HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING

Size: px
Start display at page:

Download "HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING"

Transcription

1 HYDROGEN PRODUCTION THROUGH SORPTION ENHANCED REFORMING H.T.J. Reijers, D.F. Roskam-Bakker, J.W. Dijkstra, R.P. de Smidt, A. de Groot, R.W. van den Brink Address: Energy research Centre of the Netherlands, ECN, P.O. Box 1 Postal code: 1755 ZG, city: Petten, Country: The Netherlands Phone:+31(0) reijers@ecn.nl Keywords: Hydrogen, Sorption Enhanced Reforming, Modelling, Adsorbents, Catalysis, Methane steam reforming Introduction Introduction of hydrogen as an energy carrier offers an opportunity to reduce the CO 2 emission from diffuse sources, like vehicles and newly built residential districts. In the long term, it is expected that a hydrogen infrastructure will contribute to CO 2 reduction. In the short term, hydrogen will likely play a role where the application, especially fuel cells, asks for hydrogen. These applications include the transport sector and small-scale combined heat and power. On-site hydrogen production on a gas station or in a residential district requires an average hydrogen production rate between 1000 and 4000 Nm³/hour. At the moment, hydrogen is produced industrially in large-scale steam-reformers at rates in the order of 100,000 Nm³/hour and at high pressures (20 40 bar) and high temperatures ( ºC). To withstand these extreme conditions, expensive materials are required. Besides, a considerable amount of export steam is produced, which cannot be used in the small-scale hydrogen energy systems mentioned before. So there is a need for hydrogen production units operating at milder conditions, while maintaining a high system efficiency. One of the technologies currently investigated at ECN for this purpose is sorption enhanced reforming (SER). Here the methane steam reforming process is conducted in the presence of a CO 2 sorbent. By removing reaction product CO 2, the equilibrium is shifted to the product side, yielding a relatively pure hydrogen stream. The system is operated periodically in two modes: an sorption cycle during which natural gas and steam are fed to the SER reactor, and a desorption cycle in which the sorbent is regenerated. The CO 2 that is released during regeneration could possibly be used for CO 2 sequestration. The CO 2 sorbent should fulfill the following requirements: high CO 2 uptake, rapid kinetics, chemical stability at high H 2 O concentrations and low costs. A material which satisfies these requirements is hydrotalcite of general formula A 2x B 2 (OH) 4x+4 CO 3 nh 2 O. Here A is a divalent, B a trivalent metal ion. In hydrotalcite, these ions are arranged in layers having a brucite (Mg(OH) 2 ) structure, in which part of the divalent ions is replaced by trivalent ions. The excess positive charge of these layers is compensated by the CO 3 2- ions in the intermediate layers. After heat treatment the hydrotalcite decomposes to a mixture of metal oxides offering a plurality of adsorption sites for CO 2.

2 Systems studies Apart from experiments, systems studies have been performed for a hydrogen production system with integrated steam-reformer and CO 2 sorbent, including steam generation, hydrogen purification and heat integration (Figure 1). The system consists of 2 reactors, one of which is in adsorption mode, the other in desorption or purge mode. The purge is performed using steam so that a pure CO 2 stream can be obtained for CO 2 sequestration. A model has been developed in which the overall system efficiency is calculated. The heat management in the system is addressed using a pinch analysis approach. The first results are based on the experimental data obtained by Air Products 1. They indicate that the efficiencies in the pressure and temperature ranges of interest are too low to be competitive with small-scale SR (steam-reforming) with PSA (pressure swing adsorption) for hydrogen purification (Table 1) 2. Tail gas naar to burner brander CH 4 + H 2 O Reformer PSA H 2 product CO 2 Figure 1 Base configuration for systems studies Table 1 System data for conventional steam-reforming and SER small-scale SR SER T (ºC) p (bar) 10 1,7 CH 4 conversion (%) efficiency (LHV) steam/ch steam/h 2 1,1 2,3 H 2 purity (%) 99, fraction CO 2 adsorbed 0 50 Careful analysis has shown that the efficiency can be improved by: decreasing the amount of steam and by increasing the CH 4 conversion. For that reason, 2 paths are followed to increase the efficiency: changing the operating conditions or sorbent materials such that the desorption kinetics is improved so that less steam is needed for regeneration, and developing alternative system configurations which increase the overall CH 4 conversion. For the future, we want to investigate the above-mentioned two routes the improve the efficiency. Preliminary results are shown below.

3 1,6 1,4 1,2 CO 2 (ml/min) 1,0 0,8 0,6 0,4 0,2 1st cycle 5th cycle 10th cycle 20th cycle 30th cycle 40th cycle blank 0, ,0 3,5 CO 2 (ml/min) 3,0 2,5 2,0 1,5 1st cycle 5th cycle 10th cycle 20th cycle 30th cycle 40th cycle blank 1,0 0,5 0, Time (min) Figure 2 Adsorption (above) and desorpion (below) curves of htc at 400 ºC and 1 atm Experimental Lab-scale experiments have been performed to determine the CO 2 breakthrough of a fixed bed reactor using various hydrotalcite (htc) samples. was obtained from SASOL (PURAL MG70), Zn-Al htc was home-made by coprecipitation 3. The htc samples were calcined at 400 ºC for 4 hours. To increase the adsorption, the samples were impregnated with 22 wt% K 2 CO 3. A tube reactor (diameter: 16 mm) was loaded with 3 g htc sample (particle size: 0,212 0,450 mm, bed height: 30 mm). The sample was heated up to the operation temperature (400 or 500 ºC) and a CO 2 -containing gas was allowed to flow past the bed (5% CO 2 /29% H 2 O/66% N 2 at 30 ml/min). After 75 minutes, gas conditions were changed to a CO 2 -free atmosphere (29% H 2 O/71% N 2 at 100 ml/min) to regenerate the bed. Again after 75 minutes, a new adsorption cycle was begun. A typical experiment consisted of 20 adsorption/desorption cycles. A blank experiment, i.e. an experiment with a non-co 2 adsorbing material of the same morphology as the used hydrotalcite, was done in order to correct for instrumental effects.

4 Desorption percentage (%) st cycle ` 40 th cycle 30 th cycle 500 Celcius Zn-Al htc without K 2 CO Cumulative purge flow (mol purge gas/mol adsorbed CO 2 ) Figure 3 Comparison of CO 2 desorption fraction of various htc samples Results and discussion Figure 2a and b show a typical set of adsorption and desorption curves respectively. It is seen that the more cycles have been performed, the closer both the adsorption and desorption curves come together. From the 20 th cycle onwards, changes in the curves are minor. The CO 2 loading capacity varies from 0.27 (1 st cycle) to 0.22 mmol/g (40 th cycle). Figure 3 shows the desorption fraction vs. cumulative purge flow for various htc samples and conditions. In all cases, the samples are impregnated with K 2 CO 3, data of the 5 th cycle is used and the operation temperature is 400 ºC, unless otherwise indicated. To make a comparison between the results possible, the cumulative purge flow is expressed per mol of adsorbed CO 2. The fact that the desorption percentage obtains values above 100% indicates that the CO 2 of which uncalcined htc consists, has not completely been removed by calcination. From this figure, it follows that the purge flow for 100% desorption decreases in the order Mg-Al without K 2 CO 3, Zn-Al htc, Mg-Al at 500 ºC, Mg-Al 40 th cycle and Mg-Al. It is seen that the amount of purge gas needed for 100% desorption differs by more than a factor 5 for the sample with the largest amount ( without K 2 CO 3 ) and the smallest amount (, ). Conclusions 1. CO 2 can be removed effectively by using htc as adsorbent. The amount adsorbed decreases in the first cycles and becomes constant after the 20th cycle. 2. Of the tested htc samples and applied test conditions follows that impregnated with K 2 CO 3 at 400 ºC is the preferred adsorbent. 3. Systems studies have shown that in order to increase the efficiency, the amount of steam for regeneration must be reduced, and the overall CH 4 must be increased.

5 References 1 J.R. Hufton, S.J. Weigel, W.F. Waldron, M.B. Rao, S. Nataraj, S. Sircar, T.R. Gaffney: Sorption Enhanced Reaction Process for the Production of Hydrogen, Final Report Air Products and Chemicals Inc., DE-FC36-95G010059, Allentown, USA. 2 D.B. Myers, G.D. Ariff, B.D. James, J.S. Lettow, C.E. Thomas and R.C. Kuhn: Cost and Performance Comparison of Stationary Fueling Appliances, Task 2 Report, April Directed Technology Inc., 703/ , Arlington, USA. 3 K. Schulze: Ni/Mg/Al Catalysts derived form hydrotalcite-type precursors for the partial oxidation of propane, PhD Thesis, Gerhard-Mercator University, Duisburg, July 2001.

Hydrotalcite as CO 2 sorbent for sorptionenhanced steam reforming of methane

Hydrotalcite as CO 2 sorbent for sorptionenhanced steam reforming of methane ECN-RX--05-122 Hydrotalcite as CO 2 sorbent for sorptionenhanced steam reforming of methane H.Th.J. Reijers, S.E.A. Valster-Schiermeier, P.D. Cobden and R.W. van den Brink to be published in the CO 2 Capture

More information

Adsorbents for the Sorption Enhanced Steam-Methane Reforming Process

Adsorbents for the Sorption Enhanced Steam-Methane Reforming Process Abstract Adsorbents for the Sorption Enhanced Steam-Methane Reforming Process Drazen Dragicevic & Marcus Ivarsson Department of Chemical Engineering, Lund University, Sweden August 27, 2013 Hydrogen can

More information

Pressure Swing Adsorption: A Gas Separation & Purification Process

Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure Swing Adsorption: A Gas Separation & Purification Process Pressure swing adsorption is an adsorption-based process that has been used for various gas separation and purification purposes. Separation

More information

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures

Possibilities and Limits for the Determination of. Adsorption Data Pure Gases and Gas Mixtures MOF-Workshop, Leipzig, March 2010 Possibilities and Limits for the Determination of Adsorption Data Pure Gases and Gas Mixtures Reiner Staudt Instutut für Nichtklassische Chemie e.v. Permoserstraße 15,

More information

Sorption Mechanism for CO 2 on Hydrotalcites For Sorption Enhanced Water Gas Shift processes

Sorption Mechanism for CO 2 on Hydrotalcites For Sorption Enhanced Water Gas Shift processes Sorption Mechanism for CO 2 on Hydrotalcites For Sorption Enhanced Water Gas Shift processes Soledad van Eijk Veldhoven 11 th February 2014 www.ecn.nl The world of SEWGS pre-combustion capture What is

More information

High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst

High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst M. Broda a, V. Manovic b, Q. Imtiaz a, A. M. Kierzkowska a, E. J. Anthony

More information

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS

ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS ADSORPTION AND DESORPTION OF CO ON SOLID SORBENTS Ranjani Siriwardane (rsiiw@netl.doe.gov; 34-85-4513) Ming Shen (mshen@netl.doe.gov; 34-85-411) Edward Fisher (efishe@netl.doe.gov; 34-85-411) James Poston

More information

Synthesis and Characterization of high-performance ceramic materials for hightemperature

Synthesis and Characterization of high-performance ceramic materials for hightemperature Synthesis and Characterization of high-performance ceramic materials for hightemperature CO 2 capture and hydrogen production. Location: Institute for Energy Technology (IFE), Kjeller, Norway Department

More information

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas Ditlhobolo Seanokeng, Achtar Iloy, Kalala Jalama Abstract This study aimed at investigating

More information

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes Coenen, K.T.; Gallucci, F.; Cobden, P.; van Dijk, E; Hensen, E.J.M.; van Sint Annaland, M. Published in: Energy

More information

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR Stephen A. Birdsell and R. Scott Willms Los Alamos National Laboratory MS C348, Los Alamos, New Mexico 87545 ABSTRACT A large quantity of

More information

Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon

Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon Adsorption 6, 15 22 (2000) c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon SALIL U. REGE AND RALPH T. YANG Department

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE Petroleum & Coal ISSN 1337-707 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 56 (1) 13-18, 014 THE IRANIAN JAM PETROCHEMICAL S H -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE Ehsan

More information

Porous Solids for Biogas Upgrading

Porous Solids for Biogas Upgrading WASTES: Solutions, Treatments and Opportunities 2 nd International Conference September 11 th 13 th 2013 Porous Solids for Biogas Upgrading J.A.C. Silva 1 and A.E. Rodrigues 2 1 Escola Superior de Tecnologia

More information

Dynamic cyclic performance of phenol-formaldehyde resinderived carbons for pre-combustion CO 2 capture: An experimental study

Dynamic cyclic performance of phenol-formaldehyde resinderived carbons for pre-combustion CO 2 capture: An experimental study Available online at www.sciencedirect.com Energy Procedia 37 (213 ) 127 133 GHGT-11 Dynamic cyclic performance of phenol-formaldehyde resinderived carbons for pre-combustion CO 2 capture: An experimental

More information

Non-oxidative methane aromatization in a catalytic membrane reactor

Non-oxidative methane aromatization in a catalytic membrane reactor Non-oxidative methane aromatization in a catalytic membrane reactor Olivier RIVAL, Bernard GRANDJEAN, Abdelhamid SAYARI, Faïçal LARACHI Department of Chemical Engineering and CERPIC Université Laval, Ste-Foy,

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

Apportioning of Fuel and Thermal NO x

Apportioning of Fuel and Thermal NO x DEVELOPMENT OF STABLE NITROGEN ISOTOPE RATIO MEASUREMENTS OBJECTIVES The main aim of the project was to develop a nitrogen-stable isotope measurement technique for NO x and to ascertain whether it can

More information

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity 1 Electronic Supplementary Information (ESI) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity for Chao Chen, Seung-Tae Yang, Wha-Seung Ahn* and

More information

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts N.D. Charisiou 1,2, A. Baklavaridis 1, V.G. Papadakis 2, M.A. Goula 1 1 Department of Environmental

More information

Methane production from CO2 over Ni-Hydrotalcite derived catalysts

Methane production from CO2 over Ni-Hydrotalcite derived catalysts Methane production from CO2 over Ni-Hydrotalcite derived catalysts Keerthivarman Veerappanchatram Kaliappan vkkeerthivarman@gmail.com Instituto Superior Tecnico, Universidade de Lisboa, Portugal. October

More information

By Rogéria Amaral and Sébastien Thomas

By Rogéria Amaral and Sébastien Thomas Kinetics of CO 2 methanation over a Ni/alumina industrial catalyst By Rogéria Amaral and Sébastien Thomas Laboratoire de Matériaux, Surfaces et Procédés pour la Catalyse, Groupe Energie et Carburants pour

More information

Supporting Information. Highly Selective Non-oxidative Coupling of Methane. over Pt-Bi Bimetallic Catalysts

Supporting Information. Highly Selective Non-oxidative Coupling of Methane. over Pt-Bi Bimetallic Catalysts Supporting Information Highly Selective Non-oxidative Coupling of Methane over Pt-Bi Bimetallic Catalysts Yang Xiao and Arvind Varma Davidson School of Chemical Engineering, Purdue University, West Lafayette,

More information

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller Investigation of Mixed Gas Sorption in Lab-Scale Dr. Andreas Möller 1 Technical Necessity: Application of porous Materials as Adsorbents Fine cleaning of Gases (i.e. purification of H 2, natural gas, bio

More information

STUDIES ON ADSORPTION/DESORPTION OF CARBON DIOXIDE WITH RESPECT TO THERMAL REGENERATION OF HYDROTALCITES

STUDIES ON ADSORPTION/DESORPTION OF CARBON DIOXIDE WITH RESPECT TO THERMAL REGENERATION OF HYDROTALCITES STUDIES ON ADSORPTION/DESORPTION OF CARBON DIOXIDE WITH RESPECT TO THERMAL REGENERATION OF HYDROTALCITES NADIA ISA, *W.J. NOEL FERNANDO, M.R. OTHMAN, A. L. AHMAD School of Chemical Engineering, Engineering

More information

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production By the Steam Reforming of Methane and Glycerol A. Dixon 1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic Institute,

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan m WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xi

More information

PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION

PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION PROJECT 20: SUPPORTED METALS NANOPARTICLES AS CATALYST FOR THE PROX REACTION Prof. Elisabete M. Assaf, PhD IQSC - USP Prof. José M. Assaf, PhD; Janaina F. Gomes, PhD; Aline R. L. Miranda, Ms DEQ - UFSCar

More information

Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming

Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming Ni-CaO Combined Sorbent Catalyst Materials usage for Sorption Enhanced Steam Methane Reforming A. DI GIULIANO 1,2, J. GIRR 1, C. COURSON 1, A. KIENNEMANN 1,R. MASSACESI 2, K.GALLUCCI 2 1 U n i ve rs i

More information

Simulation of Modified Sorption Enhanced Chemical Looping Reforming for Hydrogen Production from Biogas

Simulation of Modified Sorption Enhanced Chemical Looping Reforming for Hydrogen Production from Biogas Simulation of Modified Sorption Enhanced Chemical Looping Reforming for Hydrogen Production from Biogas A. Phuluanglue, W. Khaodee, S. Wongsakulphasatch, W. Kiatkittipong, A. Arpornwichanop, and S. Assabumrungrat

More information

Experimental and modelling study of CO 2 sorbent for Ca-Cu chemical looping process

Experimental and modelling study of CO 2 sorbent for Ca-Cu chemical looping process Experimental and modelling study of CO 2 sorbent for Ca-Cu chemical looping process M. Martini, F. Gallucci, M. van Sint Annaland Chemical Process Intensification, Chemical Engineering and Chemistry, Eindhoven

More information

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor

Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Exploring The Fundamentals In Catalytic Partial Oxidation Of Methane: The Interaction Between Diffusion And Reaction In A Packed Bed Reactor Songjun Liu; Ana Obradović; Joris W. Thybaut; Guy B. Marin Laboratory

More information

Preliminary evaluation and bench-scale testing of natural and synthetic CaO-based sorbents for post combustion CO 2 capture via carbonate looping

Preliminary evaluation and bench-scale testing of natural and synthetic CaO-based sorbents for post combustion CO 2 capture via carbonate looping th High Temperature Solid Looping Cycles Network Meeting Politecnico di Milano, Milan, Italy st - nd September 5 Preliminary evaluation and bench-scale testing of natural and synthetic CaO-based sorbents

More information

Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method

Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method Kaoru TAKEISHI (武石 薫) E-mail: tcktake ipc.shizuoka.ac.jp Faculty of Engineering, Shizuoka University (Japan)

More information

OH(l) CH 3 COOCH 2. (ii) An equilibrium was reached when the amounts of substances shown in the table below were used.

OH(l) CH 3 COOCH 2. (ii) An equilibrium was reached when the amounts of substances shown in the table below were used. 1 Ethanoic acid and ethanol react together to form the ester ethyl ethanoate, COOC 2 H 5, and water. COOH(l) + CH 2 OH(l) COOCH 2 (l) + H 2 O(l) (a) (i) Give the expression for K c. (ii) An equilibrium

More information

Separation of Lighter Particles from Heavier Particles in Fluidized Bed for SE Hydrogen Production and CLC

Separation of Lighter Particles from Heavier Particles in Fluidized Bed for SE Hydrogen Production and CLC The 6 th High temperature Solid Looping Cycles Network Meeting September 1 th -2 th,2015,politecnico Di Milano Separation of Lighter Particles from Heavier Particles in Fluidized Bed for SE Hydrogen Production

More information

PRODUCTION HYDROGEN AND NANOCARBON VIA METHANE DECOMPOSITION USING Ni-BASED CATALYSTS. EFFECT OF ACIDITY AND CATALYST DIAMETER

PRODUCTION HYDROGEN AND NANOCARBON VIA METHANE DECOMPOSITION USING Ni-BASED CATALYSTS. EFFECT OF ACIDITY AND CATALYST DIAMETER MAKARA, TEKNOLOGI, VOL. 9, NO. 2, NOPEMBER 25: 48-52 PRODUCTION HYDROGEN AND NANOCARBON VIA METHANE DECOMPOSITION USING BASED CATALYSTS. EFFECT OF ACIDITY AND CATALYST DIAMETER Widodo W. Purwanto, M. Nasikin,

More information

Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions Answers

Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions Answers Name AP Chemistry / / Chapter 5 Collected AP Exam Free Response Questions 1980 2010 - Answers 1982 - #5 (a) From the standpoint of the kinetic-molecular theory, discuss briefly the properties of gas molecules

More information

Preparation of biomass derived porous carbon: Application for methane energy storage

Preparation of biomass derived porous carbon: Application for methane energy storage Edith Cowan University Research Online ECU Publications Post 013 016 Preparation of biomass derived porous carbon: Application for methane energy storage Yong Sun Edith Cowan University, y.sun@ecu.edu.au

More information

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture

Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture Carbon Capture Workshop, Tuesday, April 3 rd, Texas A&M, Qatar Metal-Organic Frameworks and Porous Polymer Networks for Carbon Capture J. P. Sculley, J.-R. Li, J. Park, W. Lu, and H.-C. Zhou Texas A&M

More information

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm Supplementary Figure S1 Reactor setup Calcined catalyst (.4 g) and silicon carbide powder (.4g) were mixed thoroughly and inserted into a 4 mm diameter silica reactor (G). The powder mixture was sandwiched

More information

Novel Zeolite Adsorbents

Novel Zeolite Adsorbents Research Development & Innovation Novel Zeolite Adsorbents for separation of Methane and Nitrogen for use in Swing Adsorption Systems UWA technology licensing/ partnering opportunity Processing of conventional

More information

CO 2 capture by Adsorption Processes: From Materials to Process Development to Practical Implementation

CO 2 capture by Adsorption Processes: From Materials to Process Development to Practical Implementation CO 2 capture by Adsorption Processes: From Materials to Process Development to Practical Implementation Paul A. Webley Dept. of Chemical Engineering Talloires, July 2010 Outline Adsorption for Post-Combustion

More information

ADVANCES IN OLEFIN PURIFICATION VIA CATALYSIS AND SORBENT MATERIALS

ADVANCES IN OLEFIN PURIFICATION VIA CATALYSIS AND SORBENT MATERIALS THE CATALYST GROUP RESOURCES ADVANCES IN OLEFIN PURIFICATION VIA CATALYSIS AND SORBENT MATERIALS A technical investigation commissioned by the members of the Catalytic Advances Program (CAP) Client Private

More information

Aqueous-phase reforming a pathway to chemicals and fuels

Aqueous-phase reforming a pathway to chemicals and fuels Alexey Kirilin Aqueous-phase reforming a pathway to chemicals and fuels Laboratory of Industrial Chemistry and Reaction Engineering Process Chemistry Centre Åbo Akademi Agenda 2 Short Introduction, biomass,

More information

TPR, TPO and TPD Examination of Cu 0.15 Ce 0.85 O 2-y Mixed Oxide Catalyst Prepared by Co-precipitation Synthesis

TPR, TPO and TPD Examination of Cu 0.15 Ce 0.85 O 2-y Mixed Oxide Catalyst Prepared by Co-precipitation Synthesis TPR, TPO and TPD Examination of Cu 0.15 Ce 0.85 O 2-y Mixed Oxide Catalyst Prepared by Co-precipitation Synthesis Albin Pintar *, Jurka Batista, Stanko Hočevar Laboratory for Catalysis and Chemical Reaction

More information

White Rose Research Online URL for this paper: Version: Accepted Version

White Rose Research Online URL for this paper:   Version: Accepted Version This is a repository copy of Modelling of high purity H2 production via sorption enhanced chemical looping steam reforming of methane in a packed bed reactor. White Rose Research Online URL for this paper:

More information

Hexagonal Boron Nitride supported mesosio 2 -confined Ni Catalysts. for Dry Reforming of Methane

Hexagonal Boron Nitride supported mesosio 2 -confined Ni Catalysts. for Dry Reforming of Methane Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI): Hexagonal Boron Nitride supported mesosio 2 -confined

More information

The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle

The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle CLEERS presentation October, 2017 The impacts of Pdin BEA zeolite on decreasing cold start HC emission of an E85 vehicle Lifeng Xu*, Jason Lupescu, Jeffery Hepburn, Giovanni Cavataio, Kevin Guo, Paul Laing,

More information

Introduction. Monday, January 6, 14

Introduction. Monday, January 6, 14 Introduction 1 Introduction Why to use a simulation Some examples of questions we can address 2 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling Calculate

More information

MATERIALS THERMODYNAMICS KINETICS SUMMARY INTRODUCTION

MATERIALS THERMODYNAMICS KINETICS SUMMARY INTRODUCTION Introduction H 2 production & chemical looping Materials iron oxide & iron containing perovskite Thermodynamics equilibrium models & reaction front velocities Kinetics concept, results & link to thermodynamics

More information

have also been successfully tested in low temperature NH 3 Noble metals, especially platinum, have been reported to be active catalysts in NH 3

have also been successfully tested in low temperature NH 3 Noble metals, especially platinum, have been reported to be active catalysts in NH 3 46 Novel Pt/CNT and Pd/CNT catalysts for the low temperature ammonia and ethanol assisted selective catalytic reduction of NO Anna Avila 1 *, Mari Pietikäinen 1, Mika Huuhtanen 1, Anne-Riikka Leino 2,

More information

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol A. G. Dixon *,1, B. MacDonald 1, A. Olm 1 1 Department of Chemical Engineering, Worcester Polytechnic

More information

Propylene: key building block for the production of important petrochemicals

Propylene: key building block for the production of important petrochemicals Propylene production from 11-butene and ethylene catalytic cracking: Study of the performance of HZSMHZSM-5 zeolites and silicoaluminophosphates SAPO--34 and SAPOSAPO SAPO-18 E. Epelde Epelde*, *, A.G.

More information

Lecture 7. Sorption-Separation Equipment

Lecture 7. Sorption-Separation Equipment Lecture 7. Sorption-Separation Equipment Adsorption - Stirred-tank, slurry operation - Cyclic fixed-bed batch operation - Thermal (temperature)-swing adsorption - Fluidizing bed for adsorption and moving

More information

Oxidative Dehydrogenation of Olefin*

Oxidative Dehydrogenation of Olefin* Surface Heterogenity of Bismuth-Molybdate Catalyst in Oxidative Dehydrogenation of Olefin* by Toru Watanabe** and Etsuro Echigoya** Summary: The oxidative dehydrogenation of C4, C5 olefins over bismuth

More information

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Journal of Natural Gas Chemistry 12(2003)205 209 Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Haitao Wang, Zhenhua Li, Shuxun Tian School of Chemical Engineering

More information

Proceedings of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '08)

Proceedings of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '08) ADSORPTION EQUILIBRIA OF PROPANE ON ACTIVATED CARBON AND MOLECULAR SIEVES Z.YAAKOB 1, S.K.KAMARUDIN 1, I.KAMARUZAMAN 1, A.IBRAHIM 2 Department of Chemical & Process Engineering, Universiti Kebangsaan Malaysia

More information

Effect of Transition Metal Mixing on Reactivities of Magnesium Oxide for Chemical Heat Pump

Effect of Transition Metal Mixing on Reactivities of Magnesium Oxide for Chemical Heat Pump Journal of Chemical Engineering of Japan, Vol. 40, No. 13, pp. 1281 1286, 2007 Research Paper Effect of Transition Metal Mixing on Reactivities of Magnesium Oxide for Chemical Heat Pump Junichi RYU, Rui

More information

A First Course on Kinetics and Reaction Engineering Example 1.2

A First Course on Kinetics and Reaction Engineering Example 1.2 Example 1.2 Problem Purpose This example shows how to determine when it is permissible to choose a basis for your calculations. It also illustrates how to use reaction progress variables and the initial

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Comparison of acid catalysts for the dehydration of methanol to dimethyl ether I. Sierra, J. Ereña, A. T.

More information

Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption

Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption Korean J. Chem. Eng., 28(2),583-590 (2011) DOI: 10.1007/s11814-010-0399-9 INVITED REVIEW PAPER Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption

More information

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor

Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid Carbon In A Packed Bed Fluid Catalytic Cracking Reactor IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 4, Issue 2 (Mar. Apr. 2013), PP 32-41 Computational Fluid Dynamic Study On The Decomposition Of Methane Gas Into Hydrogen And Solid

More information

Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review

Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review Energy 33 (2008) 554 570 Review Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review L. Barelli, G. Bidini, F. Gallorini, S. Servili Department of Industrial

More information

Carbon molecular sieves production and performance assessment in carbon dioxide separation

Carbon molecular sieves production and performance assessment in carbon dioxide separation JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 9, No. 7, July 2007, p. 2296-2301 Carbon molecular sieves production and performance assessment in carbon dioxide separation M. VĂDUVA *, V. STANCIU

More information

Biogas Clean-up and Upgrading by Adsorption on Commercial Molecular Sieves

Biogas Clean-up and Upgrading by Adsorption on Commercial Molecular Sieves A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 29, 2012 Guest Editors: Petar Sabev Varbanov, Hon Loong Lam, Jiří Jaromír Klemeš Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-20-4; ISSN

More information

This is a repository copy of Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions.

This is a repository copy of Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions. This is a repository copy of Optimised PEI impregnation of activated carbons - Enhancement of CO2 capture under post-combustion conditions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/89498/

More information

Hiden Isochema. Gravimetric Gas & Vapor Sorption Analyzers. Hiden Isochema IGA Series. Advancing Sorption Analysis

Hiden Isochema.   Gravimetric Gas & Vapor Sorption Analyzers. Hiden Isochema IGA Series. Advancing Sorption Analysis Technical Specifications The IGA-1 is designed for gravimetric mixed gas sorption, as well as single component vapor sorption analysis, and powerfully combines the features of the IGA-1, IGA-2 and IGA-3.

More information

Topsøe Catalysis Forum 2009

Topsøe Catalysis Forum 2009 Mercury Behaviour in Combustion Flue Gases Topsøe Catalysis Forum 9 Munkerupgaard 7 th -8 th of August 9 Dr. Harald Thorwarth Energie braucht Impulse Introduction clean gas Cr Co Ni Cd As Cu Pb Hg Input

More information

Catalysis Letters, 79 (1-4): Kluwer Academic Publishers-Plenum Publishers.

Catalysis Letters, 79 (1-4): Kluwer Academic Publishers-Plenum Publishers. Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title The effect of support and copper precursor

More information

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rates of Reaction Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as: Rate = change in concentration units: mol

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

University of Oulu, Dept. Process and Environmental Engineering, FI University of Oulu, P.O.Box 4300

University of Oulu, Dept. Process and Environmental Engineering, FI University of Oulu, P.O.Box 4300 42 Utilisation of isotopic oxygen exchange in the development of air-purification catalysts Satu Ojala 1 *, Nicolas Bion 2, Alexandre Baylet 2, Daniel Duprez 2 and Riitta L. Keiski 1 1 University of Oulu,

More information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate 1 Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate ME Zeynali Petrochemical Synthesis Group, Petrochemical Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O.

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

CYCLIC ADSORPTION AND DESORPTION OF METHANE AND CARBON DIOXIDE ON COCONUT SHELL ACTIVATED CARBON

CYCLIC ADSORPTION AND DESORPTION OF METHANE AND CARBON DIOXIDE ON COCONUT SHELL ACTIVATED CARBON CYCLIC ADSORPTION AND DESORPTION OF METHANE AND CARBON DIOXIDE ON COCONUT SHELL ACTIVATED CARBON Suwadee Uttaraphat a, Pramoch Rungsunvigit *,a,b, Boonyarach Kitiyanan a,b, Santi Kulprathipanja c a) The

More information

Collective Protection 2005

Collective Protection 2005 Collective Protection 25 Design of Catalytic Process for the Removal of CW Agents and TIC s Cheryl Borruso 1, Christopher J. Karwacki 1, Michael J. Knapke 2, Michael Parham 1 and Joseph A. Rossin 2 1 Edgewood

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

Be prepared to discuss the quantitative comparison method in the oral exam.

Be prepared to discuss the quantitative comparison method in the oral exam. Subject: Ring Experiment III 8 Shell and Tube Heat Exchanger Control The shell and Tube Heat Exchanger has two control valves: one on the process fluid flowing to the tubes and one on the cooling water

More information

Extrinsic Defect Reactions in

Extrinsic Defect Reactions in Chapter 5 Extrinsic Defect Reactions in Perovskite Materials The work presented in this Chapter has been published in Solid State Ionics [203]. 5.1 Introduction With dwindling fossil fuel reserves [204]

More information

Energy integration and hydrodynamic characterization of dual CFB for sorption looping cycles

Energy integration and hydrodynamic characterization of dual CFB for sorption looping cycles Energy integration and hydrodynamic characterization of dual CFB for sorption looping cycles Luis M Romeo, Pilar Lisbona, Yolanda Lara, Ana Martínez 1st Meeting of the High Temperature Solid Looping Cycles

More information

Eckhard Worch. Adsorption. Technology in Water. Treatment. Fundamentals, Processes, and Modeling DE GRUYTER

Eckhard Worch. Adsorption. Technology in Water. Treatment. Fundamentals, Processes, and Modeling DE GRUYTER Eckhard Worch Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling DE GRUYTER Contents Preface xi 1 Introduction 1 1.1 Basic concepts and definitions 1 1.1.1 Adsorption as a surface

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Available online at   ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 6527 6533 GHGT-12 Towards bio-upgrading of biogas: biomass waste-based adsorbents N. Álvarez-Gutiérrez, S. García, M.V.

More information

Supporting Information

Supporting Information Supporting Information Unprecedented activation and CO 2 capture properties of an elastic single-molecule trap Mario Wriedt, a Julian P. Sculley, b Wolfgang M. Verdegaal, b Andrey A. Yakovenko b and Hong-Cai

More information

F325: Equilibria, Energetics and Elements How Far?

F325: Equilibria, Energetics and Elements How Far? F325: Equilibria, Energetics and Elements 5.1.2 How Far? 100 marks 1. Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol. A dynamic equilibrium

More information

An adsorptionlreaction process for the purification of biogas prior to its use as energy vector

An adsorptionlreaction process for the purification of biogas prior to its use as energy vector An adsorptionlreaction process for the purification of biogas prior to its use as energy vector L.V.-A. Truong & N. Abatzoglou Department of Chemical Engineering, University of Sherbrooke, Canada Abstract

More information

Sintering-resistant Ni-based Reforming Catalysts via. the Nanoconfinement Effect

Sintering-resistant Ni-based Reforming Catalysts via. the Nanoconfinement Effect Supporting Information Sintering-resistant Ni-based Reforming Catalysts via the Nanoconfinement Effect Chengxi Zhang a,b, Wancheng Zhu c, Shuirong Li a,b, Gaowei Wu a,b, Xinbin Ma a,b, Xun Wang c, and

More information

Hydrogen addition to the Andrussow process for HCN synthesis

Hydrogen addition to the Andrussow process for HCN synthesis Applied Catalysis A: General 201 (2000) 13 22 Hydrogen addition to the Andrussow process for HCN synthesis A.S. Bodke, D.A. Olschki, L.D. Schmidt Department of Chemical Engineering and Materials Science,

More information

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 16

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 16 3.2.2 Kinetics Maxwell Boltzmann distribution 128 minutes 128 marks Page 1 of 16 Q1. The diagram shows the Maxwell Boltzmann distribution for a sample of gas at a fixed temperature. E a is the activation

More information

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS

DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS DETAILED MODELLING OF SHORT-CONTACT-TIME REACTORS Olaf Deutschmann 1, Lanny D. Schmidt 2, Jürgen Warnatz 1 1 Interdiziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg Im Neuenheimer

More information

Chapter 9. Chemical Quantities

Chapter 9. Chemical Quantities Chapter 9 Chemical Quantities Section 9.1 Information Given by Chemical Equations A balanced chemical equation gives relative numbers (or moles) of reactant and product molecules that participate in a

More information

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Journal of Natural Gas Chemistry 12(2003)43 48 Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Huiling Fan, Chunhu Li, Hanxian Guo, Kechang Xie State Key Lab of C1

More information

Dehydrogenation of Propane to Propylene Over Pt-Sn/Al 2 O 3 Catalysts: The influence of operating conditions on product selectivity

Dehydrogenation of Propane to Propylene Over Pt-Sn/Al 2 O 3 Catalysts: The influence of operating conditions on product selectivity Iranian Journal of Chemical Engineering Vol. 7, No. (Spring), 1, IAChE Dehydrogenation of Propane to Propylene Over Pt-Sn/Al O 3 Catalysts: The influence of operating conditions on product selectivity

More information

Catalysts Applied in Low-Temperature Methane Oxidation

Catalysts Applied in Low-Temperature Methane Oxidation Polish J of Environ Stud Vol 17, No 3 (2008), 433-437 Original Research Catalytic Properties of Ag/ Catalysts Applied in Low-Temperature Methane Oxidation A Lewandowska*, I Kocemba, J Rynkowski Institute

More information

GAS AND LIQUID PHASE FUELS DESULPHURISATION FOR HYDROGEN PRODUCTION VIA REFORMING PROCESSES

GAS AND LIQUID PHASE FUELS DESULPHURISATION FOR HYDROGEN PRODUCTION VIA REFORMING PROCESSES GAS AND LIQUID PHASE FUELS DESULPHURISATION FOR HYDROGEN PRODUCTION VIA REFORMING PROCESSES Supprimé : DESULFURIZATI ON MATERIALS FOR MULTI- FUEL PROCESSORS FOR HYDROGEN PRODUCTION Jean-Christophe Hoguet

More information

Aviation Fuel Production from Lipids by a Single-Step Route using

Aviation Fuel Production from Lipids by a Single-Step Route using Aviation Fuel Production from Lipids by a Single-Step Route using Hierarchical Mesoporous Zeolites Deepak Verma, Rohit Kumar, Bharat S. Rana, Anil K. Sinha* CSIR-Indian Institute of Petroleum, Dehradun-2485,

More information