Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures

Size: px
Start display at page:

Download "Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures"

Transcription

1 MOF-Workshop, Leipzig, March 2010 Possibilities and Limits for the Determination of Adsorption Data Pure Gases and Gas Mixtures Reiner Staudt Instutut für Nichtklassische Chemie e.v. Permoserstraße 15, D Leipzig, Germany

2 Content Introduction Experimental methods pure isotherms Experimental methods mixed isotherms Examples Acurracy of different methods Technical Adsorption Process Conclusion

3 Adsorption on Adsorption on surfaces / separation Technical usable effects Thermodynamic effect (differences between the sorption capacities) Knowledge of Isotherms Kinetic effect (differences between the sorption velocities) Knowledge of transport coefficients Steric effect (molecular sieve effect) Knowledge geometrical parameters

4 Basics of sorption technique / processes amount adsorbed A to B: pressure swing / purge with intert gas A to D: temperature swing A to C: mix of both B C pressure A D T1 T2 > T1 Temperature swing process (TSA) Desorption by increase of T (A to D) Hot inert gas Water vapor Electrical heating Pressure swing process (PSA/VPSA) Desorption by decrease of p (A to B) PSA adsorption at higher pressures (>3 bar); regeneration at atmospheric pressure VPSA adsorption at higher pressures (>1,2 bar); regeneration under vacuum Combined TSA-PSAk Desorption by increase of T and decrease of p (A to C) (1) D. Bathen, M.Breitbach, Adsorptionstechnik, Springerverlag, 2001

5 Industrial application of adsorption Gas separation (Air to Oxygen and Nitrogen, Isoalkanes and n-alkanes) Gas purification (drying of natural gas, hydrogen etc.) Recovery of organic compounds (toluene, hydrocarbons etc.) Environmental (organic solvents from waste air etc.)

6 Industrial application of adsorption choice of best adsorbent optimal gas fluxes cycle time product quality energy costs adsorber to clean natural gas

7 Pressure Swing Adsorption (PSA) production Adsorber A regeneration Adsorber B Knowledge of: Isotherms Heat of adsorption kinetics coadsorption Prediction of Breakthrought Curves

8 Pressure Swing Adsorption (PSA) Knowledge of: Isotherms Heat of adsorption kinetics coadsorption Prediction of Breakthrought Curves production Adsorber B regeneration Adsorber A

9 Adsorption Isotherms of Ar, Kr, O 2 and Xe

10 Influence of a Surface barrier 1 relative Uptake Ψ(t) 0,8 0,6 0,4 0, time [s] relative Uptakes for a untreated and a modified zeolite material for propane at 100 C: fitted with Nonisothermal model and fitted surface controlled model Transport diffusivities: 4*10-13 m 2 /s, 3*10-14 m 2 /s

11 Kinetics of Adsorption of Pure Ar, Kr, O 2 and Xe

12 Experimental Methods Pure Isotherm Gravimetry Volumetry Break through curves Mixed Isotherm Volume-Gravimetry Volumetry with Gaschromatography (GC) Modified van Ness Method Sum-Isotherm-Method

13 Experiment - Gravimetry Calibration of instrument: sampe holder... Measurement: p, T, m MB Calculation: as f Ω= m V ρ

14 Helium on Activated Carbon Microbalance [mg] K 313 K 328 K 343 K Pressure [MPa]

15 Helium on Activated Carbon reduced mass [mg/g] K 313 K 328 K 343 K 298 K V = cm3/g 313 K V = cm3/g 328 K V = cm3/g 343 K V = cm3/g -45 He - Density [g/cm³]

16 CO 2 on AC Norit R1 Excess amount adsorbed [mg/g] m exp, T = 343 K m LF,T, T = 343 K m exp, T = 328 K m LF,T, T = 328 K m exp, T = 313 K m LF,T, T = 313 K mc = mg/g α = 1.05 b C = /MPa E = kj/kmol V pore = 0.56 cm 3 /g Pressure [MPa]

17 Ethylacetate on Activated Carbon at 303 K 4.50 Amount adsorbed [mmol/g] Pressure [mbar]

18 Experiment - Volumetry p* T* p T V* V VP GS Calibration of instrument: Volume of vessel... Measurement: p, T m S Ω = m - V as ρ(p,t) = V* ρ(p*,t*) - (V*+V) ρ(p,t) Calculation: as f Ω= m V ρ

19 Pure Gases on Norit R1 at 298 K Excess amount adsorbed [mmol/g] CO 2 CH 4 N Pressure [MPa]

20 Experiment Gravimetry dynamic Calibration of instrument: sampe holder... Measurement: p, T, m MB, concentration c(t), Calculation: as f Ω= m V ρ

21 Butene ant Water in Nitrogen on Catalyst 4 3 Mass change [mg] Heating to 280 C in N2 flow 30' at 280 C in air 30' at 160 C in N2/Butene flow 65' in N2/Butene flow + H 2 O -5-6 Cooling to 160 C Time [min]

22 Experiment - Break through curves 7 5 Concentration Time Temp. C Temp. C Temp. C Temp. C CO 1 Calibration of instrument: bulk density... Measurement: concentration c(t), massflow m flow time t Pressure bar Temp. C 1 Gas supply 2 Flowmeter 3 Pressure/temp. gauge 4 Adsorber 3 5 Thermocouples 6 Capacitor 7 Impedance analyser 8 Concentration detector (TCD) 2 1 He Calculation: as f Ω= m V ρ as f Ω= ρ m flow V = m *t V * ρ col f

23 CO2 in Air on Zolithe at 295 K Concentration CO2 [ppm] Dry air 28 l/h, 30 g zeolithe Time [min]

24 CO2 in N2 on Zeolithe 13X at 295 K IA 0.8 Elec. capacity [pf] TCD Concentration Time [s] T = 295 K p = MPa 0.2 N2: 30 l/h, CO2: 10 l/h, zeolithe 100 g

25 N 2 / CO 2 / CH 4 (10% / 40% / 50%) on AC Norit NR1 Extra 1 Durchbruchskurve Konzentration C/Co N2 CH4 CO Zeit in Sekunden Mass AC = 75,9 g, p = 1,2 bar

26 N 2 / CO 2 / CH 4 (10% / 40% / 50%) on AC Norit NR1 Extra 40 Temperaturverlauf Temp. der Thermoelemente in C Zeit in Sekunden Mass AC = 75,9 g, p = 1,2 bar

27 Experiment accuracy Pressure Temperature Mass Volume of sample holder p = MPa T = 0.01 K m = 0.01 mg V = cm 3 Volume of vessel Concentration Gas Flow Time V = 0.02 cm 3 c = 0.1 % V t =0.1 ml/min t =0.01 s Gravimetry Volumetry Breakthrough Gravimetry dyn. m/m = 0.1 % m/m = 0.5 % m/m = 0.5 % m/m = 0.25 %

28 Experiment Gravimetry Direct measurement of m, p, T Mass change during sample preparation Uptake curve Adsorption isotherm, (Kinetics) Volumetry Direct measurement of p, T Simple apparatus Adsorption isotherm Breakthrough curve Direct measurement of c, p, T Simple apparatus Concentration dependency in carrier gas Close to technical separation

29 Volume-Gravimetry & Volumetry with GC 94,22547 g magnetic coupling microbalance T p Calibration: Volume of vessel & sample holder, GC... Volume-Gravimetry: storage vessel 1 gas supply Measurement: p, T, m Calculation: sample IS 2 IS 1 injection systems gas circulation pump m fl 1, m fl 2, m 1, m 2 storage vessel 2 T Volumetry with GC: Measurement: p, T, c T gas chromatograph vacuum pump Calculation: m fl 1, m fl 2, m 1, m 2

30 CO/H2 Mixture on 5A Zeolite Excess amount adsorbed [mmol/g] IAST: n = n CO + n H2 IAST: n CO IAST: n H2 Experiment: n = n CO + n H2 Experiment: n CO Experiment: n H Pressure p [MPa] T = 303 K, y(co)=0.3

31 Volume-Gravimetry accuracy Pressure Temperature Mass Volume of sample holder p = MPa T = 0.01 K m = 0.01 mg V = cm 3 Volume of vessel Concentration Gas Flow Time V = 0.02 cm % V t =0.1 ml/min t =0.01 s For CO/H2 on Zeolite: Concentration of fluid phase Concentration of adsorbed phase Total amount adsorbed c/c = 1.25 % m/m = 1.5 % c/c = 3.5 %

32 CO2/N2 an AK Norit R1, T = 298 K Excess amount adsorbed [mmol/g] Conc. yco Pressure [MPa]

33 CH4/CO2/N2 an AK Norit R1, T = 298 K nch4, nch4 + nco2, ntot [mmol/g] y CH4 = 0,72 / y CO2 = 0,12 / y N2 = 0, Pressure [MPa]

34 Volumetry with GC Pressure Temperature Mass Volume of sample holder p = MPa T = 0.01 K m = 0.01 mg V = cm 3 Volume of vessel Concentration Gas Flow Time V = 0.02 cm % V t =0.1 ml/min t =0.01 s Concentration of fluid phase Concentration of adsorbed phase Total amount adsorbed c/c = 1.0 % c/c = 2-5 % m/m = 1.5 %

35 Experiment Volume- Gravimetry Direct measurement of m, p, T Mass change during sample preparation Adsorption isotherm Partial load Kinetics Needs: Equation of State for mixed gas M 1 M 2 Volumetry with GC Direct measurement of p, T Simple apparatus Adsorption isotherm Partial load Needs: Gaschromatograph Equation of State for mixed gas Van Ness Method Direct measurement of m, p, T Simple measurement Adsorption isotherm Partial load (Calculated) Application to non ideal gases difficult

36 Typical 4 Bed-Adsorber for H2 Purification via PSA n e g o r d y H s a g D - t e g r u P A 0 3 A c u d o r P d e e

37 Adsorption Process PSA and TSA Amounr adsorbed [Nl/kg] A nach B: Pressure Swing Adsorption A nach D: Temperature Swing Adsorption A nach C: Combination PSA and TSA B C Partial pressure [mbar] A D T1 T2 > T1

38 PSA for Hydrogen Purification Open questions: How many Adsorber (3, 4 or 5 beds) Cycle Time Adsorption Isotherm (p,t) Kinetik of Adsorption Adsorption and Desorption Pressure Adsorption and Desorption Temperatur Purity of Product

39 Amount Adsorbed / NL.kg CO2 CH4 CO N2 H2 Design Partial Pressure / mbar 1.0 relative concentration time / s * Mahler AGS GmbH, 2008.

40 Hydrogen production and purification The most common and economical route: Steam Reforming of Natural Gas combined with a water-gas shift reaction Steam-Methane-Reformer-Off-Gas (SMROG): H 2 -rich stream (70 80%) Impurities: H 2 S (traces) H 2 O vapor (<1%) N 2 (<1%) CH 4 (3 6%) CO (1 3%) CO 2 (15 25%) Pressure Swing Adsorption (PSA) (85% - H 2 producers) H 2 : mol% *Sircar S. and Golden T.C., Sep. Sci. Tech., 35, 5, , * Mahler AGS GmbH Internal Note, 2008.

41 Adsorption Equilibria of H 2, CO 2, CO, CH 4, N on Activated Carbon 60...on Zeolite CO2 Amount Adsorbed [Nl/kg] CH4 CO N2 H2 Amount Adsorbed [Nl/kg] CO CH4 N2 H Partial Pressure [mbar] Partial Pressure [mbar]

42 Hydrogen - PSA Process Steps Product H 2 H 2 N 2 CO CH 4 CO 2 Tailgas Process gas Pressure equilisation Pressure equilisation Purge Pressurisation H 2 /N 2 /CO/ CH 4 /CO 2 Process gas Desorption Tailgas

43 Real measurable Quantity Total mass in system: a fl mtot = m + m Mass adsorbed: m =Ω+ V * ρ a as fl Mass in fluid phase: ( )* ρ (, ) m fl = V V as fl pt m =Ω+ V ρ tot * fl

44 Conclusion 1. Only measurable properties of adsorption equilibria are the surface excess quantities. 2. Different experimental methods for specific application. 3. Full determination of mixed gas adsorption equilibria leads to minimum error in experimental data. 4. Characterization Volumetry Pure isotherm Gravimetry Mixed gas Volumetry with GC Binary mixture Volume-Gravimetry Separation Breakthrough curve

45

Biogas Purification by Adsorption. and novel Washing Systems

Biogas Purification by Adsorption. and novel Washing Systems INNOGAS Symposium, 26./27. Oct. 2006 Biogas Purification by Adsorption and novel Washing Systems Reiner Staudt Institut für Nichtklassische Chemie e.v. Permoserstraße 15, D-04318 Leipzig, Germany Staudt@inc.uni-leipzig.de

More information

Experimental Methods for Single- and Multi-Component Gas Adsorption Equilibria

Experimental Methods for Single- and Multi-Component Gas Adsorption Equilibria 4 PB-1 Experimental Methods for Single- and Multi-Component Gas Adsorption Equilibria J.U. Keller 1), N. Iossifova 1), W. Zimmermann 1), F. Dreisbach 2), R. Staudt 3) 1) Inst. Fluid- and Thermodynamics,

More information

Pressure Swing Adsorption: A Gas Separation & Purification Process

Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure swing adsorption is an adsorption-based process that has been used for various gas separation and purification purposes. Separation

More information

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller Investigation of Mixed Gas Sorption in Lab-Scale Dr. Andreas Möller 1 Technical Necessity: Application of porous Materials as Adsorbents Fine cleaning of Gases (i.e. purification of H 2, natural gas, bio

More information

HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING

HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING H.T.J. Reijers, D.F. Roskam-Bakker, J.W. Dijkstra, R.P. de Smidt, A. de Groot, R.W. van den Brink Address: Energy research Centre of the Netherlands,

More information

Lecture 7. Sorption-Separation Equipment

Lecture 7. Sorption-Separation Equipment Lecture 7. Sorption-Separation Equipment Adsorption - Stirred-tank, slurry operation - Cyclic fixed-bed batch operation - Thermal (temperature)-swing adsorption - Fluidizing bed for adsorption and moving

More information

Porous Solids for Biogas Upgrading

Porous Solids for Biogas Upgrading WASTES: Solutions, Treatments and Opportunities 2 nd International Conference September 11 th 13 th 2013 Porous Solids for Biogas Upgrading J.A.C. Silva 1 and A.E. Rodrigues 2 1 Escola Superior de Tecnologia

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Novel Zeolite Adsorbents

Novel Zeolite Adsorbents Research Development & Innovation Novel Zeolite Adsorbents for separation of Methane and Nitrogen for use in Swing Adsorption Systems UWA technology licensing/ partnering opportunity Processing of conventional

More information

Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon

Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon Adsorption 6, 15 22 (2000) c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon SALIL U. REGE AND RALPH T. YANG Department

More information

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS Ranjani Siriwardane (rsiiw@netl.doe.gov; 34-85-4513) Ming Shen (mshen@netl.doe.gov; 34-85-411) Edward Fisher (efishe@netl.doe.gov; 34-85-411) James Poston

More information

Hiden Isochema. Gravimetric Gas & Vapor Sorption Analyzers. Hiden Isochema IGA Series. Advancing Sorption Analysis

Hiden Isochema.   Gravimetric Gas & Vapor Sorption Analyzers. Hiden Isochema IGA Series. Advancing Sorption Analysis Technical Specifications The IGA-1 is designed for gravimetric mixed gas sorption, as well as single component vapor sorption analysis, and powerfully combines the features of the IGA-1, IGA-2 and IGA-3.

More information

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation Dr. Robert Eschrich Quantachrome GmbH & Co. KG 2018-04-17 Leipziger Symposium on Dynamic Sorption

More information

High-Pressure Volumetric Analyzer

High-Pressure Volumetric Analyzer High-Pressure Volumetric Analyzer High-Pressure Volumetric Analysis HPVA II Benefits Dual free-space measurement for accurate isotherm data Free space can be measured or entered Correction for non-ideality

More information

Adsorbents for the Sorption Enhanced Steam-Methane Reforming Process

Adsorbents for the Sorption Enhanced Steam-Methane Reforming Process Abstract Adsorbents for the Sorption Enhanced Steam-Methane Reforming Process Drazen Dragicevic & Marcus Ivarsson Department of Chemical Engineering, Lund University, Sweden August 27, 2013 Hydrogen can

More information

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR Stephen A. Birdsell and R. Scott Willms Los Alamos National Laboratory MS C348, Los Alamos, New Mexico 87545 ABSTRACT A large quantity of

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Structural flexibility of a

More information

Batch system example (previous midterm question)

Batch system example (previous midterm question) Batch system example (previous midterm question) You are to design a batch adsorber to remove an organic contaminant (A) from 400L of aqueous solution containing 0.05g/L of the contaminant. To facilitate

More information

Supporting Information

Supporting Information Supporting Information Unprecedented activation and CO 2 capture properties of an elastic single-molecule trap Mario Wriedt, a Julian P. Sculley, b Wolfgang M. Verdegaal, b Andrey A. Yakovenko b and Hong-Cai

More information

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture Carbon Capture Workshop, Tuesday, April 3 rd, Texas A&M, Qatar Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture J. P. Sculley, J.-R. Li, J. Park, W. Lu, and H.-C. Zhou Texas A&M

More information

The Vacuum Sorption Solution

The Vacuum Sorption Solution The Total Sorption Solution The Vacuum Sorption Solution The Vacuum Sorption Solution www.thesorptionsolution.com About the Technique DVS Vacuum - the only gravimetric system that supports static and dynamic

More information

MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION

MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION Taoufik EL BRIHI, Jean-Noël JAUBERT, Danielle BARTH (*) Laboratoire de Thermodynamique des Milieux Polyphasés ENSIC

More information

SEPARATION BY BARRIER

SEPARATION BY BARRIER SEPARATION BY BARRIER SEPARATION BY BARRIER Phase 1 Feed Barrier Phase 2 Separation by barrier uses a barrier which restricts and/or enhances the movement of certain chemical species with respect to other

More information

Separations account for a significant proportion of

Separations account for a significant proportion of Reactions and Separations Reprinted with permission from Chemical Engineering Progress (CEP), March 2018. Copyright 2018 American Institute of Chemical Engineers (AIChE). Characterizing Adsorbents for

More information

Far UV Absorbance Detector

Far UV Absorbance Detector Far UV Absorbance Detector Theory Most organic and inorganic species absorb strongly in the far UV. Notable exceptions are the inert gases, helium and nitrogen which absorb very weakly in this region.

More information

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams Methods of pollution control and waste management - laboratory Adsorptive removal of volatile organic compounds from gases streams Manual for experiment 17 dr Hanna Wilczura-Wachnik and dr inż. Jadwiga

More information

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate An-Yuan Yin, Xiao-Yang Guo, Wei-Lin Dai*, Kang-Nian Fan Shanghai Key Laboratory of Molecular

More information

Building multiple adsorption sites in porous polymer networks for carbon capture applications

Building multiple adsorption sites in porous polymer networks for carbon capture applications Electronic Supplementary Information Building multiple adsorption sites in porous polymer networks for carbon capture applications Weigang Lu, a Wolfgang M. Verdegaal, a Jiamei Yu, b Perla B. Balbuena,

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE Stéphane VITU and Danielle BARTH ( * ) Institut National Polytechnique de Lorraine Ecole Nationale Supérieure des Industries Chimiques Laboratoire

More information

Non-oxidative methane aromatization in a catalytic membrane reactor

Non-oxidative methane aromatization in a catalytic membrane reactor Non-oxidative methane aromatization in a catalytic membrane reactor Olivier RIVAL, Bernard GRANDJEAN, Abdelhamid SAYARI, Faïçal LARACHI Department of Chemical Engineering and CERPIC Université Laval, Ste-Foy,

More information

CuH-ZSM-5 as Hydrocarbon Trap under cold. start conditions

CuH-ZSM-5 as Hydrocarbon Trap under cold. start conditions CuH-ZSM-5 as Hydrocarbon Trap under cold start conditions M. Navlani-García a, B. Puértolas b, D. Lozano-Castelló a, *, D. Cazorla-Amorós a, M. V. Navarro b, T. García b a Instituto Universitario de Materiales,

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

Carbon molecular sieves production and performance assessment in carbon dioxide separation

Carbon molecular sieves production and performance assessment in carbon dioxide separation JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 9, No. 7, July 2007, p. 2296-2301 Carbon molecular sieves production and performance assessment in carbon dioxide separation M. VĂDUVA *, V. STANCIU

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

Flexible MOFs for Gas Separation A Case Study Based on Static and Dynamic Sorption Experiments

Flexible MOFs for Gas Separation A Case Study Based on Static and Dynamic Sorption Experiments Flexible MOFs for Gas Separation A Case Study Based on Static and Dynamic Sorption Experiments Dr. Robert Eschrich 1 Christian Reichenbach 1, Andreas Möller 1, Jens Möllmer 2, Marcus Lange 2, Hannes Preißler

More information

Determination of effective diffusion coefficient of methane adsorption on activated carbon

Determination of effective diffusion coefficient of methane adsorption on activated carbon Trade Science Inc. ISSN : 0974-7443 Volume 7 Issue 2 CTAIJ 7(2) 2012 [39-44] Determination of effective diffusion coefficient of methane adsorption on activated carbon Alireza Azimi*, Masoomeh Mirzaei

More information

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan m WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xi

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane, and Carbon Dioxide + Decane Systems from 313 to 373 K

Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane, and Carbon Dioxide + Decane Systems from 313 to 373 K Experimental Vapor-Liquid Equilibria for the Carbon Dioxide + Octane, and Carbon Dioxide + Decane Systems from to K R. Jiménez-Gallegos, Luis A. Galicia-Luna* and O. Elizalde-Solis Instituto Politécnico

More information

AN INVESTIGATION ON THE OXYGEN AND NITROGEN SEPARATION FROM AIR USING CARBONACEOUS ADSORBENTS

AN INVESTIGATION ON THE OXYGEN AND NITROGEN SEPARATION FROM AIR USING CARBONACEOUS ADSORBENTS Journal of Engineering Science and Technology Vol. 10, No.11 (2015) 1394-1403 School of Engineering, Taylor s University AN INVESTIGATION ON THE OXYGEN AND NITROGEN SEPARATION FROM AIR USING CARBONACEOUS

More information

Modification In Charging Composition In Order To Arrive At Desired Circulation Composition In The Context Of Sorption Compressor Based J-T Cooler

Modification In Charging Composition In Order To Arrive At Desired Circulation Composition In The Context Of Sorption Compressor Based J-T Cooler Modification In Charging Composition In Order To Arrive At Desired Circulation Composition In The Context Of Sorption Compressor Based J-T Cooler R. N. Mehta, S. L. Bapat, M. D. Atrey Department of Mechanical

More information

XEMIS NEXT GENERATION GRAVIMETRIC SORPTION ANALYZER

XEMIS NEXT GENERATION GRAVIMETRIC SORPTION ANALYZER XEMIS NEXT GENERATION GRAVIMETRIC SORPTION ANALYZER www.hidenisochema.com Hiden Isochema is a world leader in the design and manufacture of high accuracy sorption instruments for research, development

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information

CO 2 capture by Adsorption Processes: From Materials to Process Development to Practical Implementation

CO 2 capture by Adsorption Processes: From Materials to Process Development to Practical Implementation CO 2 capture by Adsorption Processes: From Materials to Process Development to Practical Implementation Paul A. Webley Dept. of Chemical Engineering Talloires, July 2010 Outline Adsorption for Post-Combustion

More information

Separation Benzene and Toluene from BTX using Zeolite 13X

Separation Benzene and Toluene from BTX using Zeolite 13X Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.9 No.3 (September 27) 7-24 ISSN: 997-4884 University of Baghdad College of Engineering Separation

More information

Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure

Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure K. Nifantiev, O. Byeda, B. Mischanchuk, E. Ischenko a Taras Shevchenko National university of Kyiv, Kyiv, Ukraine knifantiev@gmail.com

More information

Error in the Estimation of Effective Diffusion Coefficients from Sorption Measurements*

Error in the Estimation of Effective Diffusion Coefficients from Sorption Measurements* Error in the Estimation of Effective Diffusion Coefficients from Sorption Measurements* D. BOBOK and E. BESEDOVÁ Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology, Slovak

More information

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE Petroleum & Coal ISSN 1337-707 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 56 (1) 13-18, 014 THE IRANIAN JAM PETROCHEMICAL S H -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE Ehsan

More information

Gravimetric Analysers for the Characterisation of the Sorption Properties of Materials.

Gravimetric Analysers for the Characterisation of the Sorption Properties of Materials. Gravimetric Analysers for the Characterisation of the Sorption Properties of Materials. + - IGA - The Intelligent Gravimetric Analyser The IGA range from Hiden Isochema provides the ultimate tool for sorption

More information

Kinetic, Thermodynamic and Regeneration Studies for CO 2 Adsorption onto Activated Carbon

Kinetic, Thermodynamic and Regeneration Studies for CO 2 Adsorption onto Activated Carbon International Journal of Advanced Mechanical Engineering. ISSN 50-334 Volume 4, Number 1 (014), pp. 7-3 Research India Publications http://www.ripublication.com/ijame.htm Kinetic, Thermodynamic and Regeneration

More information

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES JPACSM 127 AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES Trace Analytical Inc. Menlo Park, CA ABSTRACT GC based gas analyzers with Reduction Gas Detector (RGD) and Flame Ionization

More information

Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption

Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption Korean J. Chem. Eng., 28(2),583-590 (2011) DOI: 10.1007/s11814-010-0399-9 INVITED REVIEW PAPER Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption

More information

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications (Supporting Information: 33 pages) Hiroyasu Furukawa and Omar M. Yaghi Center

More information

By Rogéria Amaral and Sébastien Thomas

By Rogéria Amaral and Sébastien Thomas Kinetics of CO 2 methanation over a Ni/alumina industrial catalyst By Rogéria Amaral and Sébastien Thomas Laboratoire de Matériaux, Surfaces et Procédés pour la Catalyse, Groupe Energie et Carburants pour

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels

Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels To cite this article: K L Yan and Q Wang

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information One-of-A-Kind: A Microporous Metal-Organic Framework

More information

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol Fluid Phase Equilibria 202 (2002) 359 366 Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol Jung-Yeon Park a, Sang Jun Yoon a, Huen Lee a,, Ji-Ho Yoon b, Jae-Goo Shim

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

RUBOTHERM SERIES IsoSORP SORPTION ANALYZER

RUBOTHERM SERIES IsoSORP SORPTION ANALYZER RUBOTHERM SERIES IsoSORP SORPTION ANALYZER Sorption Analysis Under Extreme and Real-World Processing Conditions High Pressure Wide Temperature Range Gases, Vapors and Mixtures RUBOTHERM SERIES ISOSORP

More information

DYNAMIC SORPTION. Dynamic Sorption Breakthrough Analyzer. Gas Purification

DYNAMIC SORPTION. Dynamic Sorption Breakthrough Analyzer. Gas Purification Dynamic Sorption Breakthrough Analyzer Gas Separation Breakthrough Curves Industrial Adsorbents Multi Component Adsorption Material Research Energy Chemical Engineering Energy Storage Gas Storage Carbons

More information

dissolved into methanol (20 ml) to form a solution. 2-methylimidazole (263 mg) was dissolved in

dissolved into methanol (20 ml) to form a solution. 2-methylimidazole (263 mg) was dissolved in Experimental section Synthesis of small-sized ZIF-8 particles (with average diameter of 50 nm): Zn(NO 3 ) 2 (258 mg) was dissolved into methanol (20 ml) to form a solution. 2-methylimidazole (263 mg) was

More information

GREEN ENGINEERING PRINCIPLE

GREEN ENGINEERING PRINCIPLE GREEN ENGINEERING INNOVATIVE ION EXCHANGE TECHNOLOGY FOR TREATMENT OF AQUEOUS EFFLUENT STREAMS & DEVELOPING GREENER PROCESSES THROUGH RECOVERY & REUSE OF VALUABLE PRODUCTS. C. NANDI NOCIL LTD. GREEN ENGINEERING

More information

One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation

One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation S1 Supporting Information One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation Patrice T. D. Batamack, Thomas Mathew, G. K. Surya Prakash*

More information

Method for the determination of 1,3-butadiene

Method for the determination of 1,3-butadiene Federation of the Employment Accidents Insurance Institutions of Germany (Hauptverband der Berufsgenossenschaften) Centre for Accident Prevention and Occupational Medicine Alte Heerstraße 111, 53757 Sankt

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

ECHE Questions Centrifugal Pumps

ECHE Questions Centrifugal Pumps ECHE 460 20 Questions Centrifugal Pumps 1. Sketch a typical pump curve including units, and then explain how this curve would change if two identical pumps are operating in series and in parallel. 2. Sketch

More information

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig Using kinetic Monte Carlo simulations for investigating surface barriers in nanoporous materials Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig Com-Phys-09

More information

Performance of Palladium Diffusers for Reliable Purification of Hydrogen

Performance of Palladium Diffusers for Reliable Purification of Hydrogen Performance of Palladium Diffusers for Reliable Purification of Hydrogen By Ed Connor, GC Product Specialist, Peak Scientific Instruments Ltd Performance of Palladium Diffusers for Reliable Purification

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas Ditlhobolo Seanokeng, Achtar Iloy, Kalala Jalama Abstract This study aimed at investigating

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I,

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I, OXYGEN CONCENTRATORS A STUDY Mohammed Salique*, Nabila Rumane**, RohanBholla***, Siddharth Bhawnani**** & Anita Kumari***** Chemical Engineering Department, Thadomal Shahani Engineering College, Off Linking

More information

Comparison of the Adsorption Dynamics of Air on Zeolite 5A and Carbon Molecular Sieve Beds

Comparison of the Adsorption Dynamics of Air on Zeolite 5A and Carbon Molecular Sieve Beds Korean J. Chem. Eng., 21(6), 1183-1192 (2004) Comparison of the Adsorption Dynamics of Air on Zeolite 5A and Carbon Molecular Sieve Beds Jeong-Geun Jee, Sang-Jin Lee and Chang-Ha Lee Department of Chemical

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

A NEW SOLVENT FOR CO2 CAPTURE R.

A NEW SOLVENT FOR CO2 CAPTURE R. A NEW SOLVENT FOR CO 2 CAPTURE R. Viscardi, G. Vanga and V. Barbarossa vincenzo.barbarossa@enea.it C.R. Casaccia ENEA; via Anguillarese, 301; 00123 S. M. Galeria-Roma Abstract This experimental study describes

More information

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106 Turk J Chem 24 (2000), 131 139. c TÜBİTAK Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106 Naciye KILIÇ University of Uludağ,

More information

10/8/2013. Alternatives to Mass Spectrometry and Some Real-time Monitoring Measurements. Project Driven Tasks -- Process Gas Measurements

10/8/2013. Alternatives to Mass Spectrometry and Some Real-time Monitoring Measurements. Project Driven Tasks -- Process Gas Measurements Alternatives to Mass Spectrometry and Some Real-time Monitoring Measurements Co-worker Acknowledgement Laura Tovo, Ronald Hooper, Louis Boone, Jack Zamecnik William A. Spencer SRNL Science and Technology

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

Aviation Fuel Production from Lipids by a Single-Step Route using

Aviation Fuel Production from Lipids by a Single-Step Route using Aviation Fuel Production from Lipids by a Single-Step Route using Hierarchical Mesoporous Zeolites Deepak Verma, Rohit Kumar, Bharat S. Rana, Anil K. Sinha* CSIR-Indian Institute of Petroleum, Dehradun-2485,

More information

Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water"

Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water" M. Wecks, M. Bartoszek, G. Jakobs, and D. Möhlmann ESA / ESRIN, Frascati, 25. 27.11.2009 (Photo)Chemistry

More information

Steam regeneration of acetone and toluene in activated carbon and dealuminated Y-zeolite beds

Steam regeneration of acetone and toluene in activated carbon and dealuminated Y-zeolite beds Korean J. Chem. Eng., 29(9), 1246-1252 (2012) DOI: 10.1007/s11814-012-0044-x INVITED REVIEW PAPER Steam regeneration of acetone and toluene in activated carbon and dealuminated Y-zeolite beds Dong-Geun

More information

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X Korean J. Chem. Eng., 8(4), 55-530 (00) Adsorption Equilibrium and Kinetics of H O on Zeolite 3X Young Ki Ryu*, Seung Ju Lee, Jong Wha Kim and Chang-Ha Lee *External Relations Department, Procter & Gamble

More information

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Analyzing solubility of acid gas and light alkanes in triethylene glycol From the SelectedWorks of ali ali 208 Analyzing solubility of acid gas and light alkanes in triethylene glycol ali ali Available at: https://works.bepress.com/bahadori/8/ Journal of Natural Gas Chemistry

More information

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits.

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Fred Meunier fcm@ircelyon.univ-lyon1.fr Institut de Recherche sur la Catalyse et l Environnement de Lyon Villeurbanne,

More information

Supporting Information

Supporting Information Supporting Information Influence of Carbon Content in Molybdenum Sulfides MoS x C y Obtained by Thermal Decomposition On Photocatalytical Hydrogen Generation John Djamil, a Stephan A. Segler, a Alexandra

More information

CARBON MOLECULAR SIEVES PRODUCTION AND PERFORMANCE ASSESSMENT IN CO 2 SEPARATION BY SELECTIVE ADSORPTION

CARBON MOLECULAR SIEVES PRODUCTION AND PERFORMANCE ASSESSMENT IN CO 2 SEPARATION BY SELECTIVE ADSORPTION U.P.B. Sci. Bull., Series B, Vol. 69, No. 3, 2007 ISSN 1454-2331 CARBON MOLECULAR SIEVES PRODUCTION AND PERFORMANCE ASSESSMENT IN CO 2 SEPARATION BY SELECTIVE ADSORPTION Mădălina VĂDUVA 1, Vasile STANCIU

More information

CATALYTIC STEAM REFORMING OF TOLUENE POST- GASIFICATION USING AS MODEL COMPOUND OF TAR PRODUCED BY BIOMASS GASIFICATION

CATALYTIC STEAM REFORMING OF TOLUENE POST- GASIFICATION USING AS MODEL COMPOUND OF TAR PRODUCED BY BIOMASS GASIFICATION CATALYTIC STEAM REFORMING OF TOLUENE POST- GASIFICATION USING AS MODEL COMPOUND OF TAR PRODUCED BY BIOMASS GASIFICATION J. D. SILVA, C.C.B. OLIVEIRA AND C. A. M. ABREU 1 Polytechnic School UPE, Laboratory

More information

Biogas Clean-up and Upgrading by Adsorption on Commercial Molecular Sieves

Biogas Clean-up and Upgrading by Adsorption on Commercial Molecular Sieves A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 29, 2012 Guest Editors: Petar Sabev Varbanov, Hon Loong Lam, Jiří Jaromír Klemeš Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-20-4; ISSN

More information

Index to Tables in SI Units

Index to Tables in SI Units Index to Tables in SI Units Table A-1 Atomic or Molecular Weights and Critical Properties of Selected Elements and Compounds 926 Table A-2 Properties of Saturated Water (Liquid Vapor): Temperature Table

More information

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution Warning!! Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 5 Gases These slides contains visual aids for learning BUT they are NOT the actual lecture notes! Failure to attend to lectures most

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 15 Supporting Information Co-MOF as sacrificial template: Manifesting new Co

More information

Dehydrogenation of propane with selective hydrogen combustion: A mechanistic study by transient analysis of products

Dehydrogenation of propane with selective hydrogen combustion: A mechanistic study by transient analysis of products Dehydrogenation of propane with selective hydrogen combustion: A mechanistic study by transient analysis of products Oliver Czuprat a, Jürgen Caro a, V.A. Kondratenko b, E.V. Kondratenko b,* a Institute

More information