A Vacuum point of view

Size: px
Start display at page:

Download "A Vacuum point of view"

Transcription

1 Beam-Surface Interaction A Vacuum point of view F. Le Pimpec SLAC/NLC SSRL April

2 Dynamic Vacuum You want to address the terms of this formula How to measure the Pressure? F. Le Pimpec - SLAC 2

3 Outline Measuring and Reaching XHV XHV with Getters Beam Interaction with Technical surfaces - Desorption Induced by Electronic Transition - Electron Cloud - Ion instabilities Summary and Conclusion F. Le Pimpec - SLAC 3

4 Reaching and Measuring XHV Luminosity for accelerators Lifetime in storage rings Reaching XHV is commercially easier than measuring it A CERN modified Helmer gauge measured Torr XHV is not official Pressure 10-7 Torr are called UHV ( Torr) Torr Vacuum Gauges Vacuum Pumps Spinning Rotor gauge Hot Cathod Ionization gauge, Bayard Alpert Cold Cathod Discharge gauge Extractor - Ionization gauge, Modified Bayard Alpert Ion Sputter pump Cryopump Diffusion pump Turbomolecular pump Titanium Sublimation pump Non Evaporable Getter pump & Cryogenic pump Penning gauge F. Le Pimpec - SLAC 4

5 Why Measure Total Pressure? Partial Pressure gives information on the contents of the vacuum Total pressure can be computed from the partial P measurements BA SVT305 Operational in the same range (UHV) The use of hot and cold gauge style device need calibration for every single species for accurate readings chemistry sensitivity RGA s electronics are sensitive to the beam passage! And are still not cheap compared to gauges! F. Le Pimpec - SLAC 5 RGA

6 UHV - XHV Total Pressure - Xray limitation due to the e - hitting the grid : Ions are desorbed from the Collector. Remedies : Modulation - ESD from the gauges elements Reducing emission current : Wrong The grid will pump then release molecules - Installing a hot gauge in a small tube Transpiration effect Despite a higher pressure the gauge will read lower. Solution: nude gauges but sensitivity to stray ions from surroundings Modify Extractor gauge with hidden collector (U. Magdeburg) P = F A F. Le Pimpec - SLAC 6

7 UHV - XHV Partial Pressure The instrument of predilection is the Quadrupole Mass Analyzer The Ion source is identical to that of an ion gauge - Same ESD problem as for a gauge. ESD ion have higher energy than ionized gas Need to apply RF on the rod - Resolution, and the price, is dependent on the RF supply Kr Trace Sensitivity (A/Torr) is non-linear over few decades of pressure space charge & collision at HV At XHV range, there is no absolute calibration standard Ar Trace 10-7 Pressure (mbar)

8 Reaching XHV in Static Vacuum Reaching UHV from high vacuum is easy : Sputter/getter Ion pump To reach XHV Adding extra capture pumps Diode Cryopump : lump or distributed pumping (LHC cold bore) Evaporable Getter : Ti sublimator (lump pumping) Non Evaporable Getter pump (distributed pumping) Distributed Pumping XHV is possible but is not easy to reach because of outgassing F. Le Pimpec - SLAC 8

9 XHV Limit : Outgassing & Vapor Pressure At which temperature is my system going to be running? To minimize outgassing : Find a material with a low D coefficient Provide a diffusion d barrier Installed a vacuum cryostat Degass the material After Honig and Hook (1969) Vapor Pressure : True also for getters and cryosystem F. Le Pimpec - SLAC 9

10 Reaching Static XHV with NEG C. Benvenutti The LEP : 1 st major success of intensive use of NEG pumps LEP dipole chamber, getter St101 (ZrAl) ( ) ~24 km of NEG Ł P~10-12 Torr range Lump pumping Inserted linear pump Thin film getter is the new adopted way of insuring UHV in colliders or SR light sources TiZrV NEG Coating Setup at CERN DAFNE ESRF Inserted total pump SOLEIL DIAMOND RHIC (TiZrV) Surface pump / diffusion barrier LHC NLC/GLC??... F. Le Pimpec - SLAC 10

11 What are Getters? Getters are Capture Pumps Cryopumps and Sputter/getter-ion pumps are also capture pumps. Differentiation is needed Physical getters (Zeolite Zeolite) Work at LN 2 temperature by trapping air gases (including water vapor). Cheap primary dry pump. Recycling by warming up the zeolite Chemical getters or simply : getters Includes Evaporable and Non Evaporable Getter F. Le Pimpec - SLAC 11

12 How do Getters Work? Whatever the getter is, the same principle applies : Dissociation of residual gases on a surface is not systematic The use of a clean surface to form chemicals bonds Covalent bond (sharing of the e-) e Tied bonds : Chemisorption ev Ionic bonds (1 e-e is stolen by the most electro- elements (Mg+O( Mg+O-)) Metallic bonds (valence electrons shared) F. Le Pimpec - SLAC 12

13 Titanium vs. Other Evaporable Getters for Accelerator Use Ba - Ca - Mg : High vapor pressure. Trouble if bake out is requested Zr - Nb - Ta : Evaporation temperature too high Photo courtesy of Thermionics Laboratory, Inc Ref. Sorption of Nitrogen by Titanium Films, Harra and Hayward, Proc. Int. Symp. On Residual Gases in Electron Tubes, 1967 Wide variations due to film roughness For H 2, competition between desorption and diffusion inside the deposited layers Peel off of the film ~50µm Varian, Inc Typical required sublimation rate 0.1 to 0.5 g/hr F. Le Pimpec - SLAC 13

14 Non-Evaporable Getters NEGs are pure metals or are alloys of several metals ν = α P MT ν: molecules.s -1.cm -2 α: sticking coefficient P : Pressure (Torr) 1ML : ~10 15 molecules.cm -2 CO, N2, CO2, O2 H2 - Restoration is achieved by activation - heating of the substrate on which the getter is deposited. Joule or bake heating - During activation, atoms migrate from the surface into the bulk, except H 2. NEG CO, N2, CO2, O2 - Heating to very high temperature will outgas the getter. This regenerates it but also damages the crystal structure. NEG H2 F. Le Pimpec - SLAC 14

15 Non-Evaporable Getters : Uses St 707 (ZrVFe) Application of NEG are rather wide : NEG is used in UHV (accelerators -tokamak) Used for purifying gases (noble gas) Used for hydrogen storage, including isotopes Lamps and vacuum tubes Ref [7] Pump cartridge for Ion Pump or as lump pumps Use of St 2002 pills to insure a vacuum of 10-3 Torr F. Le Pimpec - SLAC 15

16 What Makes NEG So Attractive? u u GREAT Material A GREAT High distributed pumping speed Initial photo, electro-desorption coefficient lower than most technical material (Al - Cu - SS) Secondary Electron Yield (SEY) lower than that of common technical materials Drawbacks Needs activation by heating - Pyrophoricity (200 C C to 700 C) Does not pump CH 4 at RT, nor noble gases Lifetime before replacement (thin film) F. Le Pimpec - SLAC 16

17 Pumping Speed 0.6 H 2 Ti 32 Zr 16 V 52 (at.%) Sticking probability CERN/EST group Pumping speed plots for getter are everywhere in the literature From sample to sample, pumping speed plots vary Hours Heating T ( C) Many geometric cm 2 are needed to see the pumping effects. Roughness (true geometry) Temperature and/or time of activation is critical to achieve the pumping speed required Capacity of absorption of the NEG is determined by its thickness 17

18 Insuring Dynamic UHV Beam Interaction Dynamic Outgassing should be studied for every surfaces susceptible of being used No existing coherent theory Source of gas are induced by photons (SR), electrons and ions bombardment F. Le Pimpec - SLAC 18

19 Photodesorption η at CO ε c = 194 ev 1.E-03 NEG St707 (Zr 70 V 25 Fe 5 ) ETA (molec/photon) 1.E-04 1.E-05 1.E-06 NEG 0% Sat ( 13 C 18 O) 13 C 18 O CO SS Sat ( 13 C 18 O) CO 1.E-07 1.E+18 1.E+19 1.E+20 1.E+21 1.E+22 1.E+23 Dose photons An activated NEG desorbs less H 2 CO CH 4 CO 2 than a 300 C baked SS A saturated NEG desorbs more CO than a baked Stainless Steel NEG 100 % F. Le Pimpec - SLAC 19

20 Also True For Thin films TiZr and TiZrV 1.E-03 SS Cu Acier Inox 150 C (24H) Cuivre 150 C (24H) TiZr en l'état TiZr CO Saturation TiZr 250 C (9H) 1.E-04 Eta (molec/photon) 1.E-05 1.E-06 H2 CH4 CO CO2 F. Le Pimpec - SLAC 20

21 Electrodesorption η CO at E e- = 300 ev 1.E-01 NEG Sat ( 13 C 18 O) 13 C 18 O CO 1.E-02 NEG Sat by CO NEG St707 Eta (molec/elect) 1.E-03 1.E-04 1.E-05 Cu NEG 100 % NEG Sat ( 13 C 18 O) CO 1.E-06 1.E+16 1.E+17 1.E+18 1.E+19 1.E+20 1.E+21 Dose Electrons An activated NEG desorbs less H 2 CO CH 4 CO 2 than a 120 C baked OFE Cu surface. A saturated NEG desorbs less *C*O than a 120 C baked OFE Cu surface F. Le Pimpec - SLAC 21

22 Ion Desorption From Al surfaces Ion induced desorption yield A.G. Mathewson N 2+ at 2 kev 15 N 2+ at 2 kev M.H. Achard 1976 K + at 2 kev M.H. Achard-R. Calder-A.G. Mathewson 1978 K + at 1.4 kev M.P. Lozano 2001 Ar + at 3 kev Aluminium as received H 2 CH CO CO Aluminium after 24 hours baking at C (*) H 2 CH CO CO (*) 300 C in the measurement of M.H. Achard F. Le Pimpec - SLAC 22

23 Ion Desorption by Heavy Energetic Ions on Technical Surfaces Pb 53+ ions (per shot) under 89.2 grazing incidence and 4.2 MeV/u E. Mahner et al. NEG Ti 30 Zr 18 V 52 Measure at CERN for the LHC F. Le Pimpec - SLAC 23

24 Other Beam Interactions Electron cloud & multipacting Free electron trapping in a p + / e + bunch Ion instabilities link to the pressure - Pressure bump - Fast beam-ion collective instability Electron Cloud F. Le Pimpec - SLAC 24

25 SEY & Electron Cloud NLC Fast Head tail straight Electron cloud can exist in p + / e + beam accelerator and arise from a resonant condition (multipacting) between secondary electrons coming from the wall and the kick from the beam, (PEP II - KEK B - ISR - LHC). M. Pivi Secondary Electron yield Aluminium Beryllium Titane Copper OFHC Stainless Steel NEG St 707 (activated) NEG TiZrV (activated 200 C- 2h) Electron Beam Energy (ev) SEY of technical surfaces baked at 350 C for 24hrs F. Le Pimpec - SLAC 25

26 Thin Film & Electron Cloud NLC: 130 ev e - beam conditioning Low SEY : Choice for the NEG of the activation Temperature and time. Conditioning (photons e - ions) Contamination by gas exposure, or by the vacuum residual gas, increases the SEY; even after conditioning. Angles of incidence, of the PE, change the shape of the curve at higher energy Roughness changes the SEY of a material TiZrV coating Variability from sample to sample TiN/SS Scheuerlein et al. F. Le Pimpec - SLAC 26

27 Alternative Solution: Playing with Roughness Very rough surfaces emits less SE, because SE can be intercepted by surrounding walls Al disk with triangular shape Experiment SEY Al flat - grooved result 1 mm Real SEY Cu α = 60 Simulation G. Stupakov F. Le Pimpec - SLAC 27

28 Ion Instability Pressure Bumps Ionized molecules are accelerated toward the wall by e + /p beam Linked directly to η I Dependant on surface cleanliness Dependant on the beam pulse structure e σ ( η I ) = S i critical i Ion impact energy as a function of beam current, LHC - Gröbner Runaway condition is possible above a certain threshold Surface with a low η Reduce the Pressure ( S)( Use of clearing electrodes F. Le Pimpec - SLAC 28

29 Fast Ion Instability Fast ion instability can arise in e - beam accelerator from ionization and trapping of the residual gas. The amplitude of displacement y b must be kept as small as possible due to requested luminosity Diminishing the pressure It is not, so far, a critical issue T. Raubenheimer F. Le Pimpec - SLAC 29

30 Conclusion Reaching and measuring static XHV is possible and will become necessary, as we push for higher luminosity A NEG barrier diffusion solution provides pumping speed, low (η ph η e- η i ), low SEY and will insure dynamic UHV Ion instability Pressure reduction Electron Cloud Issue The vacuum solution has to be beam-dynamic friendly Wakefield (electrical conductivity) due to a film thickness or surface roughness (or both) Lifetime of the solution (NEG) - % lifetime of the vacuum device Heat Load in a cryogenic system (e-cloud) F. Le Pimpec / SLAC-NLC 30

31 Acknowledgement SLAC : R. Kirby, M. Pivi,, T. Raubenheimer CERN : V. Baglin,, JM. Laurent, O. Gröbner bner, A. Mathewson F. Le Pimpec - SLAC 31

32 References 1. CAS Vacuum Technology: CERN H. Brinkmann Leybold Vacuum 3. R. Reid Daresbury Vac group 4. CERN Colleagues & web site 5. P. Danielson : Vacuum Lab 6. USPAS - June SAES getters 8. SLAC colleagues 9. Web request for the beautiful pictures F. Le Pimpec - SLAC 32

A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC

A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC A SIMULATION STUDY OF THE ELECTRON CLOUD IN THE EXPERIMENTAL REGIONS OF LHC A. Rossi, G. Rumolo and F. Ziermann, CERN, Geneva, Switzerland Abstract The LHC experimental regions (ATLAS, ALICE, CMS and LHC

More information

Non-Evaporable Getters

Non-Evaporable Getters Non-Evaporable Getters Dr. Oleg B. Malyshev Senior Vacuum Scientist ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK VS-2, 18-19 October 2011, Ricoh Arena, Coventry 1 Sorption and diffusion Gas

More information

( KS A ) (1) , vapour, vapor (USA) , saturation vapour pressure. , standard reference conditions for gases. , degree of saturation

( KS A ) (1) , vapour, vapor (USA) , saturation vapour pressure. , standard reference conditions for gases. , degree of saturation ( KS A 3014-91 ) (1), standard reference conditions for gases 0, 101325 Pa (1 =760mmHg ), vacuum, low ( rough ) vacuum 100Pa, medium vacuum 100 01 Pa, high vacuum 01 10 5 Pa, ultra high vacuum ( UHV )

More information

Experience from the LEP Vacuum System

Experience from the LEP Vacuum System Experience from the LEP Vacuum System O. Gröbner CERN, LHC-VAC Workshop on an e + e - Ring at VLHC ITT, 9-11 March 2001 3/4/01 O. Gröbner, CERN-LHC/VAC References 1) LEP Design Report, Vol.II, CERN-LEP/84-01,

More information

Beam induced desorption

Beam induced desorption Accelerators in a new light Beam induced desorption Dr. Oleg B. Malyshev, ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK oleg.malyshev@stfc.ac.uk CAS on Vacuum for Particle Accelerators 2017

More information

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps Agilent Technologies 1957-59 Varian Associates invents the first

More information

Vacuum for Accelerators

Vacuum for Accelerators Vacuum for Accelerators Oswald Gröbner Baden, 22 September 2004 1) Introduction and some basics 2) Pumps used in accelerators 3) Desorption phenomena 4) Practical examples Oswald Gröbner, Retired from

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

λ = 5 10 p (i.e. 5 cm at 10 3 Torr, or ( )

λ = 5 10 p (i.e. 5 cm at 10 3 Torr, or ( ) Getter pumping C. Benvenuti R&B Energy Research, Geneva, Switzerland Abstract A surface may provide a useful pumping action when able to retain adsorbed gas molecules for the duration of a given experiment.

More information

1. SYNCHROTRON RADIATION-INDUCED DESORPTION

1. SYNCHROTRON RADIATION-INDUCED DESORPTION 127 DYNAMIC OUTGASSING Oswald Gröbner CERN, Geneva, Switzerland Abstract Outgassing stimulated by photons, ions and electrons created by highenergy and high-intensity particle beams in accelerators and

More information

NEXTorr HV 100 HIGHLIGHTS

NEXTorr HV 100 HIGHLIGHTS NEXTorr HV 100 HIGHLIGHTS General Features High pumping speed for all active gases Pumping speed for noble gases and methane High sorption capacity and increased lifetime Constant pumping speed in HV and

More information

Lecture 4. Ultrahigh Vacuum Science and Technology

Lecture 4. Ultrahigh Vacuum Science and Technology Lecture 4 Ultrahigh Vacuum Science and Technology Why do we need UHV? 1 Atmosphere = 760 torr; 1 torr = 133 Pa; N ~ 2.5 10 19 molecules/cm 3 Hertz-Knudsen equation p ZW 1/ 2 ( 2mk T) At p = 10-6 Torr it

More information

Vacuum System of Synchrotron radiation sources

Vacuum System of Synchrotron radiation sources 3 rd ILSF Advanced School on Synchrotron Radiation and Its Applications September 14-16, 2013 Vacuum System of Synchrotron radiation sources Prepared by: Omid Seify, Vacuum group, ILSF project Institute

More information

Vacuum. Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006

Vacuum. Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006 Physics,, Technology and Techniques of the Vacuum Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006 Outline Introduction and basics Defintion of Vacuum Vacuum A vacuum is a volume

More information

Cold / sticky system. Vincent Baglin. CERN AT-VAC, Geneva

Cold / sticky system. Vincent Baglin. CERN AT-VAC, Geneva Cold / sticky system Vincent Baglin CERN AT-VAC, Geneva 1 Cold / sticky system?? Vacuum?? 2 Eureka?? 3 Cold / sticky system Outline 1. Cryopumping 2. Adsorption isotherms 3. Cryosorbers in cold systems

More information

Sputter Ion Pump (Ion Pump) By Biswajit

Sputter Ion Pump (Ion Pump) By Biswajit Sputter Ion Pump (Ion Pump) By Biswajit 08-07-17 Sputter Ion Pump (Ion Pump) An ion pump is a type of vacuum pump capable of reaching pressures as low as 10 11 mbar under ideal conditions. An ion pump

More information

Repetition: Physical Deposition Processes

Repetition: Physical Deposition Processes Repetition: Physical Deposition Processes PVD (Physical Vapour Deposition) Evaporation Sputtering Diode-system Triode-system Magnetron-system ("balanced/unbalanced") Ion beam-system Ionplating DC-glow-discharge

More information

Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud

Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud Experimental Results of a LHC Type Cryogenic Vacuum System Subjected to an Electron Cloud V. Baglin, B. Jenninger CERN AT-VAC, Geneva 1. Introduction LHC & Electron Cloud LHC cryogenic vacuum system 2.

More information

Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the MAX IV Light Sources

Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the MAX IV Light Sources CERN-ACC-2014-0259 marton.ady@cern.ch Monte Carlo Simulations of Synchrotron Radiation and Vacuum Performance of the MAX IV Light Sources M. Ady, R. Kersevan CERN, Geneva, Switzerland M. Grabski MAX IV,

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC-0124 SLAC-PUB-9814 September 2003 Linear Collider Collaboration Tech Notes Recent Electron Cloud Simulation Results for the NLC and for the TESLA Linear Colliders M. T. F. Pivi, T. O. Raubenheimer

More information

Electron-Cloud Studies for the NLC and TESLA

Electron-Cloud Studies for the NLC and TESLA Electron-Cloud Studies for the NLC and TESLA Mauro Pivi NLC Division SLAC Jan 2004 this is a progress report builds on previous simulation experience with PEP-II, LHC and SPS, KEKB, APS, PSR, SNS and other

More information

Vacuum II. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1

Vacuum II. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1 Vacuum II G. Franchetti CAS Bilbao 30/5/2011 G. Franchetti 1 Index Creating Vacuum (continuation) Measuring Vacuum Partial Pressure Measurements 30/5/2011 G. Franchetti 2 Laminar flow Cold surface Diffusion

More information

Electron cloud experiments, and cures in RHIC

Electron cloud experiments, and cures in RHIC Electron cloud experiments, and cures in RHIC Wolfram Fischer M. Blaskiewicz, H.-C. Hseuh, H. Huang, U. Iriso, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, J. Wei, S.Y. Zhang PAC 07 Albuquerque,

More information

(4) vacuum pressure & gas desorption in the IRs ( A.

(4) vacuum pressure & gas desorption in the IRs ( A. Electron Cloud Effects in the LHC Frank Zimmermann,, SL/AP (1) heat load on the beam screen inside the s.c. magnets (4 20 K) (2) heat load on the cold bore (1.9 K) (3) beam instability at injection (4)

More information

Continued Work toward XHV for the Jefferson Lab Polarized Electron Source

Continued Work toward XHV for the Jefferson Lab Polarized Electron Source Continued Work toward XHV for the Jefferson Lab Polarized Electron Source Marcy Stutzman, Philip Adderley, Matt Poelker Thomas Jefferson National Accelerator Facility Newport News, VA 23601 Thomas Jefferson

More information

ILC November ILC08 Chicago November 2008

ILC November ILC08 Chicago November 2008 Summary of Recent Results from SLAC M. Pivi, J. Ng, D. Arnett, G. Collet, T. Markiewicz, D. Kharakh, R. Kirby, F. Cooper, C. Spencer, B. Kuekan, J. Seeman, P. Bellomo, J.J. Lipari, J. Olzewski, L. Wang,

More information

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior.

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior. Vacuum Residual pressure can thwart the best cryogenic design Each gas molecule collision carries ~kt from the hot exterior to the cold interior. 1 millitorr = 3.5x10¹³/cm³ Gas atoms leaving the hot surfaces

More information

Study of Distributed Ion-Pumps in CESR 1

Study of Distributed Ion-Pumps in CESR 1 Study of Distributed Ion-Pumps in CESR 1 Yulin Li, Roberto Kersevan, Nariman Mistry Laboratory of Nuclear Studies, Cornell University Ithaca, NY 153-001 Abstract It is desirable to reduce anode voltage

More information

1.1 Electron-Cloud Effects in the LHC

1.1 Electron-Cloud Effects in the LHC 11 1.1 Electron-Cloud Effects in the LHC F. Zimmermann, E. Benedetto 1 mail to: frank.zimmermann@cern.ch CERN, AB Department, ABP Group 1211 Geneva 23, Switzerland 1.1.1 Introduction The LHC is the first

More information

UHV - Technology. Oswald Gröbner

UHV - Technology. Oswald Gröbner School on Synchrotron Radiation UHV - Technology Trieste, 20-21 April 2004 1) Introduction and some basics 2) Building blocks of a vacuum system 3) How to get clean ultra high vacuum 4) Desorption phenomena

More information

Vacuum and mechanical design of ILC DR

Vacuum and mechanical design of ILC DR Vacuum and mechanical design of ILC DR O. B. Malyshev ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK Low Emittance Ring Workshop 2010 12-15 January 2010 Integration design: usual consideration

More information

Electron Cloud Studies made at CERN in the SPS

Electron Cloud Studies made at CERN in the SPS Electron Cloud Studies made at CERN in the SPS J.M. Jimenez On behalf of the Electron Cloud Study Team, a Collaboration between AT and AB Departments Main Topics Introduction LHC Injectors SPS Running

More information

EXPERIMENTAL INVESTIGATIONS OF THE ELECTRON CLOUD KEY PARAMETERS

EXPERIMENTAL INVESTIGATIONS OF THE ELECTRON CLOUD KEY PARAMETERS EXPERIMENTAL INVESTIGATIONS OF THE ELECTRON CLOUD KEY PARAMETERS V. Baglin, I.R. Collins, J. Gómez-Goñi *, O. Gröbner, B. Henrist, N. Hilleret, J M. Laurent, M. Pivi, CERN, Geneva, Switzerland R. Cimino,

More information

Results on a-c tubes subjected to synchrotron irradiation

Results on a-c tubes subjected to synchrotron irradiation Results on a-c tubes subjected to synchrotron irradiation V. Baglin, P. Chiggiato, P. Costa-Pinto, B. Henrist (CERN, Geneva) V. Anashin, D. Dorokhov. A. Semenov, A. Krasnov, D. Shwartz, A. Senchenko (,

More information

Vacuum Technology for Particle Accelerators

Vacuum Technology for Particle Accelerators Vacuum Technology for Particle Accelerators (Max IV laboratory) CERN Accelerator School: Introduction to Accelerator Physics 8 th October 2016, Budapest, Hungary 1 Contents What is vacuum and why do we

More information

MOLECULAR SURFACE PUMPING: CRYOPUMPING

MOLECULAR SURFACE PUMPING: CRYOPUMPING 51 MOLECULAR SURFACE PUMPING: CRYOPUMPING C. Benvenuti CERN, Geneva, Switzerland Abstract Weak van der Waals attractive forces may provide molecular gas pumping on surfaces cooled at sufficiently low temperatures.

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

VACUUM PUMPING METHODS

VACUUM PUMPING METHODS VACUUM PUMPING METHODS VACUUM PUMPS (METHODS) Positive Displacement Vacuum Gas Transfer Vacuum Kinetic Vacuum Entrapment Vacuum Adsorption Reciprocating Displacement Rotary Drag Fluid Entrainment Ion Transfer

More information

Vacuum Systems. V. Baglin. CERN TE-VSC, Geneva. Vacuum, Surfaces & Coatings Group Technology Department

Vacuum Systems. V. Baglin. CERN TE-VSC, Geneva. Vacuum, Surfaces & Coatings Group Technology Department Vacuum Systems V. Baglin CERN TE-VSC, Geneva 2 Outline 1. Vacuum Basis 2. Vacuum Components 3. Vacuum with Beams : LHC Example 3 1. Vacuum Basis 4 Units The pressure is the force exerted by a molecule

More information

Hydrogen in the LCLS2 Beamline Vacuum

Hydrogen in the LCLS2 Beamline Vacuum Hydrogen in the LCLS2 Beamline Vacuum Anthony C. Crawford Fermilab Technical Div./SRF Development Dept. acc52@fnal.gov 13Oct15 This note demonstrates that the cold segments of the LCLS2 linac will cryopump

More information

The Continuing Story of Secondary Electron Yield Measurements from TiN Coating and TiZrV Getter Film

The Continuing Story of Secondary Electron Yield Measurements from TiN Coating and TiZrV Getter Film SLAC-TN-04-046 \ LCC-046 Revised The Continuing Story of Measurements from TiN Coating and TiZrV Getter Film F. Le Pimpec, F. King, R.E. Kirby, M. Pivi SLAC, 575 Sand Hill Road, Menlo Park, CA 9405 G.

More information

TPD-MS. Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) APPLICATION NOTE NOTE

TPD-MS. Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) APPLICATION NOTE NOTE TPD-MS APPLICATION NOTE NOTE Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) Thermal analysis consists of many techniques for the exploration of the physical properties

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf by S. Wolf Chapter 15 ALUMINUM THIN-FILMS and SPUTTER-DEPOSITION 2004 by LATTICE PRESS CHAPTER 15 - CONTENTS Aluminum Thin-Films Sputter-Deposition Process Steps Physics of Sputter-Deposition Magnetron-Sputtering

More information

NEXTorr Z 100 HIGHLIGHTS

NEXTorr Z 100 HIGHLIGHTS NEXTorr Z 00 HIGHLIGHTS General Features High pumping speed for all active gases Pumping speed for noble gases and methane Constant pumping speed for active gases in UHV-XHV No intrinsic pressure limitations

More information

Electron Cloud and Ion Effects. G. Arduini CERN SL Division

Electron Cloud and Ion Effects. G. Arduini CERN SL Division Electron Cloud and Ion Effects G. Arduini CERN SL Division Introduction! Understanding and control of impedances has allowed to design machines with higher and higher brilliance.! Since several years now

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

Optimized Annular Triode Ion Pump for Experimental Areas in the LHC See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41059758 Optimized Annular Triode Ion Pump for Experimental Areas in the LHC Article in Vacuum

More information

Angular Correlation Experiments

Angular Correlation Experiments Angular Correlation Experiments John M. LoSecco April 2, 2007 Angular Correlation Experiments J. LoSecco Notre Dame du Lac Nuclear Spin In atoms one can use the Zeeman Effect to determine the spin state.

More information

The Vacuum Case for KATRIN

The Vacuum Case for KATRIN The Vacuum Case for KATRIN Institute of Nuclear Physics, Forschungszentrum Karlsruhe,Germany, for the KATRIN Collaboration Lutz.Bornschein@ik.fzk.de The vacuum requirements of the KATRIN experiment have

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material

SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material SLAC TN-06-031-Rev September, 2006 SEY and Surface Analysis Measurements on FNAL Main Injector Ring S/S Beam Chamber Material Robert E. Kirby Surface and Materials Science Dept. Stanford Linear Accelerator

More information

Possible Remedies to Suppress electron cloud in ILC damping ring

Possible Remedies to Suppress electron cloud in ILC damping ring Possible Remedies to Suppress electron cloud in ILC damping ring L. WANG SLAC Vancouver Linear Collider Workshop 19-22 July 26 Objective Completely clear the E-cloud along the whole ring, include drift

More information

Industrial Surfaces Behaviour Related to the Adsorption and Desorption of Hydrogen at Cryogenic Temperature

Industrial Surfaces Behaviour Related to the Adsorption and Desorption of Hydrogen at Cryogenic Temperature EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 375 Industrial Surfaces Behaviour Related to the Adsorption and Desorption

More information

CapaciTorr HV Pumps. making innovation happen,together

CapaciTorr HV Pumps. making innovation happen,together CapaciTorr HV Pumps making innovation happen,together CapaciTorr HV HIGHLIGHTS General Features High pumping speed for all active gases High sorption capacity and increased lifetime Constant pumping speed

More information

Electron Cloud Studies

Electron Cloud Studies Electron Cloud Studies Tom Kroyer, Edgar Mahner,, Fritz Caspers, CERN LHC MAC, 7. December 2007 Agenda Introduction to electron cloud effects Overview over possible remedies surface coatings rough surfaces

More information

Electron-Cloud Theory & Simulations

Electron-Cloud Theory & Simulations (1) e cloud build up Electron-Cloud Theory & Simulations Frank Zimmermann,, SL/AP distribution, line & volume density, dose ( scrubbing), energy spectrum, LHC heat load, various fields (dipole, solenoids,

More information

Generation of vacuum (pumps): Vacuum (pressure) measurements:

Generation of vacuum (pumps): Vacuum (pressure) measurements: Generation of vacuum (pumps) p and measurements Generation of vacuum (pumps): ᴥ pumping p systems general considerations on their use and match with physical quantities introduced for the dimensioning

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

Vacuum gas dynamics investigation and experimental results on the TRASCO-ADS Windowless Interface

Vacuum gas dynamics investigation and experimental results on the TRASCO-ADS Windowless Interface Vacuum gas dynamics investigation and experimental results on the TRASCO-ADS Windowless Interface P. Michelato, E. Bari, E. Cavaliere, L. Monaco, D. Sertore; INFN Milano - LASA - Italy A. Bonucci, R. Giannantonio,

More information

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC

Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC Simulations and Measurements of Secondary Electron Emission Beam Loss Monitors for LHC Daniel Kramer,, Eva Barbara Holzer,, Bernd Dehning, Gianfranco Ferioli, Markus Stockner CERN AB-BI BI 4.10.2006 IPRD06,

More information

Rough (low) vacuum : Medium vacuum : High vacuum (HV) : Ultrahigh vacuum (UHV) :

Rough (low) vacuum : Medium vacuum : High vacuum (HV) : Ultrahigh vacuum (UHV) : 4. UHV & Effects of Gas Pressure 4.1 What is Ultra-high Vacuum (UHV)? 4.2 Why is UHV required for Surface Studies? 4.3 Exercises - Effects of Gas Pressure Vacuum technology has advanced considerably over

More information

Magnetic and Electric Field Effects on the Photoelectron Emission from Prototype LHC Beam Screen Material

Magnetic and Electric Field Effects on the Photoelectron Emission from Prototype LHC Beam Screen Material EUOPEAN OGANIZATION FO NUCLEA ESEACH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project eport 373 Magnetic and Electric Field Effects on the Photoelectron Emission from

More information

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003 Electron Cloud Studies for KEKB and ATF KEK, May 17 May 3, 23 F. Zimmermann April 12, 23 Abstract I describe a few recent electron-cloud simulations for KEKB and the ATF. For KEKB the dependence of the

More information

Vacuum System in Accelerator

Vacuum System in Accelerator Vacuum System in Accelerator -- geometrical structure effects on the pumping delay time -- Y. Saito, KEK, Tsukuba, Japan N. Matuda, Tokyo Denki Univ., Tokyo, Japan 1. Required vacuum condition; what kind

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour (Cu) All operate by vaporizing metal in container Helium

More information

CapaciTorr HV 200 HIGHLIGHTS

CapaciTorr HV 200 HIGHLIGHTS CapaciTorr HV 200 General Features High pumping speed for all active gases High sorption capacity and increased lifetime Costant pumping speed in HV, UHV and XHV Reversible pumping of hydrogen and its

More information

Lecture 10. Vacuum Technology and Plasmas Reading: Chapter 10. ECE Dr. Alan Doolittle

Lecture 10. Vacuum Technology and Plasmas Reading: Chapter 10. ECE Dr. Alan Doolittle Lecture 10 Vacuum Technology and Plasmas Reading: Chapter 10 Vacuum Science and Plasmas In order to understand deposition techniques such as evaporation, sputtering,, plasma processing, chemical vapor

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Lecture 3 Vacuum Science and Technology

Lecture 3 Vacuum Science and Technology Lecture 3 Vacuum Science and Technology Chapter 3 - Wolf and Tauber 1/56 Announcements Homework will be online from noon today. This is homework 1 of 4. 25 available marks (distributed as shown). This

More information

THE LARGE HADRON COLLIDER VACUUM SYSTEM

THE LARGE HADRON COLLIDER VACUUM SYSTEM THE LARGE HADRON COLLIDER VACUUM SYSTEM B. Angerth, F. Bertinelli, J.-C. Brunet, R. Calder, F. Caspers, P. Cruikshank, J-M. Dalin, O. Gröbner, N. Kos, A. Mathewson, A. Poncet, C. Reymermier, F. Ruggiero,

More information

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

PHYSICAL VAPOR DEPOSITION OF THIN FILMS PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

To move a particle in a (straight) line over a large distance

To move a particle in a (straight) line over a large distance 2.1 Introduction to Vacuum Technology 2.1.1 Importance of Vacuum Technology for Processing and Characterization Under partial vacuum conditions (pressures orders of magnitude below ambient atmospheric

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Introduction to Thin Film Processing

Introduction to Thin Film Processing Introduction to Thin Film Processing Deposition Methods Many diverse techniques available Typically based on three different methods for providing a flux of atomic or molecular material Evaporation Sputtering

More information

Vacuum in Accelerators

Vacuum in Accelerators Vacuum in Accelerators Vincent Baglin CERN TE-VSC, Geneva 1 What does it mean? From Units till LHC 2 Vacuum in Accelerators Outline 1. Vacuum Basis 2. Vacuum Components 3. Vacuum with Beams : LHC Case

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Generation of vacuum (pumps) and measurements

Generation of vacuum (pumps) and measurements Generation of vacuum (pumps) and measurements Generation of vacuum (pumps): ᴥ pumping systems general considerations on their use and match with physical quantities introduced for the dimensioning of vacuum

More information

Pumping Speed in the Drydown Zone

Pumping Speed in the Drydown Zone A Journal of Practical and Useful Vacuum Technology From By Phil Danielson Pumping Speed in the Drydown Zone The extended pumpdown time through the water vapor-dominated drydown zone is a complex process

More information

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s

Ultra-High Vacuum Technology. Sputter Ion Pumps l/s Ultra-High Vacuum Technology 30-400 l/s 181.06.01 Excerpt from the Product Chapter C15 Edition November 2007 Contents General General..........................................................................

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer Huashun Zhang Ion Sources With 187 Figures and 26 Tables Э SCIENCE PRESS Springer XI Contents 1 INTRODUCTION 1 1.1 Major Applications and Requirements 1 1.2 Performances and Research Subjects 1 1.3 Historical

More information

Cryopumping & Vacuum Systems

Cryopumping & Vacuum Systems Cryopumping & Vacuum Systems V. Baglin CERN TE-VSC, Geneva 2 Cryopumping: do you wonder? What is this white stain? Why it is on the LHC beam screen? What is then the expected gas density in this expensive

More information

EXPERIMENTAL OBSERVATIONS OF IN-SITU SECONDARY ELECTRON YIELD REDUCTION IN THE PEP-II PARTICLE ACCELERATOR BEAM LINE a

EXPERIMENTAL OBSERVATIONS OF IN-SITU SECONDARY ELECTRON YIELD REDUCTION IN THE PEP-II PARTICLE ACCELERATOR BEAM LINE a EXPERIMENTAL OBSERVATIONS OF IN-SITU SECONDARY ELECTRON YIELD REDUCTION IN THE PEP-II PARTICLE ACCELERATOR BEAM LINE a M. T. F. Pivi b, G. Collet, F. King, R. E. Kirby, T. Markiewicz, T. O. Raubenheimer,

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

Electron Cloud Issues for the Advanced Photon Source Superconducting Undulator

Electron Cloud Issues for the Advanced Photon Source Superconducting Undulator Electron Cloud Issues for the Advanced Photon Source Superconducting Undulator Katherine Harkay Electron Cloud Workshop, Cornell, Oct. 8-12, 2010 Acknowledgements: Yury Ivanyushenkov, Robert Kustom, Elizabeth

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

Importance of realistic surface related properties as input to e-cloud simulations.

Importance of realistic surface related properties as input to e-cloud simulations. Importance of realistic surface related properties as input to e-cloud simulations. R. Cimino LNF Frascati (Italy) The problem of input parameters: a detailed analysis by a test case (the cold arcs of

More information

Experimental techniques of Surface Science and how a theorist understands them

Experimental techniques of Surface Science and how a theorist understands them Experimental techniques of Surface Science and how a theorist understands them Karsten Reuter Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, D-14195 Berlin reuter@fhi-berlin.mpg.de 0.

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Summary of the ECLOUD'04 Workshop Permalink https://escholarship.org/uc/item/807017nc Authors Macek, R. Furman, M. Publication

More information

AND LIMITATIONS K. BALOGH

AND LIMITATIONS K. BALOGH SENSITIVITY OF THE 40 Ar 39 Ar METHOD: NEW POSSIBILITIES AND LIMITATIONS K. BALOGH Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen, Bem t. 18/c, Hungary; balogh@moon.atomki.hu

More information

Electron cloud and ion effects

Electron cloud and ion effects USPAS Januar 2007, Houston, Texas Damping Ring Design and Phsics Issues Lecture 9 Electron Cloud and Ion Effects And Wolski Universit of Liverpool and the Cockcroft Institute Electron cloud and ion effects

More information

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS V.P. Ershov, V.V.Fimushkin, G.I.Gai, L.V.Kutuzova, Yu.K.Pilipenko, V.P.Vadeev, A.I.Valevich Λ and A.S. Belov Λ Joint Institute for Nuclear

More information

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity Etching Issues - Anisotropy Dry Etching Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960 Isotropic etchants etch at the same rate in every direction mask

More information