Effect of Pressure and Discharge Voltage on Plasma Parameters in Air seeded Arc-plasma

Size: px
Start display at page:

Download "Effect of Pressure and Discharge Voltage on Plasma Parameters in Air seeded Arc-plasma"

Transcription

1 Journal of Physics and Astronomy Research Vol. 3(1), pp , September, ISSN: XXXX-XXXX JPAR Research Article Effect of Pressure and Discharge Voltage on Plasma Parameters in Air seeded Arc-plasma * Vijay Kumar Jha1, Lekha Nath Mishra 2 and Bijoyendra Narayan 3 1 Department of Physics, Amrit Campus, Thamel, Kathmandu(Tribhuvan University), Nepal 2 Department of Physics, Patan Campus, Patandhoka, Lalitpur (Tribhuvan University), Nepal 3 Dr. S.K. Sinha Women's College, Motihari (B.R.A.Bihar University, Muzaffarpur), India Plasma parameters like electron temperature (Te), electron density (n e), Debye length (D) and plasma frequency (fp) were measured using Langmuir probes in air seeded arc-plasma at low pressure range of 0.10 mbar to 0.16 mbar. Double slope method, Dote method and Interception method were used to calculate the electron temperature (Te) and mean value of electron temperatures obtained from these three methods was used to calculate the electron density, Debye length and plasma frequency. To investigate the effect of pressure and discharge voltage on the plasma parameters at low voltage and low pressure is the main objective of the study. It was observed that Te, ne and fp gradually increased respectively but D decreased on increasing the voltage from 500 V to 600 V. It was also observed that on increasing the pressure there was decrease in Te and D but increase in n e and fe. Key Words: Langmuir probes, electron temperature, electron density, Debye length, plasma frequency, plasma densities, Dote method, Bohm velocity, plasma diagnostic, plasma processing. INTRODUCTION The DC arc discharges have been extensively used in thin film deposition, sputtering, etching, surface modification of the materials and many other kinds of plasma processing (Brockhaus et al., 1994; Bogaerts Neyts et al., 2002; Chiad et al., 2009). For understanding, developing and maintaining these processes it is interesting to determine the basic plasma parameters and their dependence on discharge voltage and operating pressure. The widely used method for the plasma diagnostic is the Langmuir probe method. Double probe method (Johnson and Malter, 1950; Pilling et al., 2006) for the plasma characterization over a wide range of plasma densities is one of the suitable methods to measure plasma parameters. In this method electron current is completely controlled by the ion saturation current so that probe draws very little amount of current without disturbing the plasma condition. Other importance of the double probe method is that it measures local parameters of studied plasma whereas almost all other techniques give information averaged over a large volume of plasma (Chen, 1965; Mijovic et al., 2008). Also, the simplicity of the used equipment allows us to receive results quickly. In this piece of study we have used three different methods such as Double slope, Dote method and Intercept method to measure the electron temperature. The average value of electron temperature obtained from these three methods respectively is used to evaluate the electron density, Debye length and plasma frequency. *Corresponding author: Vijay Kumar Jha, Department of Physics, Amrit Campus, Thamel, Kathmandu (Tribhuvan University), Nepal. jhav7050@gmail.com

2 Jha et al. 075 Figure 1: Low temperature plasma-reactor with Langmuir double probe. Figure 2: Measurement of electron temperature from double slope method MATERIALS AND METHOD The low temperature plasma reactor for the low pressure arc discharge in air is shown in Figure 1 in which air pressure is changed from 0.10 mbar to 0.16 mbar and the voltage is changed from 500 V to 600V. Two identical cylindrical probes are inserted in the discharge region and they are powered by the digital voltage sweep. Data are taken from Tektronix TDS oscilloscope and it is transferred to the computer through data storage device for the further analysis. Specification of the double probe for its operation is listed in Table1. Table 1: Specifications for the Double Probe Method S. N. Specification 1 Probe material: Tungsten 2 Length of the probe: 6 mm 3 Diameter of the probe: 0.5mm 4 Diameter of the electrode: 10 mm 5 Distance between two electrodes: 8 cm 6 Maximum voltage across electrodes: 1kV 7 Biased voltage range: 33V to + 33V 8 Current sensing resistor: 10 kω 9 Maximum probe current: 3.5 ma In the double slope method [Figure 2] one tangent is drawn at the point of inflection and the another tangent in the ion saturation current region. The ordinate of the intercept gives the ion saturation current. The electron temperature (T e) can be obtained by using the relation (Konuma, 1992). di dv d... (1) 2 I sat Vd = constant In Dote method, electron temperature can be obtained by using following relation [Dote (1968)]. 4 S I po d i... (2) dv d Vd = constant 0.82S Where, d i d V d Vd = constant = slope of the current voltage characteristic at the point of inflection [Figure 3], S = slope at the positive ion saturation current, and ΣI po = total ion saturation current Similarly, in the Intercept method the electron temperature can be obtained [Figure 4] by using following Relation (Johnson et al., 1950). 2 1 V d Vd Where F = ip i 1 e 2 ln F 1 D 1 and D = ip i 1 e 2 Where F = S ip i 1 e2... (3) and D = S ip In our experiment we have chosen V d 2 and Vd 1 as around 2V and 5V respectively The electron density is measured and electron temperature using the following equation: KT e 0.6 e A n e M... (4) i The factor 0.6 is due to the reduction of the ion density in the pre-sheath region over which the ions are accelerated up to the Bohm velocity (Chung et al., 2006; Merlino, 2007). Similarly, Debye length and the plasma frequency can be obtained by using following relations respectively e 0 KT e D = 2... (5) n e And f e = 1 e n e 2 e 0 m... (6) e i 1 e2

3 J. Phys. Astron. Res. 076 Figure 3: Schematic diagram of the double Probe characteristics Figure 4: Schematic diagram of the double Probe characteristics Figure 5: Variation in electron temperature(te) with V Figure 6: Variation in electron density(n e) with V RESULTS AND DISCUSSION The electron temperature is calculated using equations (1), (2) and (3) respectively in Double probe method, Dote method and Intercept method. The graphical representation (Figure 5) of the mean value of electron temperature obtained mentions three methods as a function of the discharge voltage at different constant pressure. It is observed that the electron temperature (Te) gradually increases with the increase in discharge voltage at a particular pressure. The increase in Te might be due to the increase in kinetic energy of the electrons gained from the electric field (Naz et al., 2011; Kim, 2004). It is also clear that there is decrease in Te with increase in pressure at a constant voltage. The reason for the decrease in Te can be explained from the equation (7). The mean energy of the electron is given by, E = ee e = e e V d... (7), where E is the electric field strength, e is the mean free path of the electrons, V is the discharge voltage and d is the distance between electrodes. As the discharge pressure inside the discharge chamber increases, electron collision frequency with neutral atoms also increases and the mean free path between two successive collisions decreases, which shows that rather than gain of energy by the electrons from the electric field more and more energy is transferred to the neutral species as a result of which Te decreases. It is obvious from Figure 6 that electron density increases on increasing the discharge voltage at low pressure. The electron density, however, decreases as pressure increases beyond a certain limit. On increasing the voltage or pressure, there is an increase of ionizing activity inside the plasma during the inelastic collision between electrons and neutral species due to the decrease in mean free path of the electrons or the increase of kinetic energy of the electrons. As a result, more and more energy is transferred to the neutral species and the electron temperature increases (Chung et al., 2001).

4 Jha et al. 077 Figure 7: Variation of the Debye length with discharge voltage at constant pressure Figure 8: Variation of the plasma frequency with discharge voltage at constant pressure The Debye length is a characteristic scale length in plasma and it is a measure of the distance that the potential of a charged object penetrates into the plasma. It depends upon the electron temperature and electron density. But on increasing the voltage, electrons become energetic and some of the fast moving electrons can inter inside the positive sheath region and reduce the number of positive ions which leads to increase in the Debye length. On the other hand increasing the pressure increases the electron density. The increase in electron density increases the shielding effect at short distance. The variation of Debye length with applied voltage and at different constant pressure is shown in Figure 7. The decrease in Debye length in both cases is due to the increase in electron density. The plasma frequency is the fundamental property of the plasma and represents the frequency at which the electron cloud oscillates with respect to the ion cloud and it entirely depends upon the plasma density. The variation of the plasma frequency with discharge voltage or pressure is shown in Figure 8. Both, increase in voltage or pressure increases the electron density and hence the plasma frequency. CONCLUSION Results of the Langmuir double probe method obtained for plasma parameters show that on increasing the discharge voltage at different pressures in an air-seeded arc-plasma electron temperature, electron density, and plasma frequency increase but Debye length decreases. Also, there is decrease in electron temperature and Debye length with increase in electron density and plasma frequency on increasing the pressure at different constant voltages. The measured values of the plasma parameters is in good agreement with the expected values of the Arcdischarge plasma. REFERENCES Bogaerts Neyts AE, Gijbels R and van der Mullen J (2002). Gas discharge plasmas and their applications. Spectrochimic Acta Part B. 57: Brockhaus A, Borchardt C, Engemann J (1994). Langmuir probe measurements in plasma. Sources Sci. Technol. 3: Chen FF (1965). Electric probe Plasma Diagnostic Techniques. Edited by Huddleston and Leonard, Academic Press, New York. Chiad BT, Al-Zubaydi TL, Khalaf MK and Khudiar AI (2009). Construction and characterization of a low pressure plasma reactor using glow discharge. Journal of Optoelectronics and Biomedical Materials. 1(3): Chung TH, Shin YM and Seo DC (2006). Comparision of two methods of interpretation of Langmuir probe data for an inductively coupled oxygen plasma. Contrib. Plasma Phys. 46(5-6): Chung TH, Yeom GY and Kwon KH (2001). Characterization of an oxygen plasma by using a Langmuir probe in an inductively coupled plasma. Journal of the Korean Physical Society. 38(3): Dote T (1968). A new method for determination of plasma electron temperature in the floating double probe. Japanese Journal of Applied Physics.7: Johnson EO, Malter L (1950). A Floating double probe method for measurements in gas discharges. Physical Review. 80(1): Kim CK, (2004). Analysis of Langmuir probe data in high density plasmas. Korean J. Chem. Eng., 21(3): Konuma M (1992). Film Deposition by Plasma Techniques. Springer-Verlag Berlin Heidelberg, 10(1):

5 J. Phys. Astron. Res. 078 Merlino RL (2007). Understanding Langmuir probe current-voltage characteristics. American Journal of Physics. 75(12): Mijovic S, Vuceljic M, Schrittwiester R, Maljkov M, Dimitriu DG and Ionita C (2008). Determination of plasma space potential from the Langmuir probe by Tikhonov's regularization method. Publ. Astron.Obs.Belgrade 84: Naz MY, Ghaffar A, Rehman NU, Naseer S and Zakaullah M, (2011). Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma. Progress in electromagnetic research, 114: Pilling LS, Bydder EL and Carnegle DA (2006). A computerized Langmuir probe system Review of Scientific Instruments. 74(7): Accepted 27 August, 2017 Citation: Jha VK, Mishra LN, Narayan B (2017). Effect of Pressure and Discharge Voltage on Plasma Parameters in Air seeded Arc-plasma. Journal of Physics and Astronomy Research, 3(1): Copyright: 2017Jha et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and the source are cited.

Electrical Discharges Characterization of Planar Sputtering System

Electrical Discharges Characterization of Planar Sputtering System International Journal of Recent Research and Review, Vol. V, March 213 ISSN 2277 8322 Electrical Discharges Characterization of Planar Sputtering System Bahaa T. Chaid 1, Nathera Abass Ali Al-Tememee 2,

More information

Effect of negative ions on the characteristics of plasma in a cylindrical discharge

Effect of negative ions on the characteristics of plasma in a cylindrical discharge Araghi and Dorranian Journal of Theoritical and Applied Physics 2013, 7:41 RESEARCH Open Access Effect of negative ions on the characteristics of plasma in a cylindrical discharge Farnaz Araghi and Davoud

More information

Effect of He and Ar Addition on N 2 Glow Discharge Characteristics and Plasma Diagnostics

Effect of He and Ar Addition on N 2 Glow Discharge Characteristics and Plasma Diagnostics Arab Journal of Nuclear Science and Applications, 6(1), (116-15) 13 Effect of He and Ar Addition on N Glow Discharge Characteristics and Plasma Diagnostics M. M. Mansour*, N. M. El-Sayed, O. F. Farag and

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1065 Design and Development of Langmuir Probe Sensor for Electron Temperature and Electron Density Measurement of

More information

Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma

Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma Journal of the Korean Physical Society, Vol. 38, No. 3, March 001, pp. 59 63 Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma Jong-Sik Kim and Gon-Ho Kim

More information

Study of DC Cylindrical Magnetron by Langmuir Probe

Study of DC Cylindrical Magnetron by Langmuir Probe WDS'2 Proceedings of Contributed Papers, Part II, 76 8, 22. ISBN 978-737825 MATFYZPRESS Study of DC Cylindrical Magnetron by Langmuir Probe A. Kolpaková, P. Kudrna, and M. Tichý Charles University Prague,

More information

Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching

Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching Indian Journal of Pure & Applied Physics Vol. 48, October 2010, pp. 723-730 Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching Bahaa T Chiad a, Thair L Al-zubaydi

More information

Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 299 304 Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas MD NURUJJAMAN

More information

Study of the floating potential in a glow discharge plasma using Langmuir Probe

Study of the floating potential in a glow discharge plasma using Langmuir Probe Journal Homepage: www.katwacollegejournal.com Study of the floating potential in a glow discharge plasma using Langmuir Probe Sudeshna Lahiri, Physics, Dinabandhu Mahavidyalaya, WB, India Rena Majumder

More information

Electrical characteristics and plasma diagnostics of (Ar/O 2 ) gas mixture glow Discharge

Electrical characteristics and plasma diagnostics of (Ar/O 2 ) gas mixture glow Discharge Electrical characteristics and plasma diagnostics of (Ar/O 2 ) gas mixture glow Discharge Mohammed K. Khalaf ¹, Ibrahim. R. Agool², Shaimaa H. Abd Muslim 3 ¹ Ministry of Sciences and Technology / Baghdad

More information

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Kent Lee, Dean Henze, Patrick Smith, and Janet Chao University of San Diego (Dated: May 1, 2013)

More information

ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD

ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD KATHMANDU UNIVERSITY JOURNAL OF SCIENCE, ENGINEERING AND TECHNOLOGY ESTIMATION OF ELECTRON TEMPERATURE IN ATMOSPHERIC PRESSURE DIELECTRIC BARRIER DISCHARGE USING LINE INTENSITY RATIO METHOD 1, 2 R. Shrestha,

More information

A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma

A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma J. P. Sheehan*, Y. Raitses**, N. Hershkowitz*, I. Kaganovich**, and N. J. Fisch** *University of

More information

Anode double layer in magnetized radio frequency inductively coupled hydrogen plasma

Anode double layer in magnetized radio frequency inductively coupled hydrogen plasma JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 3 1 AUGUST 2003 Anode double layer in magnetized radio frequency inductively coupled hydrogen plasma Deli Tang and Paul K. Chu a) Department of Physics and

More information

DOE WEB SEMINAR,

DOE WEB SEMINAR, DOE WEB SEMINAR, 2013.03.29 Electron energy distribution function of the plasma in the presence of both capacitive field and inductive field : from electron heating to plasma processing control 1 mm PR

More information

Recombination and Decay of Plasma Produced by Washer Stacked Plasma Gun inside a Curved Vacuum Chamber

Recombination and Decay of Plasma Produced by Washer Stacked Plasma Gun inside a Curved Vacuum Chamber Recombination and Decay of Plasma Produced by Washer Stacked Plasma Gun inside N C Sasini *, R Paikaray **, G S Sahoo ** * Department of Physics, G C College, Ramachandrapur, Jajpur, Odisha-755032, India

More information

Plasma Diagnostics Introduction to Langmuir Probes

Plasma Diagnostics Introduction to Langmuir Probes Plasma Diagnostics Technical Information Sheet 531 Plasma Diagnostics Introduction to Langmuir Probes Introduction A Langmuir Probe is a powerful plasma diagnostic tool which capable of determining the

More information

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA *

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * V. TIRON 1, L. MIHAESCU 1, C.P. LUNGU 2 and G. POPA 1 1 Faculty of Physics, Al. I. Cuza University, 700506, Iasi, Romania 2 National Institute

More information

In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation

In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation JOURNAL OF APPLIED PHYSICS VOLUME 88, NUMBER 4 15 AUGUST 2000 In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation C. Cismaru a) and J. L.

More information

SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA

SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA S. GURLUI 1, D. G. DIMITRIU 1, C. IONITA 2, R. W. SCHRITTWIESER 2 1 Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., RO-700506

More information

Energy fluxes in plasmas for fabrication of nanostructured materials

Energy fluxes in plasmas for fabrication of nanostructured materials Energy fluxes in plasmas for fabrication of nanostructured materials IEAP, Universität Kiel 2nd Graduate Summer Institute "Complex Plasmas" August 5-13, 2010 in Greifswald (Germany) AG 1 Outline Motivation

More information

Generation and diagnostics of atmospheric pressure dielectric barrier discharge in argon/air

Generation and diagnostics of atmospheric pressure dielectric barrier discharge in argon/air Indian Journal of Pure & Applied Physics Vol. 55, February 017, pp. 155-16 Generation and diagnostics of atmospheric pressure dielectric barrier discharge in argon/air R Shrestha a,b *, D P Subedi a, R

More information

acta physica slovaca vol. 54 No. 2, April 2004 SIMPLE EXPERIMENTAL METHODS TO CONTROL CHAOS IN A DOUBLE PLASMA MACHINE 1

acta physica slovaca vol. 54 No. 2, April 2004 SIMPLE EXPERIMENTAL METHODS TO CONTROL CHAOS IN A DOUBLE PLASMA MACHINE 1 acta physica slovaca vol. 54 No. 2, 89 96 April 2004 SIMPLE EXPERIMENTAL METHODS TO CONTROL CHAOS IN A DOUBLE PLASMA MACHINE 1 D. G. Dimitriu 2, C. Găman, M. Mihai-Plugaru, G. Amarandei, C. Ioniţă, E.

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films

Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films Plasma Science and Technology, Vol.14, No.2, Feb. 2012 Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films PANG Jianhua ( ) 1, LU Wenqi ( ) 1, XIN Yu ( ) 2, WANG Hanghang

More information

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen HAN Qing ( ), WANG Jing ( ), ZHANG Lianzhu ( ) College of Physics Science and Information Engineering, Hebei Normal University,

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT Romanian Reports in Phisics, Vol. 56, No., P. 71-76, 004 CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT A. R. PETRE 1, M. BÃZÃVAN 1, V. COVLEA 1, V.V. COVLEA 1, ISABELLA IOANA OPREA, H. ANDREI

More information

Boundary Conditions for the Child Langmuir Sheath Model

Boundary Conditions for the Child Langmuir Sheath Model IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 6, DECEMBER 2000 2207 Boundary Conditions for the Child Langmuir Sheath Model Mikhail S. Benilov Abstract A collision-free space-charge sheath formed by

More information

Studies of the cathode sheath of a low pressure hollow cathode discharge

Studies of the cathode sheath of a low pressure hollow cathode discharge Journal of Physics: onference Series Studies of the cathode sheath of a low pressure hollow cathode discharge To cite this article: G Petraconi et al 0 J. Phys.: onf. Ser. 370 004 View the article online

More information

Floating probe for electron temperature and ion density measurement applicable to processing plasmas

Floating probe for electron temperature and ion density measurement applicable to processing plasmas JOURNAL OF APPLIED PHYSICS 101, 033305 2007 Floating probe for electron temperature and ion density measurement applicable to processing plasmas Min-Hyong Lee, Sung-Ho Jang, and Chin-Wook Chung a Department

More information

1) Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

1) Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia SI0100095 Nuclear Energy in Central Europe '98 Terme Catez, September 7 to 10, 1998 PLASMA RESPONSE TO A POSITIVE VOLTAGE STEP APPLIED TO AN ANODE IMMERSED IN A WEAKLY MAGNETIZED DISCHARGE PLASMA COLUMN

More information

4 Modeling of a capacitive RF discharge

4 Modeling of a capacitive RF discharge 4 Modeling of a capacitive discharge 4.1 PIC MCC model for capacitive discharge Capacitive radio frequency () discharges are very popular, both in laboratory research for the production of low-temperature

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Effect of Pressure and Hot Filament Cathode on Some Plasma Parameters of Hollow Anode Argon Glow Discharge Plasma

Effect of Pressure and Hot Filament Cathode on Some Plasma Parameters of Hollow Anode Argon Glow Discharge Plasma American Journal of Modern Physics 2016; 5(3): 30-38 http://www.sciencepublishinggroup.com/j/ajmp doi: 10.11648/j.ajmp.20160503.12 ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online) Review Article Effect

More information

VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE

VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE PK ISSN 0022-2941; CODEN JNSMAC Vol. 48, No.1 & 2 (April & October 2008) PP 65-72 VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE Department

More information

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma Antennas and Propagation Volume 216, Article ID 945473, 6 pages http://dx.doi.org/1.1155/216/945473 Research Article Propagation Characteristics of Oblique Incident Terahert Wave in Nonuniform Dusty Plasma

More information

Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum

Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum (Dated: 11 December 2015) This experiment aimed to measure velocity of ion acoustic waves propagating

More information

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments IEC:! IEC at UIUC modified into a space thruster.! IEC has

More information

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Lizhu Tong Keisoku Engineering System Co., Ltd., Japan September 18, 2014 Keisoku Engineering System Co., Ltd., 1-9-5 Uchikanda,

More information

The distorting effect of the ion current on electron temperature measured by an electric probe

The distorting effect of the ion current on electron temperature measured by an electric probe The distorting effect of the ion current on electron temperature measured by an electric probe A. Kudryavtsev 1, S.A. Gutsev 1, V.I. Demidov 2,1 1 St.Petersburg State University, St. Petersburg, Russia

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS) IOP Conference Series: Materials Science and Engineering A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS) To cite this article: D A L Loch and A P Ehiasarian 2012 IOP Conf. Ser.:

More information

Copyright 1996, by the author(s). All rights reserved.

Copyright 1996, by the author(s). All rights reserved. Copyright 1996, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

A note on the plasma sheath and the Bohm Criterion

A note on the plasma sheath and the Bohm Criterion A note on the plasma sheath and the Bohm Criterion G.D. Severn Dept. of Physics, University of San Diego, San Diego CA 92110 (Dated: April 6, 2006) PACS numbers: 52.27.Aj, 52.27.Cm The word sheath in connection

More information

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 )

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) 1 POSTER JP1.00100 [Bull. APS 51, 165 (2006)] DPP06 Meeting of The American Physical Society Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) Su-Hyun Kim, Robert Merlino,

More information

Chapter 5: Nanoparticle Production from Cathode Sputtering. in High-Pressure Microhollow Cathode and Arc Discharges

Chapter 5: Nanoparticle Production from Cathode Sputtering. in High-Pressure Microhollow Cathode and Arc Discharges 96 Chapter 5: Nanoparticle Production from Cathode Sputtering in High-Pressure Microhollow Cathode and Arc Discharges 5.1. Introduction Sputtering is a fundamental aspect of plasma operation and has been

More information

Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor

Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor WDS'06 Proceedings of Contributed Papers, Part II, 150 155, 2006. ISBN 80-86732-85-1 MATFYZPRESS Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor R. Šmíd Masaryk University,

More information

8 Measurement of Ion Density Electron Temperature JAXA RR 8 JAXA Research Development Report JAXA-RR-1-1E Electron Eensity (1 7 cm -3 ) Fig. 1 Fig. 3

8 Measurement of Ion Density Electron Temperature JAXA RR 8 JAXA Research Development Report JAXA-RR-1-1E Electron Eensity (1 7 cm -3 ) Fig. 1 Fig. 3 7 Measurement of Ion Density Electron Temperature by Double-Probe Method to Study Critical Phenomena in Kazuo TAKAHASHI *1, Satoshi ADACHI *, Hiroo TOTSUJI *3 Abstract: A dusty plasma research was performed

More information

Optical Pumping of Rubidium

Optical Pumping of Rubidium Optical Pumping of Rubidium Janet Chao, Dean Henze, Patrick Smith, Kent Lee April 27, 2013 Abstract 1 INTRODUCTION Irving Langmuir coined the term plasma in a paper in 1928, ushering a whole new and exciting

More information

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves Modelling of low-temperature plasmas: kinetic and transport mechanisms L.L. Alves llalves@tecnico.ulisboa.pt Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa,

More information

An Investigation of the Secondary Electron Emission Coefficient of Aluminum and Graphite Disc Electrodes

An Investigation of the Secondary Electron Emission Coefficient of Aluminum and Graphite Disc Electrodes An Investigation of the Secondary Electron Emission Coefficient of Aluminum and Graphite Disc Electrodes S. Radwan 1 and M. Bourham 2 (1) Accelerators & Ion Sources Department, Basic Nuclear Science Division,

More information

Non-Phase-Difference Rogowski Coil for Measuring Pulsed Plasma Thruster Discharge Current

Non-Phase-Difference Rogowski Coil for Measuring Pulsed Plasma Thruster Discharge Current Non-Phase-Difference Rogowski Coil for Measuring Pulsed Plasma Thruster Discharge Current IEPC-2015-49/ISTS-2015-b-49 Presented at Joint Conference of 30th International Symposium on Space Technology and

More information

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract Plasma Chamber Fortgeschrittenes Praktikum I Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot Abstract The aims of this experiment are to be familiar with a vacuum chamber, to understand what

More information

Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe

Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe Particle Transport Measurements in the LHD Stochastic Magnetic Boundary Plasma using Mach Probes and Ion Sensitive Probe N. Ezumi a*, K. Todoroki a, T. Kobayashi b, K. Sawada c, N. Ohno b, M. Kobayashi

More information

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 5 1 SEPTEMBER 2003 Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma Doosik Kim

More information

Adjustment of electron temperature in ECR microwave plasma

Adjustment of electron temperature in ECR microwave plasma Vacuum (3) 53 Adjustment of electron temperature in ECR microwave plasma Ru-Juan Zhan a, Xiaohui Wen a,b, *, Xiaodong Zhu a,b, Aidi zhao a,b a Structure Research Laboratory, University of Science and Technology

More information

MODERN PHYSICS OF PLASMAS (19 lectures)

MODERN PHYSICS OF PLASMAS (19 lectures) UNIT OF STUDY OUTLINE (PHYS 3021, 3921, 3024, 3924, 3025, 3925) MODERN PHYSICS OF PLASMAS (19 lectures) Course coordinator and principal lecturer: Dr Kostya (Ken) Ostrikov Lecturer (normal student stream,

More information

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE PLASMA PHYSICS THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE M. TOMA, I. A. RUSU, D. O. DOROHOI Plasma Physics Department, A. I. Cuza University,

More information

An introduction to Langmuir probe diagnostics of plasmas

An introduction to Langmuir probe diagnostics of plasmas An introduction to Langmuir probe diagnostics of plasmas Luis Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos 284 Madrid, Spain. May 28, 211 Abstract In this short review is introduced

More information

CHAPTER 6: Etching. Chapter 6 1

CHAPTER 6: Etching. Chapter 6 1 Chapter 6 1 CHAPTER 6: Etching Different etching processes are selected depending upon the particular material to be removed. As shown in Figure 6.1, wet chemical processes result in isotropic etching

More information

Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge Vol:5, No:8, 211 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif International

More information

Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing

Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing INSTITUTE OF PHYSICS PUBLISHING Plasma Sources Sci. Technol. (00) A A30 PLASMA SOURCES SCIENCE AND TECHNOLOGY PII: S093-05(0)3900-X Optical plasma emission spectroscopy of etching plasmas used in Si-based

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

Double probe for measuring the plasma parameters قياس متغيرات البالزما بأستخدام المجس الثنائي

Double probe for measuring the plasma parameters قياس متغيرات البالزما بأستخدام المجس الثنائي Iraqi Journal of Physics, 0 Vol.0, No.9, PP.- Double probe for measuring the plasma parameters Emad A. Salman, Ali A K. Hussain, Raad M.S.Al-Haddad Department of Physics, College of Science, Baghdad University,

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters -

Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters - Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters - Osamu Fukumasa and Shigefumi Mori Department of Electrical and Electronic Engineering,

More information

Accurately Determining the Plasma Potential Using Emissive Probes

Accurately Determining the Plasma Potential Using Emissive Probes Accurately Determining the Plasma Potential Using Emissive Probes IEPC-2013-313 Presented at the 33 rd International Electric Propulsion Conference, The George Washington University, Washington, D.C.,

More information

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates

The Computational Simulation of the Positive Ion Propagation to Uneven Substrates WDS' Proceedings of Contributed Papers, Part II, 5 9,. ISBN 978-8-778-85-9 MATFYZPRESS The Computational Simulation of the Positive Ion Propagation to Uneven Substrates V. Hrubý and R. Hrach Charles University,

More information

Plasma diagnostics of pulsed sputtering discharge

Plasma diagnostics of pulsed sputtering discharge Plasma diagnostics of pulsed sputtering discharge Vitezslav Stranak Zdenek Hubicka, Martin Cada and Rainer Hippler University of Greifswald, Institute of Physics, Felix-Hausdorff-Str. 6, 174 89 Greifswald,

More information

Experiment 6: Franck Hertz Experiment v1.3

Experiment 6: Franck Hertz Experiment v1.3 Experiment 6: Franck Hertz Experiment v1.3 Background This series of experiments demonstrates the energy quantization of atoms. The concept was first implemented by James Franck and Gustaf Ludwig Hertz

More information

FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS

FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS P.A. Litvinov, V.A. Baturin * Institute of Applied Physics, National Academy of Science of Ukraine, 58 Petropavlovskaya St. Sumy, 40030

More information

Effect of Magnetic Filter in a Volume Production Multicusp Ion Source

Effect of Magnetic Filter in a Volume Production Multicusp Ion Source Effect of Magnetic Filter in a Volume Production Multicusp Ion Source Anand George 1, 3 a), Stephane Melanson 1, Dave Potkins 1, Morgan Dehnel 1, Hamish McDonald 2, Chris Philpott 2, Neil G.R. Broderick

More information

Hiden EQP Applications

Hiden EQP Applications Hiden EQP Applications Mass/Energy Analyser for Plasma Diagnostics and Characterisation EQP Overview The Hiden EQP System is an advanced plasma diagnostic tool with combined high transmission ion energy

More information

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Table of Content Mechanical Removing Techniques Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Ultrasonic Machining In ultrasonic machining (USM), also called ultrasonic grinding,

More information

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine 1 AT/P5-05 H - Ion Source with Inverse Gas Magnetron Geometry for SNS Project V.A. Baturin, P.A. Litvinov, S.A. Pustovoitov, A.Yu. Karpenko Institute of Applied Physics, National Academy of Sciences of

More information

Relationship between production and extraction of D - /H - negative ions in a volume negative ion source

Relationship between production and extraction of D - /H - negative ions in a volume negative ion source J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Relationship between production and extraction of D - /H - negative ions in a volume negative ion source Takahiro Nakano, Shigefumi Mori, Yasushi Tauchi, Wataru

More information

Plasma Formation in the Near Anode Region in Hall Thrusters

Plasma Formation in the Near Anode Region in Hall Thrusters 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 10-13 July 2005, Tucson, Arizona AIAA 2005-4059 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA-2005-4059 Plasma Formation

More information

MIREA. Moscow, Russia

MIREA. Moscow, Russia 2245 IEPC-93-247 MAIN FEATURES OF PHYSICAL PROCESSES IN STATIONARY PLASMA THRUSTERS A.I. Bugrova, A.V. Desiatskov, V.K. Kharchevnikov, A.I. Morozov Abstract MIREA Moscow, Russia Introduction The paper

More information

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory IEPC-2015-90161 Presented at Joint Conference of 30th International

More information

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center 1 Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Vladimir Demidov Current cooperation with: Mark Koepke (WVU), Igor Kaganovich (PPPL), Yevgeny

More information

Sheaths: More complicated than you think a

Sheaths: More complicated than you think a PHYSICS OF PLASMAS 12, 055502 2005 Sheaths: More complicated than you think a Noah Hershkowitz b University of Wisconsin-Madison, Madison, Wisconsin 53706 Received 7 December 2004; accepted 7 February

More information

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data

Comparison of the Photo-peak Efficiencies between the Experimental Data of 137 Cs Radioactive Source with Monte Carlo (MC) Simulation Data International Journal of Advanced Research in Physical Science (IJARPS) Volume 5, Issue 10, 2018, PP 24-28 ISSN No. (Online) 2349-7882 www.arcjournals.org Comparison of the Photo-peak Efficiencies between

More information

OPTICAL DETECTION OF SLOW EXCITED NEUTRALS IN PLASMA- ASSISTED EXCIMER LASER ABLATION

OPTICAL DETECTION OF SLOW EXCITED NEUTRALS IN PLASMA- ASSISTED EXCIMER LASER ABLATION OPTICAL DETECTION OF SLOW EXCITED NEUTRALS IN PLASMA- ASSISTED EXCIMER LASER ABLATION P. MUKHERJEE, P. SAKTHIVEL AND S. WITANACHCHI Department of Physics, University of South Florida, Tampa, FL 33620,

More information

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 2. Introduction to plasma physics Dr. Ashutosh Sharma Zoltán

More information

A floating potential method for measuring ion density

A floating potential method for measuring ion density A floating potential method for measuring ion density Francis F. Chen, John D. Evans, and Donald Arnush Electrical Engineering Department, University of California Los Angeles Los Angeles, California 995-1594

More information

Sensors Plasma Diagnostics

Sensors Plasma Diagnostics Sensors Plasma Diagnostics Ken Gentle Physics Department Kenneth Gentle RLM 12.330 k.gentle@mail.utexas.edu NRL Formulary MIT Formulary www.psfc.mit.edu/library1/catalog/ reports/2010/11rr/11rr013/11rr013_full.pdf

More information

Dust density waves: ion flows and finite temperature effects

Dust density waves: ion flows and finite temperature effects Dust density waves: ion flows and finite temperature effects Edward Thomas, Jr. Physics Department, Auburn University This work is supported by National Science Foundation and the US Department of Energy

More information

Micro-arcing in radio frequency plasmas

Micro-arcing in radio frequency plasmas INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 37 (2004) 2871 2875 PII: S0022-3727(04)82428-8 Micro-arcing in radio frequency plasmas YYin 1, M M M Bilek

More information

Measurement of Absolute Argon Excited State Populations and Electron Energy Distribution Functions in an Ar-a-Si Plasma

Measurement of Absolute Argon Excited State Populations and Electron Energy Distribution Functions in an Ar-a-Si Plasma University of Arkansas, Fayetteville ScholarWorks@UARK Electrical Engineering Undergraduate Honors Theses Electrical Engineering 5-2008 Measurement of Absolute Argon Excited State Populations and Electron

More information

Electron cyclotron resonance plasma enhanced direct current sputtering discharge with magnetic-mirror plasma confinement

Electron cyclotron resonance plasma enhanced direct current sputtering discharge with magnetic-mirror plasma confinement Electron cyclotron resonance plasma enhanced direct current sputtering discharge with magnetic-mirror plasma confinement M. Mišina, a) Y. Setsuhara, and S. Miyake Joining and Welding Research Institute,

More information

OPTIMIZATION OF PLASMA UNIFORMITY USING HOLLOW-CATHODE STRUCTURE IN RF DISCHARGES*

OPTIMIZATION OF PLASMA UNIFORMITY USING HOLLOW-CATHODE STRUCTURE IN RF DISCHARGES* 51th Gaseous Electronics Conference & 4th International Conference on Reactive Plasmas Maui, Hawai i 19-23 October 1998 OPTIMIZATION OF PLASMA UNIFORMITY USING HOLLOW-CATHODE STRUCTURE IN RF DISCHARGES*

More information

Measuring Electron Energy Distribution Functions in Low Temperature Plasmas

Measuring Electron Energy Distribution Functions in Low Temperature Plasmas Measuring Electron Energy Distribution Functions in Low Temperature Plasmas Steve Shannon Associate Professor NC State University Raleigh NC Presented at 2009 GEC Conference Workshop on Plasma Kinetics

More information

Electron Density Measurements of Argon Surface-Wave Discharges

Electron Density Measurements of Argon Surface-Wave Discharges Plasma Chemistry and Plasma Processing, Vol. 5, No. 3, 1985 Electron Density Measurements of Argon Surface-Wave Discharges M. Brake, 1'2 J. Rogers, 1'3 M. Peters, 1 J. Asmussen, 1 and R. Kerber 1 Received

More information

Deuterium Gas Analysis by Residual Gas Analyzer

Deuterium Gas Analysis by Residual Gas Analyzer Journal of Physics: Conference Series Deuterium Gas Analysis by Residual Gas Analyzer To cite this article: B K Das et al 2012 J. Phys.: Conf. Ser. 390 012009 View the article online for updates and enhancements.

More information

Enhancement of an IEC Device with a Helicon Ion Source for Helium-3 Fusion

Enhancement of an IEC Device with a Helicon Ion Source for Helium-3 Fusion Enhancement of an IEC Device with a Helicon Ion Source for Helium-3 Fusion Gabriel E. Becerra*, Gerald L. Kulcinski and John F. Santarius Fusion Technology Institute University of Wisconsin Madison *E-mail:

More information

Regenerative Soot-IX: C3 as the dominant, stable carbon cluster in high pressure sooting discharges

Regenerative Soot-IX: C3 as the dominant, stable carbon cluster in high pressure sooting discharges Regenerative Soot-IX: C3 as the dominant, stable carbon cluster in high pressure sooting discharges Sohail Ahmad Janjua 1, M. Ahmad 1, S. D. Khan 1, R. Khalid 1, A. Aleem 1 and Shoaib Ahmad 1,2 1 PINSTECH,

More information

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces

A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces A Kinetic Theory of Planar Plasma Sheaths Surrounding Electron Emitting Surfaces J. P. Sheehan1, I. Kaganovich2, E. Barnat3, B. Weatherford3, H. Wang2, 4 1 2 D. Sydorenko, N. Hershkowitz, and Y. Raitses

More information

Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

More information