Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information Effect of Polymer Molecular Weight and Solution Parameters on Selective Dispersion of Single-Walled Carbon Nanotubes Florian Jakubka #, Stefan P. Schießl #, Sebastian Martin #, Jan M. Englert, Frank Hauke, Andreas Hirsch, and Jana Zaumseil # * # Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 7, Erlangen, Germany Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr. Mack Str. 81, Fürth,Germany Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, Erlangen, Germany S1 S2 S3 S4 S5 S6 S7 S8 Characterization of Polymer Source Material: Molecular Weight Distributions and 1 H- NMR Spectra of F8BT and PFO Polymers Characterization of Nanotube Source Material: HiPco Nanotubes Dispersed in D 2 O with Sodium Dodecyl Sulfate PL Excitation-Emission Spectra of SWNT-Polymer Dispersions and Normalized Selectivities Selectivity of (10,5) vs. (9,4) Nanotubes vs. Hansen and Hildebrand Solubility Parameters SWNT-Polymer Dispersion Absorbance Spectra with Different Solvents PL-Intensities of Nanotube Species in PFO with Different Solvents Influence of Polymer Concentration on Nanotube Dispersion Selectivity and Quantity Additional Solvent and Solution Viscosities 1

2 S1 Characterization of Polymer Source Materials: Molecular Weight Distributions and NMR Spectra of F8BT and PFO Polymers Figures S1a to S1c show the molar weight distributions of the used polymers determined by gel permeation chromatography (GPC). The polymers illustrated in the first two graphs were used for direct comparison of the degree of polymerization for F8BT (a) and PFO (b), while the F8BT polymers shown in (c) were used for solvent-dependent measurements (ADS, M W = 85 kg/mol) and variations of the polymer concentration (ADSn, M W = 153 kg/mol). For GPC Measurements, the polymers were dissolved in tetrahydrofuran at 1 mg/ml. A refraction index detector (Shodex, RI-101) recorded the size distribution in relation to the applied polystyrene standard (EasiCal, PS-1 polystyrene standards, M w = 580 7,500,000 g mol -1 ). For specific M W and polydispersity values see Table 1 and Table S8a. Figures S1d to S1h show 1 H-NMR-spectra of all used polymers. Measurements were performed on 400 MHz FT-NMR spectrometers (Jeol and Bruker) with the polymer dissolved in toluene-d 8 at a concentration of ~5 mg/ml. 1 H-NMR spectra show nearly identical peaks for all F8BT and PFO batches, respectively, and indicate no significant structural defects or differences. Protons of the fluorene and benzothiadiazole units are visible between 7.6 and 8.6 ppm in the aromatic low field region while aliphatic protons of the octyl chains resonate between 0.75 to 1.5 ppm at high fields. Polymers were end-capped with phenyl groups (CDT) or xylyl groups (ADS). Residual Pd and Ni catalyst amounts were in the ppm range and should not affect the structure of the polymer or dispersion selectivity. 2

3 Figure S1 3

4 Figure S1 (d) 4

5 Figure S1 (e) 5

6 Figure S1 (f) 6

7 Figure S1 (g) 7

8 Figure S1 (h) 8

9 S2 Characterization of Nanotube Source Material: HiPco Nanotubes Dispersed in D 2 O with Sodium Dodecyl Sulfate HiPco nanotubes from Unidym Inc. (Batch P0261) were dispersed at 1 mg/ml in D 2 O with sodium dodecyl sulfate as surfactant (1.26 wt%). Figure S2a shows the PL excitation-emission map of the sample with identified nanotube species (n,m). The corresponding graphene sheet shows the uncorrected (for PL efficiency) and normalized (versus (7,6) signal) distribution (see Figure S2b). Individual maximum PL-intensities of the detected nanotube species are presented in Table S2 together with specific excitation and emission wavelengths. Figure S2 (a) Figure S2 (b) 9

10 Table S2 Detected carbon nanotube species of the HiPco nanotube source with respective PL-intensities Chirality n,m Excitation Wavelength (nm) Emission Wavelength (nm) PL-intensity - backgroundcorrected (counts) 6, , , , , , , , , , , , , , ,

11 S3 PL Excitation-Emission Spectra of SWNT-Polymer Dispersions and Normalized Selectivities Figures S3a to S3d show PL maps of carbon nanotubes dispersed in F8BT and PFO together with the normalized semiconductor nanotube distribution compared to the source distribution in graphene sheets. The background-corrected PL intensities of all observed types of nanotubes are presented in Table S3a (F8BT) and Table S3b and S3c (PFO). All PL maps are scaled for maximum range. The absolute, background-corrected intensities vary between 1500 and counts for F8BT and from 1000 to counts for PFO. Maximum PL-values for the ADS polymer with toluene, o-xylene and mesitylene have been averaged over two samples. PLintensities and thus amount of individualized nanotubes tend to increase with molecular weight (also seen in the corresponding absorption spectra, Figure S5a). Medium M W PFO is the exception, showing a higher SWNT yield than the high M W PFO, which might be due to its high polydispersity (PD = 6.25) compared to the other polymers (PD = ). Using empirical data by Weisman and Bachilo 1 and taking into account the usual emission redshift of several nm for polymer-wrapped nanotubes, most of the present peaks in the PL-sheets could be assigned to a specific chirality. Few phantom peaks usually correlate with FRETbased E 22 -E 11 transfer patterns between different nanotube species 2 and indicate either re-bundled nanotubes or closely grouped polymer-swnt complexes. The relative selectivity RS, illustrated in the graphene sheets, gives an overview of all detected nanotubes. RS was calculated by dividing the peak intensity of the individual nanotube by the respective nanotube intensities of the SDS reference sample (see Figure S2) and then normalizing to the maximum value. This way the specific nanotube selectivity of the solution can be extracted with minimal interference by the species distribution of the source material. 1. Weisman, R. B.; Bachilo, S. M. Nano Lett. 2003, 3, Lefebvre, J.; Finnie, P. J. Phys. Chem. C 2009, 113,

12 Figure S3 (a) 12

13 Figure S3 (b) 13

14 Figure S3 (c) 14

15 Figure S3 (d) 15

16 Table S3 (a) Detected nanotube species with background-corrected PL-intensities for F8BT polymers Polymer F8BT low MW F8BT med. MW F8BT high MW F8BT low MW F8BT med. MW F8BT high MW Solvent Toluene Toluene Toluene o-xylene o-xylene o-xylene Chirality PL-intensity Chirality PL-intensity Polymer Solvent n,m (counts) n,m (counts) 8, , , , , , F8BT ADS Toluene 8, , , , , , , , , , , , , F8BT ADS m-xylene 9, , , , , , , , , , , , , F8BT ADS p-xylene 7, , , , , , , , , , , , , , , F8BT ADS Mesitylene 8, , , , , , , , , , , , , , , , , F8BT ADS o-xylene 11, , , , , , , , , , , , ,

17 Table S3 (b) Detected nanotube species with background-corrected PL-intensities for PFO polymers Polymer Solvent Chirality n,m Intensity (counts) Polymer Solvent Chirality n,m Intensity (counts) PFO low MW Toluene PFO med. MW Toluene PFO high MW Toluene PFO low MW o-xylene PFO med. MW o-xylene PFO high MW o-xylene 7, , , , , , PFO med. 8,7 553 m-xylene 8, MW 7, , , , , , , , , , , , PFO med. 9, p-xylene 8, MW 11, , , , , , , , , , , , PFO med. 9, Mesitylene 8, MW 9, , , , , , , , , , , , , , , , , , , , ,

18 S4 Selectivity of (10,5) vs. (9,4) Nanotubes vs. Hansen and Hildebrand Solubility Parameters Hildebrand and Hansen solubility parameters (Table S4) are widely used to estimate the solubility and interaction of different molecules and solvents with each other. The Hildebrand solubility parameter δ is the square root of the (total) cohesive energy density (E C /V) of the material: δ = V. The difference between the Hildebrand parameters of a solute (A) and a E C 2 solvent (B) determines the enthalpy of mixing: ( δ δ ) φ( 1 φ) H with φ being the volume fraction. Hansen solubility parameters are more complex with factors derived from dispersive (δ D ), dipole (δ P ) and hydrogen-bonding forces (δ H ). The correlation between Hansen and Hildebrand parameters is given by δ 2 = δ D 2 + δ P 2 + δ H 2. Figure S4 shows the selectivity S of (10,5) vs. (9,4) nanotubes (extracted from PL spectra in S3) in relation to the Hansen and Hildebrand parameters of various solvents. The dispersing polymer was medium molecular weight F8BT (ADS, M W = 85 kg/mol). mix A B Table S4: Hansen and Hildebrand parameters of the used solvents (from Hansen, C. M., Hansen Solubility Parameters - A Users Handbook 2 nd Edition. CRC Press: Boca Raton, Fl, USA, 2007). Solvent δ (MPa) 1/2 δ D (MPa) 1/2 δ P (MPa) 1/2 δ H (MPa) 1/2 Toluene o-xylene p-xylene m-xylene Mesitylene Styrene Ethylbenzene

19 Figure S4 19

20 S5 SWNT-Polymer Dispersion Absorption Spectra with Different Solvents Figures S5a and S5b show the absorption spectra of polymer-nanotube dispersions with different solvents (cuvette length 1 cm). The dispersing polymer is F8BT ADS with medium M W = 85 kg/mol in all cases. The different plots in Figure S5a focus on solvents that show distinct selectivity toward (10,5)-nanotubes (E 11 : 1275 nm), (9,4)-nanotubes (E 11 : 1122 nm) and (8,6)-nanotubes (E 11 : 1186 nm), while Figure S5b shows solvents that are rather unselective with no distinct preference for certain chiralities. An absorption spectrum of SDS-dispersed HiPco-SWNTs in D 2 O is shown as reference. Note, that the background was subtracted from all spectra to compare the relative peak heights. The graphs give an overview, which F8BT solutions disperse selectively and how much. Especially benzene and styrene show, similar to toluene, very good selectivity toward (10,5) nanotubes. Figure S5 (a) 20

21 Figure S5 (b) 21

22 S6 PL-Intensities of Nanotube Species in PFO with Different Solvents Figure S6 shows the PL intensities of individual nanotube species versus the kinematic viscosities of PFO solutions. The viscosity is varied by using different solvents while keeping polymer type molecular weight (M W = 90 kg/mol) and concentration constant. PL intensities were corrected by chirality-specific fluorescence action cross sections per number of carbon atoms (Φ) in the same way as for Figure 3 in the main text. Figure S6 22

23 S7 Influence of Polymer Concentration on Nanotube Dispersion Selectivity and Quantity Figures S7a to S7c show the influence of different F8BT polymer concentrations (ADSn, M W = 153 kg/mol) in toluene on selective nanotube dispersion. With increasing polymer content and thus viscosity not only the selectivity S [(10,5) vs. (9,4)] decreases from 0.91 to 0.66 (see Figure S7e), but also the total amount of nanotubes in the solution increases strongly, as shown in the corresponding absorption spectra in Figure S7d. For kinematic and dynamic viscosities, see Table S8a. Figure S7 23

24 S8 Additional Solvent and Solution Viscosities Table S8 (a) Viscosities of polymer solutions depending on solvent (constant concentration 2 mg/ml) and concentration Polymer Molecular Weight M w (g/mol) Polydispersity Solvent Density ρ (g/cm³) Kinematic Viscosity ν (mm²/s) Dynamic Viscosity η (mpa s) F8BT ADS 84, F8BT ADSn 2 mg/ml F8BT ADSn 5 mg/ml F8BT ADSn 10 mg/ml PFO medium MW 153, Toluene 90, Toluene Mesitylene o-xylene m-xylene p-xylene m-xylene p-xylene Mesitylene Table S8 (b) Viscosities of pure solvents Solvent Density (g/cm³) Kinematic Viscosity ν (mm 2 /s) Dynamic Viscosity η (mpa s) Toluene o-xylene m-xylene p-xylene Mesitylene

Blending conjugated polymers without phase separation for fluorescent colour tuning of polymeric materials through FRET

Blending conjugated polymers without phase separation for fluorescent colour tuning of polymeric materials through FRET Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information Blending conjugated polymers without phase separation for fluorescent

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information Synthesis of hydrocarbon-soluble, methyl-substituted highly branched

More information

Processing and Properties of Highly Enriched Double-Walled. Carbon Nanotubes: Supplementary Information

Processing and Properties of Highly Enriched Double-Walled. Carbon Nanotubes: Supplementary Information Processing and Properties of Highly Enriched Double-Walled Carbon Nanotubes: Supplementary Information Alexander A. Green and Mark C. Hersam* Department of Materials Science and Engineering and Department

More information

Turn-On Detection of Pesticides via Reversible Fluorescence Enhancement of Conjugated Polymer Nanoparticles and Thin Films

Turn-On Detection of Pesticides via Reversible Fluorescence Enhancement of Conjugated Polymer Nanoparticles and Thin Films Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Electronic Supporting Information

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2016 The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar

More information

MODEL FOR PREDICTING SOLUBILITY OF FULLERENES IN ORGANIC SOLVENTS. Speaker: Chun I Wang ( 王俊壹 )

MODEL FOR PREDICTING SOLUBILITY OF FULLERENES IN ORGANIC SOLVENTS. Speaker: Chun I Wang ( 王俊壹 ) MODEL FOR PREDICTING SOLUBILITY OF FULLERENES IN ORGANIC SOLVENTS Speaker Chun I Wang ( 王俊壹 ) 2014.11.03 Thermodynamics Concept of Fullerenes Solubility in Organic Solvents Fundamental Thermodynamics G

More information

Supplementary Information

Supplementary Information Emiss. Inten. (arb. unit) Emiss. Inten. (arb. unit) Supplementary Information Supplementary Figures S-S a b..5. c.2 d.2 (6,5) (7,5) (6,5).8 (7,6).8.6.4.2 (9,) (8,4) (9,4) (8,6) (,2).6.4.2 (7,5) (7,6)(8,4)

More information

All-conjugated, all-crystalline donor-acceptor block. copolymers P3HT-b-PNDIT2 via direct arylation

All-conjugated, all-crystalline donor-acceptor block. copolymers P3HT-b-PNDIT2 via direct arylation upporting information for All-conjugated, all-crystalline donor-acceptor block copolymers P3HT-b-PNDIT2 via direct arylation polycondensation Fritz Nübling,, Hartmut Komber, Michael ommer,, Makromolekulare

More information

Supplementary Information

Supplementary Information Supplementary Information Self-assembly of Metal-Polymer Analogues of Amphiphilic Triblock Copolymers 1 Zhihong Nie, 1 Daniele Fava, 1, 2, 3 Eugenia Kumacheva 1 Department of Chemistry, University of Toronto,

More information

specified quantity of a solvent at a given temperature. To deconvolute the value from the

specified quantity of a solvent at a given temperature. To deconvolute the value from the S.1 Calculations of Dilution Enthalpy and Enthalpic Interaction Coefficients. When a solute is dissolved in a solvent a solution is formed. During dissolution of a solute in any solvent, heat is either

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Covalent Bulk Functionalization of Graphene Jan M. Englert a, Christoph Dotzer a, Guang Yang b, Martin Schmid c, Christian Papp c, J. Michael Gottfried c, Hans-Peter Steinrück

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008 Supplementary Information for: Scrambling Reaction between Polymers Prepared by Step-growth and Chain-growth Polymerizations: Macromolecular Cross-metathesis between 1,4-Polybutadiene and Olefin-containing

More information

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting

More information

Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information

Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information Jonathan M. Behrendt, Yun Wang, Helen Willcock, Laura Wall, Mark C. McCairn, Rachel K. O Reilly and Michael L. Turner Experimental

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download)

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) Dr. Debasis Samanta Senior Scientist & AcSIR Assistant Professor Polymer Science & Technology Department., CSIR-CLRI,

More information

Chapter 5. Ionic Polymerization. Anionic.

Chapter 5. Ionic Polymerization. Anionic. Chapter 5. Ionic Polymerization. Anionic. Anionic Polymerization Dr. Houston S. Brown Lecturer of Chemistry UH-Downtown brownhs@uhd.edu What you should know: What is anionic polymerization? What is MWD,

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012179 TITLE: Salt-Induced Block Copolymer Micelles as Nanoreactors for the Formation of CdS Nanoparticles DISTRIBUTION: Approved

More information

Facile bulk production of highly blue fluorescent

Facile bulk production of highly blue fluorescent Electronic Supplementary Information for Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and its application as a highly selective and sensitive sensor for the detection

More information

Gel Permeation Chromatography

Gel Permeation Chromatography Gel Permeation Chromatography Polymers and Coatings Laboratory California Polytechnic State University San Luis Obispo, CA Gel permeation chromatography (GPC) has become the most widely used technique

More information

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy Ryusuke Matsunaga 1, Kazunari Matsuda 1, and Yoshihiko Kanemitsu 1,2 1 Institute for Chemical

More information

of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions.

of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions. Supporting Information to Narrow Molecular Weight and Particle Size Distributions of Polystyrene 4-arm Stars Synthesized by RAFT- Mediated Miniemulsions. Hazit A. Zayas, Nghia P. Truong, David Valade,

More information

Novel Supercapacitor Materials Including OLED emitters

Novel Supercapacitor Materials Including OLED emitters Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supporting Information Novel

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 A tailored RAFT copolymer for the dispersion of single walled carbon nanotubes in aqueous

More information

Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology by Use of CO 2

Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology by Use of CO 2 Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Polymerization Induced Self-Assembly: Tuning of Nano-Object Morphology

More information

Gel Permeation Chromatography

Gel Permeation Chromatography Gel Permeation Chromatography Polymers and Coatings Laboratory California Polytechnic State University Gel permeation chromatography (GPC) has become the most widely used technique for determination of

More information

ph dependent thermoresponsive behavior of acrylamide-acrylonitrile UCSTtype copolymers in aqueous media

ph dependent thermoresponsive behavior of acrylamide-acrylonitrile UCSTtype copolymers in aqueous media Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information ph dependent thermoresponsive behavior of acrylamide-acrylonitrile

More information

Characterisation of Viscosity and Molecular Weight of Fractionated NR

Characterisation of Viscosity and Molecular Weight of Fractionated NR Characterisation of Viscosity and Molecular Weight of Fractionated NR ENG A.H. Science & Technology Innovation Centre, Ansell Shah Alam, Malaysia (e-mail: engah@ap.ansell.com) Abstract Viscosity of a rubber

More information

A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour

A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour Eyad

More information

Chemically recyclable alternating copolymers with low polydispersity from

Chemically recyclable alternating copolymers with low polydispersity from Electronic Supplementary Information Chemically recyclable alternating copolymers with low polydispersity from conjugated/aromatic aldehydes with vinyl ethers: selective degradation to another monomer

More information

Supporting information

Supporting information Supporting information Temperature and ph-dual Responsive AIE-Active Core Crosslinked Polyethylene Poly(methacrylic acid) Multimiktoarm Star Copolymers ` Zhen Zhang,*,, and Nikos Hadjichristidis*, School

More information

Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis. Supporting Information

Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis. Supporting Information Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis Steven M. Baldwin, John E. Bercaw, *, and Hans H. Brintzinger*, Contribution from the Arnold and

More information

Polymer Inorganic Composites with Dynamic Covalent Mechanochromophore

Polymer Inorganic Composites with Dynamic Covalent Mechanochromophore Supporting Information Polymer Inorganic Composites with Dynamic Covalent Mechanochromophore Takahiro Kosuge,, Keiichi Imato, Raita Goseki,, and Hideyuki tsuka*,, Department of rganic and Polymeric Materials,

More information

Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Lecture 4 : Gel Permeation or Size Exclusion Chromatography Lecture 4 : Gel Permeation or Size Exclusion Chromatography Polymer Fractionation Sedimentation Centrifugation Evaporation of the solvent Gel permeation chromatography Gel Permeation Chromatography (GPC)

More information

Novel Dispersion and Self-Assembly

Novel Dispersion and Self-Assembly Novel Dispersion and Self-Assembly of Carbon Nanotubes Mohammad F. Islam 100g Department of Chemical Engineering and Department of Materials Science & Engineering Funding Agencies http://islamgroup.cheme.cmu.edu

More information

Triaryl Amine N-Functionalised 2,7-Linked Carbazole Polymers as a. New Class of Blue Emitting Materials for LED Applications

Triaryl Amine N-Functionalised 2,7-Linked Carbazole Polymers as a. New Class of Blue Emitting Materials for LED Applications Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2007. Supporting Information for Macromol. Rapid Commun. 2007, 28, 1155. Triaryl Amine N-Functionalised 2,7-Linked Carbazole Polymers

More information

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins Photo-Cleavage of Cobalt-Carbon Bond: Visible Light-Induced Living Radical Polymerization Mediated by Organo-Cobalt Porphyrins Yaguang Zhao, Mengmeng Yu, and Xuefeng Fu* Beijing National Laboratory for

More information

Supracolloidal Polymer Chains of Diblock Copolymer Micelles

Supracolloidal Polymer Chains of Diblock Copolymer Micelles Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Supporting Information Supracolloidal Polymer Chains of Diblock Copolymer Micelles

More information

Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite

Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite Supporting Information Functionalization of Graphene by Electrophilic Alkylation of Reduced Graphite Jan M. Englert, Kathrin C. Knirsch, Christoph Dotzer, Benjamin Butz, Frank Hauke, Erdmann Spiecker,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 218 Supporting Information Multi-Functional Organosilane-Polymerized Carbon Dots Inverse Opals Junchao

More information

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl

More information

6. A solution of red Kool-Aid transmits light at a wavelength range of nm.

6. A solution of red Kool-Aid transmits light at a wavelength range of nm. I. Multiple Choice (15 pts) 1. FRET stands for a. Fluorescence Recovery Electron Transfer b. Fluorescence Resonance Energy Transfer c. Fluorescence Recovery Energy Transfer 2. Fluorescence involves the

More information

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Supporting Information Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries Qi Zheng, 1 Danielle M. Pesko, 1 Brett M. Savoie, Ksenia Timachova, Alexandra L. Hasan, Mackensie C.

More information

Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy

Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy Physica E 40 (2008) 2352 2359 www.elsevier.com/locate/physe Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy P.H. Tan a,b,, T. Hasan a, F. Bonaccorso a,c,

More information

Induced Circular Dichroism of Stereoregular Vinyl Polymers

Induced Circular Dichroism of Stereoregular Vinyl Polymers Induced Circular Dichroism of Stereoregular Vinyl Polymers Lung-Chi Chen, Yung-Cheng Mao, Shih-Chieh Lin, Ming-Chia Li, Rong-Ming Ho*, Jing-Cherng Tsai* Supplementary Information Figure S1. 13 C NMR (125

More information

Determination of quantitative structure property and structure process relationships for graphene production in water

Determination of quantitative structure property and structure process relationships for graphene production in water Electronic Supplementary Material Determination of quantitative structure property and structure process relationships for graphene production in water Thomas J. Nacken, Cornelia Damm, Haichen Xing, Andreas

More information

Supramolecular Hydrogel Formation in a Series of Self-Assembling. Lipopeptides with Varying Lipid Chain Length.

Supramolecular Hydrogel Formation in a Series of Self-Assembling. Lipopeptides with Varying Lipid Chain Length. Supplementary Information Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length. V. Castelletto a, A. Kaur a, R. M. Kowalczyk a, I.W. Hamley a, M.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Nanoparticle-to-vesicle and nanoparticle-to-toroid transitions of ph-sensitive

More information

Techniques useful in biodegradation tracking and biodegradable polymers characterization

Techniques useful in biodegradation tracking and biodegradable polymers characterization Techniques useful in biodegradation tracking and biodegradable polymers characterization Version 1 Wanda Sikorska and Henryk Janeczek 1 Knowledge on biodegradable polymers structures is essential for the

More information

A ratiometric luminescent sensing of Ag + ion via in situ formation of coordination polymers

A ratiometric luminescent sensing of Ag + ion via in situ formation of coordination polymers Electronic Supplementary Information (ESI) A ratiometric luminescent sensing of Ag + ion via in situ formation of coordination polymers Dong-Hua Li, a Jiang-Shan Shen, b Na Chen, a Yi-Bin Ruan a and Yun-Bao

More information

Rational design of a biomimetic glue with tunable strength and ductility

Rational design of a biomimetic glue with tunable strength and ductility Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Rational design of a biomimetic glue with tunable strength and

More information

Carbon Nanomaterials

Carbon Nanomaterials Carbon Nanomaterials STM Image 7 nm AFM Image Fullerenes C 60 was established by mass spectrographic analysis by Kroto and Smalley in 1985 C 60 is called a buckminsterfullerene or buckyball due to resemblance

More information

Table 1. Molar mass, polydispersity and degree of polymerization of the P3HTs. DP b

Table 1. Molar mass, polydispersity and degree of polymerization of the P3HTs. DP b Electronic Deckers et al.: Supporting Information S1: Polythiophene synthesis and calculation of the molar mass The P3HTs were prepared by a Ni(dppp) - mediated (dppp = 1,3-bisdiphenylphosphino propane)

More information

Combined metallocene catalysts: an efficient technique to manipulate long-chain branching frequency of polyethylene

Combined metallocene catalysts: an efficient technique to manipulate long-chain branching frequency of polyethylene Macromol. Rapid Commun. 20, 541 545 (1999) 541 Combined metallocene catalysts: an efficient technique to manipulate long-chain branching frequency of polyethylene Daryoosh Beigzadeh, João B. P. Soares*,

More information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Linking catalyst composition to chirality distributions of as-grown singlewalled carbon nanotubes by tuning Ni x Fe 1-x nanoparticles Supplementary Information Wei-Hung Chiang

More information

Solution reduction synthesis of amine terminated carbon quantum dots

Solution reduction synthesis of amine terminated carbon quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Solution reduction synthesis of amine terminated carbon quantum dots Keith Linehan and Hugh

More information

Physical Chemistry Advanced laboratory course. Excimer formation

Physical Chemistry Advanced laboratory course. Excimer formation Physical Chemistry Advanced laboratory course Excimer formation 02-2010 Experimental Make a 1*10-2 M solution of pyrene (C 16 H 10, molecular weight M = 202.25 g/mol) in methylcyclohexane. From

More information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Aziridine in Polymers: A Strategy to Functionalize

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 217 Electronic Supplementary Material

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

The Aggregation Behaviour of Polyisoprene Pluronic Graft Copolymers in Selective Solvents

The Aggregation Behaviour of Polyisoprene Pluronic Graft Copolymers in Selective Solvents The Aggregation Behaviour of Polyisoprene Pluronic Graft Copolymers in Selective Solvents Shirin Alexander *,, Terence Cosgrove, *, Wiebe M de Vos,,ʂ Thomas C. Castle, and Stuart W. Prescott, School of

More information

Supporting Information

Supporting Information Supporting Information Structural Engineering of Biodegradable PCL Block Copolymer Nano-assemblies for Enzyme-Controlled Drug Delivery in Cancer Cells Bapurao Surnar and Manickam Jayakannan* 1 Department

More information

Supporting Information. Combining Step-Gradients and Linear Gradients in Density

Supporting Information. Combining Step-Gradients and Linear Gradients in Density Supporting Information Combining Step-Gradients and Linear Gradients in Density Ashok A. Kumar 1, Jenna A. Walz 2, Mathieu Gonidec 1, Charles R. Mace 2, and George M. Whitesides 1,3,4* 1 Department of

More information

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC Advanced GPC GPC On Tour, Barcelona, 28 th February 2012 The use of Advanced Detectors in GPC 1 What does Conventional GPC give? Molecular weight averages Relative to the standards used Mw Weight Average

More information

Supporting Information

Supporting Information Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles Yunyong Guo, Saman Harirchian-Saei, Celly M. S. Izumi and Matthew G. Moffitt* Department of Chemistry, University of Victoria, P.O. Box

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Photochemical Regulation of a Redox-Active Olefin Polymerization

More information

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies

Gel Permeation Chromatography Basics and Beyond eseminar March 13, Jean Lane Technical and Applications Support LSCA, Columns and Supplies Gel Permeation Chromatography Basics and Beyond eseminar March 13, 2013 Jean Lane Technical and Applications Support LSCA, Columns and Supplies 1 Content Overview of GPC/SEC What is it? Why do we use it?

More information

Comparison of the Diffusion Coefficients Obtained for Latex Film Formation Studied by FRET and Pyrene Excimer Formation

Comparison of the Diffusion Coefficients Obtained for Latex Film Formation Studied by FRET and Pyrene Excimer Formation Comparison of the Diffusion Coefficients Obtained for Latex Film Formation Studied by FRT and Pyrene xcimer Formation Remi Casier, Jean Duhamel, Mario Gauthier Institute for Polymer Research, Department

More information

Chemical Recycling of Unsaturated Polyester Resin and Its Composites via Selective Cleavage of ester Bond

Chemical Recycling of Unsaturated Polyester Resin and Its Composites via Selective Cleavage of ester Bond Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting information Chemical Recycling of Unsaturated Polyester Resin and Its Composites

More information

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio.

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio. Electronic Supplementary Information for Self-ssembly of Dendritic-Linear lock Copolymers With Fixed Molecular Weight and lock Ratio Moon Gon Jeong, a Jan C. M. van Hest, b Kyoung Taek Kim a, * a School

More information

DISPERSION OF CARBON NANOTUBES COATED WITH IRON (III) OXIDE INTO POLYMER COMPOSITE UNDER OSCILLATING MAGNETIC FIELD

DISPERSION OF CARBON NANOTUBES COATED WITH IRON (III) OXIDE INTO POLYMER COMPOSITE UNDER OSCILLATING MAGNETIC FIELD Digest Journal of Nanomaterials and Biostructures Vol. 5, No 4, October-December 2010, p. 1009-1014 DISPERSION OF CARBON NANOTUBES COATED WITH IRON (III) OXIDE INTO POLYMER COMPOSITE UNDER OSCILLATING

More information

Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c,

Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c, Supplementary Figure 1 HAADF-STEM images of 0.08%Pt/FeO x -R200 single-atom catalyst with different magnifications. Scale bar: a, 20 nm; b, 10 nm; c, 2 nm; d, 2 nm. The low magnification images demonstrate

More information

Supporting Information

Supporting Information Supporting Information Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer Reversible-Addition Fragmentation Chain Transfer Polymerization (PET-RAFT) Jonathan

More information

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Supporting Information Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Two-Dimensional Core/Shell Nanoplatelets Xuedan Ma, Benjamin T. Diroll, Wooje Cho, Igor Fedin, Richard D. Schaller,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201403635 Water-Triggered Luminescent Nano-bombs Based on Supra-(Carbon

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

Preparation of 1:1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization

Preparation of 1:1 alternating, nucleobase-containing copolymers for use in sequence-controlled polymerization Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information for Preparation of 1:1 alternating, nucleobase-containing copolymers

More information

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification

Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification Supporting Information to Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification by Tina I. Löbling, Olli Ikkala, André H. Gröschel *, Axel H. E. Müller * Materials

More information

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i Gel Permeation Chromatography (GPC) : Size Exclusion Chromatography GPC : 1. Chromatogram (V R vs H) H i Detector response Baseline N i M i 130 135 140 145 150 155 160 165 Elution volume (V R ) (counts)

More information

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE Introduction Gel permeation chromatography (GPC) and size exclusion chromatography

More information

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a

Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a Graphene Oxide: Stable Carbon Framework for Functionalization Siegfried Eigler,* a Stefan Grimm, a Ferdinand Hof, a Andreas Hirsch a a Department of Chemistry and Pharmacy and Institute of Advanced Materials

More information

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Dr. Christoph Johann Wyatt Technology Europe GmbH 2010 Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Introduction Overview The Nature of Scattered Light: Intensity of scattered light Angular

More information

Well-defined polyethylene-based random, block and bilayered molecular cobrushes

Well-defined polyethylene-based random, block and bilayered molecular cobrushes Well-defined polyethylene-based random, block and bilayered molecular cobrushes Hefeng Zhang, 1,2 Zhen Zhang, 1,2 Yves Gnanou, 2 Nikos Hadjichristidis 1,2 * King Abdullah University of Science and Technology

More information

Supporting Information

Supporting Information Supporting Information Controlled Radical Polymerization and Quantification of Solid State Electrical Conductivities of Macromolecules Bearing Pendant Stable Radical Groups Lizbeth Rostro, Aditya G. Baradwaj,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Molecular clips with extended aromatic sidewalls as receptors for electron acceptor molecules. Synthesis, NMR, photophysical, and electrochemical investigation Barbara Branchi, Vincenzo

More information

Supporting Information

Supporting Information Supporting Information Supramolecular design for polymer/titanium oxo-cluster hybrids: An open door to new organic-inorganic dynamers Fabien Périneau, Sandrine Pensec, Clément Sanchez, Costantino Creton,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst of Ullmann-coupling reaction Yuto Isomura, a Takashi Narushima, b Hideya

More information

RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer Synthesis

RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer Synthesis RAFT and Click Chemistry : A Versatile Approach to the Block Copolymer ynthesis Damien Quémener, Thomas P. Davis, Christopher Barner-Kowollik* and Martina H. tenzel* Centre for Advanced Macromolecular

More information

Tuning the Optical Properties of Flurophore-hexylcarbazole Organic. Nanoribbons with Dispersed Inorganic Nanocrystals (AgNCs)

Tuning the Optical Properties of Flurophore-hexylcarbazole Organic. Nanoribbons with Dispersed Inorganic Nanocrystals (AgNCs) Supporting Information for: Tuning the Optical Properties of Flurophore-hexylcarbazole Organic Nanoribbons with Dispersed Inorganic Nanocrystals (AgNCs) Lin Kong, a Jiaxiang Yang, ab Xiaopeng Hao, b Hongping

More information

Sunlight-induced Crosslinking of 1,2- Polybutadienes: Access to Fluorescent Polymer. Networks

Sunlight-induced Crosslinking of 1,2- Polybutadienes: Access to Fluorescent Polymer. Networks Supporting Information for Sunlight-induced Crosslinking of 1,2- Polybutadienes: Access to Fluorescent Polymer Networks Jan O. Mueller, a,b Nathalie K. Guimard, a,b,c Kim K. Oehlenschlaeger, a,b Friedrich

More information

An Introductions to Advanced GPC Solutions

An Introductions to Advanced GPC Solutions An Introductions to Advanced GPC Solutions Alan Brookes Sales Manager GPC Instruments EMEAI 9 th April 2014 Agilent GPC/SEC Solutions 1 Introduction to Polymers Polymers are long chain molecules produced

More information

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Original phys. stat. sol. (b), 1 5 (2006) / DOI 10.1002/pssb.200669179

More information

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material Abidin Balan a, Derya Baran a, Gorkem Gunbas a,b, Asuman Durmus a,b, Funda Ozyurt a and Levent Toppare

More information

Supporting Information

Supporting Information Supporting Information A guanidine derivative of naphthalimide with excited-state deprotonation coupled intramolecular charge transfer property and its application Jin Zhou, ac Huiying Liu, b Bing Jin,

More information

Supporting Information

Supporting Information Supporting Information Nb 2 5 nh 2 as a heterogeneous catalyst with water-tolerant Lewis acid sites Kiyotaka Nakajima, Yusuke Baba, Ryouhei Noma, Masaaki Kitano, Junko N. Kondo, Shigenobu Hayashi, П,*

More information

Chirality and energy dependence of first and second order resonance Raman intensity

Chirality and energy dependence of first and second order resonance Raman intensity NT06: 7 th International Conference on the Science and Application of Nanotubes, June 18-23, 2006 Nagano, JAPAN Chirality and energy dependence of first and second order resonance Raman intensity R. Saito

More information

Name: Exam II, March 7, 2013,100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M University, College Station, TX, USA

Name: Exam II, March 7, 2013,100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M University, College Station, TX, USA Jprinted] "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work." Exam II, March 7, 2013,100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M University,

More information