Determination of quantitative structure property and structure process relationships for graphene production in water

Size: px
Start display at page:

Download "Determination of quantitative structure property and structure process relationships for graphene production in water"

Transcription

1 Electronic Supplementary Material Determination of quantitative structure property and structure process relationships for graphene production in water Thomas J. Nacken, Cornelia Damm, Haichen Xing, Andreas Rüger, and Wolfgang Peukert ( ) Institute of Particle Technology (LFG), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 4, Erlangen, Germany Supporting information to DOI /s Influence of cut size on product yield First we show the cut size (x = 400 nm in Fig. S1 and x = 200 nm in Fig. S2) with respect to the surfactant concentration used during the initial studies in a shaking device (LAU Disperser), which was used to evaluate the optimum amount of surfactant for processing. The dependency of dispersed carbon concentration and achieved production rate obtained after the delamination process respectively are plotted vs. process time and different applied cut sizes (Figs. S3 and 4). Figure S1 Dispersed carbon concentration for different TW80 concentration for cut size of 400 nm using a shaking plate (LAU disperser) with different times of processing. 100 µm ZrO 2 beads were used as delamination media and the carbon concentration was fixed to 1 wt.%. Address correspondence to wolfgang.peukert@fau.de

2 Figure S2 Dispersed carbon concentration for different TW80 concentration for a cut size of 200 nm using a shaking plate (LAU disperser) with different times of processing. 100 µm ZrO 2 beads were used as delamination media and the carbon concentration was fixed to 1 wt.%. Figure S3 Dispersed carbon concentration as a function of process time in a stirred media mill operating with a stirrer rotation speed of 1,000 rpm and 100 µm ZrO 2 beads for different cut sizes of the subsequent centrifugation step. A 1 wt.% suspension of graphite was delaminated in an aqueous solution of 0.1 wt.% TW80. Figure S4 Dispersed carbon production rate (dcpr) for 1 wt.% graphite in an aqueous solution of 0.1 wt.% TW80 using 100 µm ZrO 2 beads, a stirrer rotation speed of 1,000 rpm in a stirred media mill PE075 as a function of the cut size of the subsequent centrifugation step.

3 Statistical Raman spectroscopy evaluation Discussed are typical spectra obtained during Raman mapping and an exemplary fitting of the 2D-peak by a Lorentz-function for I G > 300 counts (Fig. S5 left spectrum) and I G < 300 counts (Fig. S3 right spectrum). Spectra with a G-peak intensity of < 300 counts demonstrate a poor quality for fitting. Directly connected is the influence of the neglected spectra during evaluation for the mapped and actually evaluated area, as displayed in Fig. S6. In total 2,914 spectra where analyzed with G-peak intensity > 300 counts, a representative example of the obtained mean values and related standard deviations for mentioned data in the manuscript is depicted in Fig. S7 (compare Fig. 2). Figure S5 Example for selection of Raman spectra for statistical evaluation. Exemplary Raman spectra of a recorded Raman map for a processed sample. Left picture represents a typical evaluated spectrum with I G > 300 counts. Right spectrum represents a typical neglected spectrum with I G < 300 counts. Figure S6 Influence of selection by I G > 300 counts to evaluated surface. Example of a map of the maximum intensity of the G-peak plotted two dimensionally over the measured surface during mapping. Different intensities are distinguished by the color scheme of the legend. Red color represents intensity equivalent for noise (left map) or total neglected area as for too low intensities for good evaluation (right map). Nano Research

4 Figure S7 Combined plot of all spectra evaluated during a Raman mapping. 2D-FWHM data plotted vs D/G ratio obtained from all fitted spectra during a typical Raman mapping. Calculated mean value and standard deviation marked in red. Influence of viscosity on obtained product concentration The influence of viscosity on the dispersed carbon and FLG yield obtained after delamination in a stirred media mill is displayed in Fig. S8. Figure S8 Influence of viscosity on dispersed carbon and FLG concentration after 90 min of delamination using a stirrer rotation speed of 1,000 rpm and 100 µm ZrO 2 beads as a function of dispersing medium viscosity. Product morphology obtained by Atomic Force Microscopy imaging The efficiency of exfoliation can, in addition to Raman spectroscopy, be determined by measuring the height of flakes found on the wafer via atomic force microscopy. Figures S9 and S10 show characteristic atomic force microscopy images of samples processed by stirred media delamination with TW80 as surfactant. During coating concentration effects can lead to aggregation of stabilized flakes [S1, S2]. As already small residues of stabilizing agents or additives for adjusting the viscosity, which are not completely removed from the sheet surface, contribute directly to the height of the flake, it is difficult to get the correct number of layers directly from the measured height. Depending on the surfactant used as stabilizing agent the height of a monolayer can vary between nm [S3, S4].

5 Figure S9 (a) AFM image of a 30 min processed sample using a stirrer rotation speed of 500 rpm and 30 µm ZrO 2 beads with 3 representative flakes marked. (b) Cross sections of the marked flakes 1 3. Figure S10 (a) AFM image of a 30 min processed sample using a stirrer rotation speed of 1,000 rpm and 100 µm ZrO 2 beads and a viscosity of 1.29 mpa s with 5 representative flakes marked. (b) Cross sections of the marked flakes 1 4, 6,7. (c) Crop of flake 5. (d) cross section of flake 5. Discussion of autogenously delamination by wet media comminution Besides the discussed impact of two colliding beads for a delamination event in the manuscript, also collisions between two carbon particles may contribute to SI and SN and therefore to E m. However, for ZrO 2 bead diameters of 30 and 100 μm respectively, SI for a collision is higher by the factor of 10 and 374, respectively, in comparison with SI for a collision of two 20 μm carbon particles (representing the mean feed particle size). For the amounts of carbon and ZrO 2 beads used in typical delamination experiments the number of 100 and 30 μm ZrO 2 beads, respectively, inside the milling chamber is higher by the factor of two and about 10 2 in comparison with the number of carbon particles. Thus, for bead collision the product of SI and SN is always at least two orders of magnitude larger than for collision of two 20 μm carbon particles. Therefore, for the experimental set up used, the contribution of collisions between particles to delamination can be neglected. Nano Research

6 References [S1] Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 2012, 1, [S2] Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M., King, P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat. Mater. 2014, 6, [S3] Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A., Stubos, A. K.; et al. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 16, [S4] Green, A. A.; Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 2009, 12,

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces

A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) A green, rapid and size-controlled production of

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION Materials Graphite powder (SP-1 graphite) was obtained from Bay carbon.

More information

Efficient Graphene Production by Combined Bipolar Electrochemistry and High-Shear Exfoliation

Efficient Graphene Production by Combined Bipolar Electrochemistry and High-Shear Exfoliation Supporting Information Efficient Graphene Production by Combined Bipolar Electrochemistry and High-Shear Exfoliation Emil Tveden Bjerglund, Michael Ellevang Pagh Kristensen,, Samantha Stambula, Gianluigi

More information

Surfactant-free exfoliation of graphite in aqueous solutions

Surfactant-free exfoliation of graphite in aqueous solutions Surfactant-free exfoliation of graphite in aqueous solutions Karen B. Ricardo, Anne Sendecki, and Haitao Liu * Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A 1. Materials

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Covalent Bulk Functionalization of Graphene Jan M. Englert a, Christoph Dotzer a, Guang Yang b, Martin Schmid c, Christian Papp c, J. Michael Gottfried c, Hans-Peter Steinrück

More information

Skalierbare Oxo-Funktionalisierung von sp 2 -hybridisierten Kohlenstoffallotropen

Skalierbare Oxo-Funktionalisierung von sp 2 -hybridisierten Kohlenstoffallotropen Skalierbare Oxo-Funktionalisierung von sp 2 -hybridisierten Kohlenstoffallotropen 7. 11. 2014 Dr. Siegfried Eigler Friedrich-Alexander-Universität Erlangen-Nürnberg sp 2 -Carbon Allotropes - Chemistry

More information

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites Here H 2 SO 4 was used as an intercalant and H 2 O 2 as an oxidant. Expandable

More information

Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles

Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles Rebecca Dinkel 1, Björn Braunschweig 1,2 * and Wolfgang Peukert 1,2 1 Institute of Particle Technology (LFG), Friedrich-Alexander

More information

Supporting Information. for

Supporting Information. for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information for Electrochemically induced Fenton reaction of few-layer MoS 2 nanosheets:

More information

Accepted Manuscript. Lateral Size Selection of Surfactant-Stabilised Graphene Flakes using Size Exclusion

Accepted Manuscript. Lateral Size Selection of Surfactant-Stabilised Graphene Flakes using Size Exclusion Accepted Manuscript Lateral Size Selection of Surfactant-Stabilised Graphene Flakes using Size Exclusion Chromatography Ronan J Smith, Paul J King, Christian Wirtz, Georg S Duesberg, Jonathan N Coleman

More information

SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet Printed Transistor Applications

SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet Printed Transistor Applications Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTARY INFORMATION Low Temperature Atomic Layer Deposition of Zirconium Oxide for Inkjet

More information

Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a

Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a a Department of Chemistry and Pharmacy and Institute of Advanced Materials

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.123 Ultra-strong Adhesion of Graphene Membranes Steven P. Koenig, Narasimha G. Boddeti, Martin L. Dunn, and J. Scott Bunch* Department of Mechanical Engineering,

More information

Directional Flow-Aided Sonochemistry Yields Graphene with Tunable Defects to Provide Fundamental Insight on Sodium Metal Plating Behavior

Directional Flow-Aided Sonochemistry Yields Graphene with Tunable Defects to Provide Fundamental Insight on Sodium Metal Plating Behavior SUPPLEMENTARY INFORMATION Directional Flow-Aided Sonochemistry Yields Graphene with Tunable Defects to Provide Fundamental Insight on Sodium Metal Plating Behavior Wei Liu a *, Peiyu Li a, Wenwu Wang b,

More information

Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite

Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite Supporting Information Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite Jan M. Englert, Kathrin C. Knirsch, Christoph Dotzer, Benjamin Butz, Frank Hauke, Erdmann Spiecker,

More information

Supplementary Information

Supplementary Information Supplementary Information Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes Florian Jakubka #, Stefan P. Schießl #, Sebastian Martin #,

More information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China Electronic Supplementary Material A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various ph media

More information

Accepted Manuscript. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation

Accepted Manuscript. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation Accepted Manuscript Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation Umar Khan, Arlene O Neill, Harshit Porwal, Peter May, Khalid Nawaz, Jonathan N. Coleman PII: S0008-6223(11)00735-4

More information

Graphene Improves the Biocompatibility of. Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for. Neuronal Growth

Graphene Improves the Biocompatibility of. Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for. Neuronal Growth Supplementary Information Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth Cristina Martín 1, 2, Sonia Merino 1, Jose M. González-Domínguez

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Nanoscale PAPER. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender

Nanoscale PAPER. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender PAPER View Article Online View Journal View Issue Cite this:, 2014, 6, 11810 Received 25th June 2014 Accepted 14th August 2014 DOI: 10.1039/c4nr03560g www.rsc.org/nanoscale Over the last decade, graphene

More information

Electronic Supplementary information (ESI) Nanodiamonds as Metal-Free Catalyst. 5 Few-Layer Graphene-Graphene Oxide Composite containing

Electronic Supplementary information (ESI) Nanodiamonds as Metal-Free Catalyst. 5 Few-Layer Graphene-Graphene Oxide Composite containing Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary information (ESI) 5 Few-Layer Graphene-Graphene

More information

Graphene-reinforced elastomers for demanding environments

Graphene-reinforced elastomers for demanding environments Graphene-reinforced elastomers for demanding environments Robert J Young, Ian A. Kinloch, Dimitrios G. Papageorgiou, J. Robert Innes and Suhao Li School of Materials and National Graphene Institute The

More information

In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to synthesis sulfide-graphene nanocomposites

In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to synthesis sulfide-graphene nanocomposites Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 In situ formation of metal Cd x Zn 1-x S nanocrystals on graphene surface: A novel method to

More information

Production of Graphite Chloride and Bromide Using Microwave Sparks

Production of Graphite Chloride and Bromide Using Microwave Sparks Supporting Information Production of Graphite Chloride and Bromide Using Microwave Sparks Jian Zheng, Hongtao Liu, Bin Wu, Chong-an Di, Yunlong Guo, Ti Wu, Gui Yu, Yunqi Liu, * and Daoben Zhu Key Laboratory

More information

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan Puntambekar, Michael L. Geier, and,,, * Mark C. Hersam Department

More information

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Preparation of graphene relying on porphyrin exfoliation of graphite

Preparation of graphene relying on porphyrin exfoliation of graphite Electronic Supplementary Information (ESI) for: Preparation of graphene relying on porphyrin exfoliation of graphite Jianxin Geng, Byung-Seon Kong, Seung Bo Yang and Hee-Tae Jung* National Research Laboratory,

More information

Optimised exfoliation conditions enhance isolation and solubility of grafted graphenes from graphite intercalation compounds

Optimised exfoliation conditions enhance isolation and solubility of grafted graphenes from graphite intercalation compounds Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Optimised exfoliation conditions enhance isolation and solubility of grafted

More information

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions Supporting Information High-Performance Strain Sensors with Fish Scale-Like Graphene Sensing Layers for Full-Range Detection of Human Motions Qiang Liu, Ji Chen, Yingru Li, and Gaoquan Shi* Department

More information

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) High quantum-yield luminescent MoS 2 quantum dots

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Fast and facile preparation of graphene. oxide and reduced graphene oxide nanoplatelets

Fast and facile preparation of graphene. oxide and reduced graphene oxide nanoplatelets Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets Jianfeng Shen, Yizhe Hu, Min Shi, Xin Lu, Chen Qin, Chen Li, Mingxin Ye Department of Materials Science, Fudan University,

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide Supporting online material Konstantin V. Emtsev 1, Aaron Bostwick 2, Karsten Horn

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural

More information

Effects of Tip Sonication Parameters on Liquid Phase Exfoliation of Graphite into Graphene Nanoplatelets

Effects of Tip Sonication Parameters on Liquid Phase Exfoliation of Graphite into Graphene Nanoplatelets Cai et al. Nanoscale Research Letters (2018) 13:241 https://doi.org/10.1186/s11671-018-2648-5 NANO EXPRESS Effects of Tip Sonication Parameters on Liquid Phase Exfoliation of Graphite into Graphene Nanoplatelets

More information

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells 2011 GCEP Report Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells Investigators Zhenan Bao, Associate Professor, Chemical Engineering

More information

Nanoparticle-Production in stirred media mills

Nanoparticle-Production in stirred media mills Production Grinding & Dispersing 1 Research & Development Application Nanoparticle-Production in stirred media mills Sandra Breitung-Faes, Arno Kwade Institute for Particle Technology, Technical University

More information

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors.

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Jusang Park * Hyungjun Kim School of Electrical and Electronics Engineering, Yonsei University, 262 Seongsanno,

More information

Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis*

Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis* Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis* Dr. W. J. Hyun, Prof. C. D. Frisbie, Prof. L. F. Francis Department of Chemical Engineering and Materials Science

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

Supplementary Material

Supplementary Material Supplementary Material Title: Optical Characterization of Non-Covalent Interaction between Non-Conjugated Polymers and Chemically Converted Graphene Author: Yufei Wang A, Xueliang Hou A, Chi Cheng A, Ling

More information

Facile Synthesis and Optical Properties of Colloidal Silica Microspheres Encapsulating Quantum Dots-Layer

Facile Synthesis and Optical Properties of Colloidal Silica Microspheres Encapsulating Quantum Dots-Layer Electronic Supplementary Information for: Facile Synthesis and Optical Properties of Colloidal Silica Microspheres Encapsulating Quantum Dots-Layer Myungje Cho, Kipil Lim, Kyoungja Woo* Nano-Materials

More information

High Yield Synthesis of Aspect Ratio Controlled. Graphenic Materials from Anthracite Coal in

High Yield Synthesis of Aspect Ratio Controlled. Graphenic Materials from Anthracite Coal in Supporting Information High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids Suchithra Padmajan Sasikala 1, Lucile Henry 1, Gulen Yesilbag Tonga

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Hailiang Wang, Joshua Tucker Robinson, Xiaolin Li, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor

Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor Electronic Supplementary Information for: Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor Van Hoang Luan, a Huynh Ngoc Tien, a Le Thuy Hoa,

More information

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Supporting Information Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Jinping Zhao, Songfeng Pei, Wencai Ren*, Libo Gao and Hui-Ming Cheng* Shenyang National

More information

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links Journal Name Dynamic Article Links Cite this: DOI:.39/c0xx00000x www.rsc.org/xxxxxx Supporting Information Significant enhancement in blue emission and electrical conductivity of N-doped graphene Tran

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Small, DOI: 10.1002/smll.201801523 Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based

More information

Supplementary information. Derivatization and Interlaminar Debonding of Graphite-Iron Nanoparticles Hybrid

Supplementary information. Derivatization and Interlaminar Debonding of Graphite-Iron Nanoparticles Hybrid Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Supplementary information Derivatization and Interlaminar Debonding of Graphite-Iron

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

Solution-processable graphene nanomeshes with controlled

Solution-processable graphene nanomeshes with controlled Supporting online materials for Solution-processable graphene nanomeshes with controlled pore structures Xiluan Wang, 1 Liying Jiao, 1 Kaixuan Sheng, 1 Chun Li, 1 Liming Dai 2, * & Gaoquan Shi 1, * 1 Department

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Electronic Supporting Information (ESI)

Electronic Supporting Information (ESI) Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Electronic Supporting Information (ESI) Quaternized Carbon Dots Modified Graphene

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct Visualization of Large-Area Graphene Domains and Boundaries by Optical Birefringency Dae Woo Kim 1,*, Yun Ho Kim 1,2,*, Hyeon Su Jeong 1, Hee-Tae Jung 1 * These authors contributed equally to this

More information

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K.

More information

Controlled self-assembly of graphene oxide on a remote aluminum foil

Controlled self-assembly of graphene oxide on a remote aluminum foil Supplementary Information Controlled self-assembly of graphene oxide on a remote aluminum foil Kai Feng, Yewen Cao and Peiyi Wu* State key Laboratory of Molecular Engineering of Polymers, Department of

More information

Self assembly of graphene oxide at the liquid-liquid interface: A new. rout to fabrication of graphene based composites

Self assembly of graphene oxide at the liquid-liquid interface: A new. rout to fabrication of graphene based composites Supporting Information for Self assembly of graphene oxide at the liquid-liquid interface: A new rout to fabrication of graphene based composites Mohsen Moazzami Gudarzi, Farhad Sharif * Department of

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Edge conduction in monolayer WTe 2

Edge conduction in monolayer WTe 2 In the format provided by the authors and unedited. DOI: 1.138/NPHYS491 Edge conduction in monolayer WTe 2 Contents SI-1. Characterizations of monolayer WTe2 devices SI-2. Magnetoresistance and temperature

More information

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method Electronic Supplementary Information (ESI) Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method Sang Cheon Youn, Dae Woo Kim, Seung Bo Yang, Hye Mi Cho, Jae

More information

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures Supplementary Information High-Performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures Mi-Sun Lee, Kyongsoo Lee, So-Yun Kim, Heejoo Lee, Jihun Park, Kwang-Hyuk

More information

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan Supporting Materials High Quality Thin Graphene Films from Fast Electrochemical Exfoliation Ching-Yuan Su, Ang-Yu Lu #, Yanping Xu, Fu-Rong Chen #, Andrei N. Khlobystov $ and Lain-Jong Li * Research Center

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of Supplementary material Chemical functionalization of graphene sheets by solvothermal reduction of suspension of graphene oxide in N-methyl-2-pyrrolidone Viet Hung Pham, Tran Viet Cuong, Seung Hyun Hur,

More information

Supplementary Information

Supplementary Information Emiss. Inten. (arb. unit) Emiss. Inten. (arb. unit) Supplementary Information Supplementary Figures S-S a b..5. c.2 d.2 (6,5) (7,5) (6,5).8 (7,6).8.6.4.2 (9,) (8,4) (9,4) (8,6) (,2).6.4.2 (7,5) (7,6)(8,4)

More information

Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application S. K. Pradhan, Bo, Xiao, S. Mishra, A. Killam, A. K. Pradhan Center for Materials Research,

More information

Scaling Wet Fine Grinding Processes of Organic Particles Using Stirred Media Mills

Scaling Wet Fine Grinding Processes of Organic Particles Using Stirred Media Mills Research Article 1051 Scaling Wet Fine Grinding Processes of Organic Particles Using Stirred Media Mills Frederik Flach*, Sandra Breitung-Faes, and Arno Kwade DOI: 10.1002/cite.201600148 This study presents

More information

Charging of Unfunctionalized Graphene in Organic Solvents

Charging of Unfunctionalized Graphene in Organic Solvents Electronic Supplementary Information for Charging of Unfunctionalized Graphene in Organic Solvents Wei Wei Liu, a Jian Nong Wang, *b and Xiao Xia Wang c a School of Materials Science and Engineering, Shanghai

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Adding refractory 5d transition metal W into PtCo

More information

Driving forces for the self-assembly of graphene oxide on organic monolayers

Driving forces for the self-assembly of graphene oxide on organic monolayers Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information Driving forces for the self-assembly of graphene oxide on organic monolayers

More information

Role of Deoxy Group on the High Concentration of Graphene in Surfactant / Water Media

Role of Deoxy Group on the High Concentration of Graphene in Surfactant / Water Media Supporting Information Role of Deoxy Group on the High Concentration of Graphene in Surfactant / Water Media Parameshwari Ramalingam a, Sai Teja Pusuluri b, Sangeetha Periasamy c, Ramakrishnan Veerabahu

More information

Supporting Information: A comparative Electron Paramagnetic Resonance study of expanded graphites and graphene

Supporting Information: A comparative Electron Paramagnetic Resonance study of expanded graphites and graphene Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information: A comparative Electron Paramagnetic Resonance study

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

Supporting Information

Supporting Information Supporting Information Decorating Graphene Sheets with Gold Nanoparticles Ryan Muszynski, Brian Seeger and, Prashant V. Kamat* Radiation Laboratory, Departments of Chemistry & Biochemistry and Chemical

More information

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm.

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary Figure 1. Few-layer BN nanosheets. AFM image and the corresponding height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary

More information

Oxidation layering mechanism of graphene-like MoS 2 prepared by the intercalation-detonation method

Oxidation layering mechanism of graphene-like MoS 2 prepared by the intercalation-detonation method Nano Research DOI 10.1007/s12274-017-1713-1 Oxidation layering mechanism of graphene-like MoS 2 prepared by the intercalation-detonation method Fan Yang 1,2, Kuaishe Wang 1,2, Ping Hu 1,2,3 ( ), Zhenyu

More information

Supplementary information for:

Supplementary information for: Supplementary information for: Solvent dispersible nanoplatinum-carbon nanotube hybrids for application in homogeneous catalysis Yuhong Chen, Xueyan Zhang and Somenath Mitra* Department of Chemistry and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells** Hui Wang, Kai

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Three-dimensional Multi-recognition Flexible Wearable

Three-dimensional Multi-recognition Flexible Wearable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 This journal is The Royal Society of Chemistry 2016 Supporting Information Three-dimensional Multi-recognition

More information

Supplementary Figures Supplementary Figure 1

Supplementary Figures Supplementary Figure 1 Supplementary Figures Supplementary Figure 1 Optical images of graphene grains on Cu after Cu oxidation treatment at 200 for 1m 30s. Each sample was synthesized with different H 2 annealing time for (a)

More information

A Reliable Supply Pla.orm for Graphene & non- carbon 2D Materials

A Reliable Supply Pla.orm for Graphene & non- carbon 2D Materials A Reliable Supply Pla.orm for Graphene & non- carbon 2D Materials Andy Goodwin Commercial Director Advanced Materials Cambridge Graphene Technology Days 2015 3 rd CIR Graphene Business Conference, 6 November

More information

Effects of interaction of electron-donor and accepter molecules on the electronic structure of graphene

Effects of interaction of electron-donor and accepter molecules on the electronic structure of graphene Effects of interaction of electron-donor and accepter molecules on the electronic structure of graphene Rakesh Voggu 1, Barun Das 1, 2, Chandra Sekhar Rout, 1 1, 2,* and C. N. R. Rao 1 Chemistry and Physics

More information

The study on physical and mechanical properties of latex/graphene oxide composite film

The study on physical and mechanical properties of latex/graphene oxide composite film Journal of Physics: Conference Series PAPER OPEN ACCESS The study on physical and mechanical properties of latex/graphene oxide composite film To cite this article: S Gea et al 2018 J. Phys.: Conf. Ser.

More information

Supplementary Information

Supplementary Information Supplementary Information a b Supplementary Figure 1. Morphological characterization of synthesized graphene. (a) Optical microscopy image of graphene after transfer on Si/SiO 2 substrate showing the array

More information

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Supporting Information Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez,

More information

analysis. Figure S1(a-c), shows C-1s XPS of powder graphite, polymer coated graphene oxide (GO) and

analysis. Figure S1(a-c), shows C-1s XPS of powder graphite, polymer coated graphene oxide (GO) and This journal is (c) The Royal Society of Chemistry 00 Electronic supplementary information Functionalized graphene and graphene oxide solution via polyacrylate coating # Arindam Saha, a SK Basiruddin,

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

In situ Growth of Ni-Fe Alloy on Graphene-like MoS 2 for Catalysis of. Hydrazine Oxidation

In situ Growth of Ni-Fe Alloy on Graphene-like MoS 2 for Catalysis of. Hydrazine Oxidation Electronic Supplementary Information (ESI) In situ Growth of Ni-Fe Alloy on Graphene-like MoS 2 for Catalysis of Hydrazine Oxidation Xing Zhong, Haidong Yang, Shujing Guo, Shuwen Li, Galian Gou, Zhengping

More information

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach Xiu-Zhi Tang, a Zongwei Cao, b Hao-Bin Zhang, a Jing Liu

More information

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex

Supporting Information. Simple Bacterial Detection and High-Throughput Drug Screening. Based on Graphene-Enzyme Complex Supporting Information Simple Bacterial Detection and High-Throughput Drug Screening Based on Graphene-Enzyme Complex Juan-Li, Ling-Jie Wu, Shan-Shan Guo, Hua-E Fu, Guo-Nan Chen* and Huang-Hao Yang* The

More information