collisions High Power density High Power density Average Power density

18 Ion Bombardement and Film Growth I Ion Bombardement leads to good adhesion small grains dense films high internal stresses

19 Ion Bombardement and Film Growth II Bombardement with externally generated ions: Evaporation Electron gun Sputtering Reason: low ionization degree Bombardement with ions of the coating material: Low Voltage Arc Discharge Arc-Discharge Reason: high ionization degree

20 Ion Bombardement and Film Growth III Advantages of high ionization degrees (ions of coating material): 1. Manipulation of the energy introduction by substrate bias 2. Manipulation of the directionality of the impinging coating particles (collimation in the case of comlexely shaped bodies, all side coating by particles which impinge permanently parallel to the substrate normal, trench-filling)

21 Chemical Vapor Deposition (CVD) Reaction types 1. Chemosynthesis (Reactions with Gases) TiCl 4 (g) + 1/2N 2 (g) + 2H 2 (g) C mbar 2. Pyrolysis (thermal decomposition) SiH 4 (g) <650 C Si(s) + 2H 2 (g) 3. Disproportionation 2GeJ 2 (g) Ge(s) + GeJ 4 (g) 4. Photopolymerization TiN(s) + 4HCl(g)

22 CVD: Typical Plant Schematic

23 Pasma Assisted CVD (PACVD) Reduction of growth temperature

24 PACVD: Reactor Types Parallel plate reactor Multi level chamber

25 Plasma Polymerization: Elementary Processes After monomer introduction the following processes are present within the RF-plasma: 1. Reactions in the gas phase: Formation of reactive species as excited and ionized Molecules and molecule fragments. Formation of free radicals and coagulation to chains and clusters. 2. Species formed in phase 1 are adsorbed at the substrate surface. 3. Polymerization of particles and fragments at the substrate surface.

26 Plasma Polymerization: Reactor Schematic Monomers: Hexamethyldisiloxane (HMDSO), C 6 H 18 OSi 2 Tetraethylorthosilikate (TEOS) Deposited material: mostly SiO 2

Repetition: Ion Plating

Repetition: Ion Plating Repetition: Ion Plating Substrate HV (bis ca. 1kV) Optional ionization system Source Ionized filling gas Source material, ionized or neutral Repetition: Ion Plating Ion Species Separated ion source Ions

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf by S. Wolf Chapter 15 ALUMINUM THIN-FILMS and SPUTTER-DEPOSITION 2004 by LATTICE PRESS CHAPTER 15 - CONTENTS Aluminum Thin-Films Sputter-Deposition Process Steps Physics of Sputter-Deposition Magnetron-Sputtering

More information

Section 5: Thin Film Deposition part 1 : sputtering and evaporation. Jaeger Chapter 6. EE143 Ali Javey

Section 5: Thin Film Deposition part 1 : sputtering and evaporation. Jaeger Chapter 6. EE143 Ali Javey Section 5: Thin Film Deposition part 1 : sputtering and evaporation Jaeger Chapter 6 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x10 5 Pa 1 bar = 10 5 Pa = 750 torr 1 torr = 1 mm Hg 1 mtorr =

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Chapter 7 Plasma Basic

Chapter 7 Plasma Basic Chapter 7 Plasma Basic Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objectives List at least three IC processes

More information

EE143 Fall 2016 Microfabrication Technologies. Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6

EE143 Fall 2016 Microfabrication Technologies. Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6 EE143 Fall 2016 Microfabrication Technologies Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6 Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Vacuum Basics Units 1 atmosphere

More information

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS) IOP Conference Series: Materials Science and Engineering A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS) To cite this article: D A L Loch and A P Ehiasarian 2012 IOP Conf. Ser.:

More information

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

PHYSICAL VAPOR DEPOSITION OF THIN FILMS PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Introduction to Thin Film Processing

Introduction to Thin Film Processing Introduction to Thin Film Processing Deposition Methods Many diverse techniques available Typically based on three different methods for providing a flux of atomic or molecular material Evaporation Sputtering

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Chapter 7. Plasma Basics

Chapter 7. Plasma Basics Chapter 7 Plasma Basics 2006/4/12 1 Objectives List at least three IC processes using plasma Name three important collisions in plasma Describe mean free path Explain how plasma enhance etch and CVD processes

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Thin Film Deposition. Reading Assignments: Plummer, Chap 9.1~9.4

Thin Film Deposition. Reading Assignments: Plummer, Chap 9.1~9.4 Thin Film Deposition Reading Assignments: Plummer, Chap 9.1~9.4 Thermally grown Deposition Thin Film Formation Thermally grown SiO 2 Deposition SiO 2 Oxygen is from gas phase Silicon from substrate Oxide

More information

Repetition: Physical Deposition Processes

Repetition: Physical Deposition Processes Repetition: Physical Deposition Processes PVD (Physical Vapour Deposition) Evaporation Sputtering Diode-system Triode-system Magnetron-system ("balanced/unbalanced") Ion beam-system Ionplating DC-glow-discharge

More information

Sputter Ion Pump (Ion Pump) By Biswajit

Sputter Ion Pump (Ion Pump) By Biswajit Sputter Ion Pump (Ion Pump) By Biswajit 08-07-17 Sputter Ion Pump (Ion Pump) An ion pump is a type of vacuum pump capable of reaching pressures as low as 10 11 mbar under ideal conditions. An ion pump

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

Introduction to Plasma

Introduction to Plasma What is a plasma? The fourth state of matter A partially ionized gas How is a plasma created? Energy must be added to a gas in the form of: Heat: Temperatures must be in excess of 4000 O C Radiation Electric

More information

Electrical Discharges Characterization of Planar Sputtering System

Electrical Discharges Characterization of Planar Sputtering System International Journal of Recent Research and Review, Vol. V, March 213 ISSN 2277 8322 Electrical Discharges Characterization of Planar Sputtering System Bahaa T. Chaid 1, Nathera Abass Ali Al-Tememee 2,

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Technology for Micro- and Nanostructures Micro- and Nanotechnology

Technology for Micro- and Nanostructures Micro- and Nanotechnology Lecture 10: Deposition Technology for Micro- and Nanostructures Micro- and Nanotechnology Peter Unger mailto: peter.unger @ uni-ulm.de Institute of Optoelectronics University of Ulm http://www.uni-ulm.de/opto

More information

CHAPTER 6: Etching. Chapter 6 1

CHAPTER 6: Etching. Chapter 6 1 Chapter 6 1 CHAPTER 6: Etching Different etching processes are selected depending upon the particular material to be removed. As shown in Figure 6.1, wet chemical processes result in isotropic etching

More information

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA *

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * V. TIRON 1, L. MIHAESCU 1, C.P. LUNGU 2 and G. POPA 1 1 Faculty of Physics, Al. I. Cuza University, 700506, Iasi, Romania 2 National Institute

More information

Chemical Vapor Deposition (CVD)

Chemical Vapor Deposition (CVD) Chemical Vapor Deposition (CVD) source chemical reaction film substrate More conformal deposition vs. PVD t Shown here is 100% conformal deposition ( higher temp has higher surface diffusion) t step 1

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Plasma Route to Nanosciences and Nanotechnology Frontiers

Plasma Route to Nanosciences and Nanotechnology Frontiers J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Plasma Route to Nanosciences and Nanotechnology Frontiers M.P.SRIVASTAVA Department of Physics and Astrophysics, University of Delhi, Delhi -110007, INDIA (Received:

More information

Clean-Room microfabrication techniques. Francesco Rizzi Italian Institute of Technology

Clean-Room microfabrication techniques. Francesco Rizzi Italian Institute of Technology Clean-Room microfabrication techniques Francesco Rizzi Italian Institute of Technology Miniaturization The first transistor Miniaturization The first transistor Miniaturization The first transistor Miniaturization

More information

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer Huashun Zhang Ion Sources With 187 Figures and 26 Tables Э SCIENCE PRESS Springer XI Contents 1 INTRODUCTION 1 1.1 Major Applications and Requirements 1 1.2 Performances and Research Subjects 1 1.3 Historical

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s Ultra-High Vacuum Technology 30-400 l/s 181.06.01 Excerpt from the Product Chapter C15 Edition November 2007 Contents General General..........................................................................

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Deposition www.halbleiter.org Contents Contents List of Figures II 1 Deposition 1 1.1 Plasma, the fourth aggregation state of a material............. 1 1.1.1 Plasma

More information

Chemical Vapor Deposition *

Chemical Vapor Deposition * OpenStax-CNX module: m25495 1 Chemical Vapor Deposition * Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 note: This module was developed

More information

DOE WEB SEMINAR,

DOE WEB SEMINAR, DOE WEB SEMINAR, 2013.03.29 Electron energy distribution function of the plasma in the presence of both capacitive field and inductive field : from electron heating to plasma processing control 1 mm PR

More information

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Index 1. Introduction 2. Some plasma sources 3. Related issues 4. Summary -2 Why is

More information

THIN FILMS FOR PHOTOVOLTAICS AND OTHER APPLICATIONS. BY Dr.A.K.SAXENA PHOTONICS DIVISION INDIAN INSTITUTE OF ASTROPHYSICS

THIN FILMS FOR PHOTOVOLTAICS AND OTHER APPLICATIONS. BY Dr.A.K.SAXENA PHOTONICS DIVISION INDIAN INSTITUTE OF ASTROPHYSICS THIN FILMS FOR PHOTOVOLTAICS AND OTHER APPLICATIONS BY Dr.A.K.SAXENA PHOTONICS DIVISION INDIAN INSTITUTE OF ASTROPHYSICS BACKGROUND 2.8 meter coating plant at VBO, Kavalur 1.5 meter coating plant at VBO,

More information

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine 1 AT/P5-05 H - Ion Source with Inverse Gas Magnetron Geometry for SNS Project V.A. Baturin, P.A. Litvinov, S.A. Pustovoitov, A.Yu. Karpenko Institute of Applied Physics, National Academy of Sciences of

More information

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT Pulsed Laser Deposition; laser ablation Final apresentation for TPPM Diogo Canavarro, 56112 MEFT Summary What is PLD? What is the purpose of PLD? How PLD works? Experimental Setup Processes in PLD The

More information

NANOSTRUCTURED CARBON THIN FILMS DEPOSITION USING THERMIONIC VACUUM ARC (TVA) TECHNOLOGY

NANOSTRUCTURED CARBON THIN FILMS DEPOSITION USING THERMIONIC VACUUM ARC (TVA) TECHNOLOGY Journal of Optoelectronics and Advanced Materials Vol. 5, No. 3, September 2003, p. 667-673 NANOSTRUCTURED CARBON THIN FILMS DEPOSITION USING THERMIONIC VACUUM ARC (TVA) TECHNOLOGY G. Musa, I. Mustata,

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL Prof. Mark J. Kushner Department of Electrical and Computer Engineering 1406 W. Green St. Urbana, IL 61801 217-144-5137 mjk@uiuc.edu http://uigelz.ece.uiuc.edu

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

Substrate Thermal Heating Rates as a Function of Magnetically Controlled Plasma Impedance on Rotary Cathodes

Substrate Thermal Heating Rates as a Function of Magnetically Controlled Plasma Impedance on Rotary Cathodes Substrate Thermal Heating Rates as a Function of Magnetically Controlled Plasma Impedance on Rotary Cathodes Patrick Morse, Russ Lovro, Timmy Strait, Mike Rost Sputtering Components Inc. Owatonna Minnesota

More information

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Mat. Res. Soc. Symp. Vol. 635 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu Shi, Zhou Yu, S. X. Wang 1, Wim J.

More information

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam Lecture 10 Outline 1. Wet Etching/Vapor Phase Etching 2. Dry Etching DC/RF Plasma Plasma Reactors Materials/Gases Etching Parameters

More information

ION BOMBARDMENT CHARACTERISTICS DURING THE GROWTH OF OPTICAL FILMS USING A COLD CATHODE ION SOURCE

ION BOMBARDMENT CHARACTERISTICS DURING THE GROWTH OF OPTICAL FILMS USING A COLD CATHODE ION SOURCE ION BOMBARDMENT CHARACTERISTICS DURING THE GROWTH OF OPTICAL FILMS USING A COLD CATHODE ION SOURCE O. Zabeida, J.E. Klemberg-Sapieha, and L. Martinu, Ecole Polytechnique, Department of Engineering Physics

More information

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS V.P. Ershov, V.V.Fimushkin, G.I.Gai, L.V.Kutuzova, Yu.K.Pilipenko, V.P.Vadeev, A.I.Valevich Λ and A.S. Belov Λ Joint Institute for Nuclear

More information

SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a)

SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a) SCALING OF HOLLOW CATHODE MAGNETRONS FOR METAL DEPOSITION a) Gabriel Font b) Novellus Systems, Inc. San Jose, CA, 95134 USA and Mark J. Kushner Dept. of Electrical and Computer Engineering Urbana, IL,

More information

Application of Rarefied Flow & Plasma Simulation Software

Application of Rarefied Flow & Plasma Simulation Software 2016/5/18 Application of Rarefied Flow & Plasma Simulation Software Yokohama City in Japan Profile of Wave Front Co., Ltd. Name : Wave Front Co., Ltd. Incorporation : March 1990 Head Office : Yokohama

More information

Film Deposition Part 1

Film Deposition Part 1 1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of

More information

Reactive Ion Etching (RIE)

Reactive Ion Etching (RIE) Reactive Ion Etching (RIE) RF 13.56 ~ MHz plasma Parallel-Plate Reactor wafers Sputtering Plasma generates (1) Ions (2) Activated neutrals Enhance chemical reaction 1 2 Remote Plasma Reactors Plasma Sources

More information

Hiden EQP Applications

Hiden EQP Applications Hiden EQP Applications Mass/Energy Analyser for Plasma Diagnostics and Characterisation EQP Overview The Hiden EQP System is an advanced plasma diagnostic tool with combined high transmission ion energy

More information

POLARIZED DEUTERONS AT THE NUCLOTRON 1

POLARIZED DEUTERONS AT THE NUCLOTRON 1 POLARIZED DEUTERONS AT THE NUCLOTRON 1 Yu.K.Pilipenko, S.V.Afanasiev, L.S.Azhgirey, A.Yu.Isupov, V.P.Ershov, V.V.Fimushkin, L.V.Kutuzova, V.F.Peresedov, V.P.Vadeev, V.N.Zhmyrov, L.S.Zolin Joint Institute

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Igal Kronhaus and Matteo Laterza Aerospace Plasma Laboratory, Faculty of Aerospace Engineering, Technion - Israel Institute of Technology,

More information

Robert A. Meger Richard F. Fernster Martin Lampe W. M. Manheimer NOTICE

Robert A. Meger Richard F. Fernster Martin Lampe W. M. Manheimer NOTICE Serial Number Filing Date Inventor 917.963 27 August 1997 Robert A. Meger Richard F. Fernster Martin Lampe W. M. Manheimer NOTICE The above identified patent application is available for licensing. Requests

More information

Wet and Dry Etching. Theory

Wet and Dry Etching. Theory Wet and Dry Etching Theory 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern transfer, wafer

More information

Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching

Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching Indian Journal of Pure & Applied Physics Vol. 48, October 2010, pp. 723-730 Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching Bahaa T Chiad a, Thair L Al-zubaydi

More information

Deposition of polymeric thin films by PVD process. Hachet Dorian 09/03/2016

Deposition of polymeric thin films by PVD process. Hachet Dorian 09/03/2016 Deposition of polymeric thin films by PVD process Hachet Dorian 09/03/2016 Polymeric Thin Films nowadays The evaporation of polymers Ionization-Assisted Method Vacuum deposition 0,055eV/molecule at 1000

More information

Dynamization evolution of Dry Etch Tools in Semiconductor Device Fabrication Gordon Cameron Intel Corp (November 2005)

Dynamization evolution of Dry Etch Tools in Semiconductor Device Fabrication Gordon Cameron Intel Corp (November 2005) Dynamization evolution of Dry Etch Tools in Semiconductor Device Fabrication Gordon Cameron Intel Corp (November 2005) Abstract Engineering Systems follow recognized trends of evolution; the main parameters

More information

FRAUNHOFER IISB STRUCTURE SIMULATION

FRAUNHOFER IISB STRUCTURE SIMULATION FRAUNHOFER IISB STRUCTURE SIMULATION Eberhard Bär eberhard.baer@iisb.fraunhofer.de Page 1 FRAUNHOFER IISB STRUCTURE SIMULATION Overview SiO 2 etching in a C 2 F 6 plasma Ga ion beam sputter etching Ionized

More information

Unit 12 Conduction in Liquids and Gases

Unit 12 Conduction in Liquids and Gases Conduction in Liquids and Gases Objectives: Define positive and negative ions. Discuss electrical conduction in gases. Discuss electrical conduction in a liquid. Discuss several of the ionization processes.

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES SPECTRA PRODUCED BY DISCHARGE TUBES CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum

More information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 3 By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun 1 Syllabus Lithography: photolithography and pattern transfer, Optical and non optical lithography, electron,

More information

Tutorial on Plasma Polymerization Deposition of Functionalized Films

Tutorial on Plasma Polymerization Deposition of Functionalized Films Tutorial on Plasma Polymerization Deposition of Functionalized Films A. Michelmore, D.A. Steele, J.D. Whittle, J.W. Bradley, R.D. Short University of South Australia Based upon review article RSC Advances,

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

CVD: General considerations.

CVD: General considerations. CVD: General considerations. PVD: Move material from bulk to thin film form. Limited primarily to metals or simple materials. Limited by thermal stability/vapor pressure considerations. Typically requires

More information

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein.

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein. DO PHYSICS ONLINE CATHODE RAYS CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum tubes - evacuated glass tubes that are equipped with at least two metal

More information

Trends in plasma applications

Trends in plasma applications 3 International Conference on Frontiers of Plasma Physics and Technology Trends in plasma applications R. Barni Centro PlasmaPrometeo Bangkok 5 March 27 Plasma processing Trends towards atmospheric pressure:

More information

SPUTTER-WIND HEATING IN IONIZED METAL PVD+

SPUTTER-WIND HEATING IN IONIZED METAL PVD+ SPUTTER-WIND HEATING IN IONIZED METAL PVD+ Junqing Lu* and Mark Kushner** *Department of Mechanical and Industrial Engineering **Department of Electrical and Computer Engineering University of Illinois

More information

Lecture 10. Vacuum Technology and Plasmas Reading: Chapter 10. ECE Dr. Alan Doolittle

Lecture 10. Vacuum Technology and Plasmas Reading: Chapter 10. ECE Dr. Alan Doolittle Lecture 10 Vacuum Technology and Plasmas Reading: Chapter 10 Vacuum Science and Plasmas In order to understand deposition techniques such as evaporation, sputtering,, plasma processing, chemical vapor

More information

Study of DC Cylindrical Magnetron by Langmuir Probe

Study of DC Cylindrical Magnetron by Langmuir Probe WDS'2 Proceedings of Contributed Papers, Part II, 76 8, 22. ISBN 978-737825 MATFYZPRESS Study of DC Cylindrical Magnetron by Langmuir Probe A. Kolpaková, P. Kudrna, and M. Tichý Charles University Prague,

More information

Plasma etching. Bibliography

Plasma etching. Bibliography Plasma etching Bibliography 1. B. Chapman, Glow discharge processes, (Wiley, New York, 1980). - Classical plasma processing of etching and sputtering 2. D. M. Manos and D. L. Flamm, Plasma etching; An

More information

A new method for synthesis of hard dielectric coatings

A new method for synthesis of hard dielectric coatings Mechanics & Industry 17, 719 (2016) c AFM, EDP Sciences 2017 DOI: 10.1051/meca/2017008 www.mechanics-industry.org Mechanics & Industry A new method for synthesis of hard dielectric coatings Alexander S.

More information

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps Agilent Technologies 1957-59 Varian Associates invents the first

More information

Previous Lecture. Electron beam lithoghraphy e - Electrons are generated in vacuum. Electron beams propagate in vacuum

Previous Lecture. Electron beam lithoghraphy e - Electrons are generated in vacuum. Electron beams propagate in vacuum Previous Lecture Electron beam lithoghraphy e - Electrons are generated in vacuum Electron beams propagate in vacuum Lecture 6: Vacuum & plasmas Objectives From this vacuum lecture you will learn: What

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

The system for depositing hard diamond-like films onto complex-shaped machine elements in an r.f. arc plasma

The system for depositing hard diamond-like films onto complex-shaped machine elements in an r.f. arc plasma 106 Surface and Coatings Technology, 47 (1991) 106 112 The system for depositing hard diamond-like films onto complex-shaped machine elements in an r.f. arc plasma S. Mitura and Z. Has Institute of Materials

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

1. INTRODUCTION 2. EXPERIMENTAL SET-UP CHARACTERIZATION OF A TUBULAR PLASMA REACTOR WITH EXTERNAL ANNULAR ELECTRODES

1. INTRODUCTION 2. EXPERIMENTAL SET-UP CHARACTERIZATION OF A TUBULAR PLASMA REACTOR WITH EXTERNAL ANNULAR ELECTRODES Romanian Reports in Physics, Vol. 57, No. 3, P. 390-395, 2005 CHARACTERIZATION OF A TUBULAR PLASMA REACTOR WITH EXTERNAL ANNULAR ELECTRODES C. PETCU, B. MITU, G. DINESCU National Institute for Lasers,

More information

Ionized physical vapor deposition (IPVD): A review of technology and applications

Ionized physical vapor deposition (IPVD): A review of technology and applications Ionized physical vapor deposition (IPVD): A review of technology and applications Ulf Helmersson, Martina Lattemann, Johan Böhlmark, Arutiun P. Ehiasarian and Jon Tomas Gudmundsson The self-archived postprint

More information

Plasma Modeling with COMSOL Multiphysics

Plasma Modeling with COMSOL Multiphysics Plasma Modeling with COMSOL Multiphysics Copyright 2014 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their

More information

Keywords. 1=magnetron sputtering, 2= rotatable cathodes, 3=substrate temperature, 4=anode. Abstract

Keywords. 1=magnetron sputtering, 2= rotatable cathodes, 3=substrate temperature, 4=anode. Abstract Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets. F. Papa*, V. Bellido-Gonzalez**, Alex Azzopardi**, Dr. Dermot Monaghan**, *Gencoa Technical & Business Support in US, Davis,

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates WDS' Proceedings of Contributed Papers, Part II, 5 9,. ISBN 978-8-778-85-9 MATFYZPRESS The Computational Simulation of the Positive Ion Propagation to Uneven Substrates V. Hrubý and R. Hrach Charles University,

More information

THE PROPERTIES OF THIN FILM DIELECTRIC LAYERS PREPARED BY SPUTTERING

THE PROPERTIES OF THIN FILM DIELECTRIC LAYERS PREPARED BY SPUTTERING THE PROPERTIES OF THIN FILM DIELECTRIC LAYERS PREPARED BY SPUTTERING Ivana BESHAJOVÁ PELIKÁNOVÁ a, Libor VALENTA a a KATEDRA ELEKTROTECHNOLOGIE, ČVUT FEL, Technická 2, 166 27 Praha 6, Česká republika,

More information

Plasma-enhanced Ammonia Combustion. Jason C. Ganley

Plasma-enhanced Ammonia Combustion. Jason C. Ganley Plasma-enhanced Ammonia Combustion Jason C. Ganley NH 3 Fuel: The Key to US Energy Independence September 19, 2011 1 Gas Discharge Plasma A Gas Discharge Plasma (GDP) occurs when electrons flow from anode

More information

Device Fabrication: Etch

Device Fabrication: Etch Device Fabrication: Etch 1 Objectives Upon finishing this course, you should able to: Familiar with etch terminology Compare wet and dry etch processes processing and list the main dry etch etchants Become

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction The modification of physical, chemical or optical properties to suit industrial functions is the basis of material processing techniques. In many material processing techniques,

More information

Soft X-ray multilayer mirrors by ion assisted sputter deposition

Soft X-ray multilayer mirrors by ion assisted sputter deposition Soft X-ray multilayer mirrors by ion assisted sputter deposition Valentino Rigato INFN Laboratori Nazionali di Legnaro Bologna, September 21, 2010 Source: INFN-LNL-2009 V. RIGATO 1 SIF- Bologna September

More information

Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source

Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source 1 Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source D. Nakamura, T. Akiyama, K. Tamaru, A. Takahashi* and T. Okada Graduate School of Information Science and Electrical Engineering,

More information

Chapter 3: Thin film deposition and characterization techniques

Chapter 3: Thin film deposition and characterization techniques Chapter 3: Thin film deposition and characterization techniques 3.1 Introduction: The Material Science and Engineering community s ability to visualize the novel materials with extraordinary combination

More information

Deposition of thin films

Deposition of thin films 16 th March 2011 The act of applying a thin film to a surface is thin-film deposition - any technique for depositing a thin film of material onto a substrate or onto previously deposited layers. Thin is

More information

Plasma diagnostics of pulsed sputtering discharge

Plasma diagnostics of pulsed sputtering discharge Plasma diagnostics of pulsed sputtering discharge Vitezslav Stranak Zdenek Hubicka, Martin Cada and Rainer Hippler University of Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 174 89 Greifswald,

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Energy fluxes in plasmas for fabrication of nanostructured materials

Energy fluxes in plasmas for fabrication of nanostructured materials Energy fluxes in plasmas for fabrication of nanostructured materials IEAP, Universität Kiel 2nd Graduate Summer Institute "Complex Plasmas" August 5-13, 2010 in Greifswald (Germany) AG 1 Outline Motivation

More information