Extremely far from equilibrium: the multiscale dynamics of streamer discharges

Size: px
Start display at page:

Download "Extremely far from equilibrium: the multiscale dynamics of streamer discharges"

Transcription

1 Extremely far from equilibrium: the multiscale dynamics of streamer discharges Ute Ebert 1,2 1 Centrum Wiskunde & Informatica Amsterdam 2 Eindhoven University of Technology

2 A gallery of streamer discharges

3 Plasma medicine ( Plasma bullets ) Air purification Disinfection Plasma assisted ignition combustion aviation

4 Corona reactors: Reduction of NO x and dust [Pemen, van Heesch et al. at TU Eindhoven]

5 Streamer diameters and velocities in STP air Thick streamers excellently convert pulsed electric power into chemical radicals for biogas cleaning, disinfection, sterilization [van Heesch, Pemen et al.] High field zone = self organized chemical reactors, electron accelerators

6 Figures from [Briels et al., J Phys D, 2006] More than 50% of energy converted into O*! [van Heesch et al., J Phys D 2008]

7 Positive and negative streamers in air 1 bar, 40 mm gap, t exp = 160 ns + - U < 40 kv: thin positive streamers, hardly any negative ones. U > 60 kv: positive and negative streamers more similar, positive ones ~20% faster. 20 kv 20 kv Positive streamers are always longer and faster. 46 kv 47 kv [Briels et al., J. Phys. D 2008] 83 kv 77 kv

8 Positive streamer in high purity 7.0 nitrogen: Avalanches created by single electrons [Nijdam et al. J Phys D 2010] Theory reproduces avalanche density. [Wormeester et al., Jap J Appl Phys 2011, Nijdam et al. J Phys D, 2011, Luque et al., Phys Rev E, 2011]

9

10 ca. 45 lightning flashes/second worldwide important source of the green house gases NO x and O 3 (after 1-2 days)

11 [Briggs et al., JGR 2011; NASA]

12 Electron acceleration and Gamma-rays from a lightning leader Extend cross-sections to 100 MeV, include relativistic motion, Bremsstrahlung, Compton scattering Need model for stepped negative lightning leader. [Xu, Celestin & Pasko, GRL 2012]: Photon spectrum at

13 Positive streamers, negative counterstreamers, transition to leader

14 Hard X-rays (>200 kev) from positive sparks 1 m 1 MV over 1 m X-ray source: Negative streamers! Typical energies: ~200 kev [Kochkin, Nguyen, van Deursen, Ebert, J Phys D 2012]

15 Simulation methods Open source code and documentation under construction. I have removed material from the presentation that is not submitted yet. Find publications on

16 Fast processes in the ionization front: Electrons drift and diffuse in local E-field Elastic, inelastic and ionizing collisions with neutral molecules. Degree of ionization < 10-4 at sea level. E A + Models contain: 1. Ohm s law for electron motion A + - e - 2. Ionization reactions 3. Space charge effects

17 2D fluid model: Positive streamer in air (2008) Complete system: Zoom: n e, equi-φ n e n + n + -n e E + equi-φ Computation with comoving local grid refinement.

18 Positive streamer in air n + -n e E, equi-φ Local field enhancement: >30 kv/cm in STP air -> ionization, excitation, X-rays

19 2 interacting streamers in 3D (in 2008): Surfaces of equal electron density Quasispectral method for the Poisson equation [Luque et al., Phys Rev Lett 08, Research Highlight Nature 08, Review in J Comput Phys 2012]

20 Towards a multi-streamer theory Not yet submitted results on a better characterization of streamer trees (by dielectric breakdown models) are removed here. Expect our preprints soon. Include longer time scales: Chemistry after the primary excitations by electron impact, heating and transition to leader

21 Particle 3D hybrid model Particle Electron density 14 Charge density 14 Electric field Fluid Fluid to study electron run-away and fluctuation effects [Li et al., JAP 2007, JPD 2008,, J Comput Phys 2012].

22 Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid [Li et al., Plasma Sources Sci Technol, 2012] 22

23 Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid 23

24 Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid 24

25 Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid 25

26 Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid 26

27 Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid 27

28 3D: Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid 28

29 3D: Negative streamer in STP N 2 in overvolted gap (E back = -100 kv/cm) Classical fluid Extended fluid Super-particle Hybrid Local field approximation with gradient correction, flux coefficients from MC swarms [Li et al., J Comput Phys, 2010] 29

30 Extended density model Superparticle model Hybrid model 30

31 Extended density model Superparticle model Hybrid model Extended density model approximates propagation well, but branching occurs too late. [Li et al., PSST 2012] 31

32 3D particle simulation with electrode, adaptive mesh refinement, and adaptive (super-)particle management based on a fast and mesh-free k-d tree algorithm Method by Teunissen et al., submitted to J. Comput. Phys. 3D streamer simulation with needle will be submitted soon

33 1 electron in non-ionized ambient air at 70 kv/cm, (4 mm) 3 [Sun, Teunissen, Ebert, submitted to Geophys. Res. Lett.]

34 1 electron in ambient air with 10 3 O 2- /cm 3 at 70 kv/cm, (4 mm) 3 Natural background ionization creates homogeneous breakdown in overvolted gaps, not streamers. [A.B. Sun, J. Teunissen, U. Ebert, submitted to Geophys. Res. Lett.]

35 Streamer inception from needle in 200 mbar air S. Nijdam, published in [Ebert et al., Nonlinearity 2011]

36 Collision cross-sections for different gases Stochastic electron motion (Monte Carlo or Boltzmann) Transport and reaction coefficients for density model or new density model E A + Density or spatially hybrid model A Further model reduction to moving boundaries and to discharge trees as a whole e -

arxiv: v1 [physics.plasm-ph] 28 May 2014

arxiv: v1 [physics.plasm-ph] 28 May 2014 arxiv:1405.7216v1 [physics.plasm-ph] 28 May 2014 The inception of pulsed discharges in air: simulations in background fields above and below breakdown Anbang Sun 1, Jannis Teunissen 1, Ute Ebert 1,2 1

More information

arxiv: v2 [physics.plasm-ph] 30 Oct 2010

arxiv: v2 [physics.plasm-ph] 30 Oct 2010 arxiv:1008.3309v2 [physics.plasm-ph] 30 Oct 2010 Probing photo-ionization: Simulations of positive streamers in varying N 2 :O 2 -mixtures G Wormeester 1, S Pancheshnyi 2, A Luque 3, S Nijdam 4, U Ebert

More information

arxiv: v2 [physics.plasm-ph] 12 Aug 2013

arxiv: v2 [physics.plasm-ph] 12 Aug 2013 arxiv:1305.1142v2 [physics.plasm-ph] 12 Aug 2013 Streamers in air splitting into three branches L. C. J. Heijmans 1, S. Nijdam 1, E. M. van Veldhuizen 1, and U. Ebert 1,2 1 Department of Applied Physics,

More information

arxiv: v1 [physics.plasm-ph] 22 Apr 2008

arxiv: v1 [physics.plasm-ph] 22 Apr 2008 arxiv:0804.3539v1 [physics.plasm-ph] 22 Apr 2008 Positive and negative streamers in ambient air: modeling evolution and velocities Alejandro Luque 1, Valeria Ratushnaya 1 and Ute Ebert 1,2 1 CWI, P.O.

More information

Geophysical Research Letters

Geophysical Research Letters RESEARCH LETTER Key Points: After the end of the streamer collision, the field at the tips of the newly formed double-headed streamer gets elevated The electron motion remains quasi-isotropic despite the

More information

Adaptive numerical simulation of Streamer. Shailendra Singh

Adaptive numerical simulation of Streamer. Shailendra Singh Adaptive numerical simulation of Streamer Shailendra Singh Tools: BDV from Drift diffusion calculation Motivation: Streamer criteria works very well in moderately uniform field. But in highly non uniform

More information

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao Department of Mathematics, The Ohio State University; Department of Mathematics and Computer Science, Claremont McKenna College Workshop

More information

C.V. Nguyen, A.P.J. van Deursen

C.V. Nguyen, A.P.J. van Deursen MeV γ s from Long Leaders in STP Air C.V. Nguyen, A.P.J. van Deursen Group EPS, Technische Universiteit Eindhoven P.O. Box 513, 56 MB Eindhoven, The Netherlands Email: C.V.Nguyen@tue.nl, A.P.J.v.Deursen@tue.nl

More information

Journal of Computational Physics

Journal of Computational Physics Journal of Computational Physics 231 (212) 12 15 Contents lists available at SciVerse ScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp Spatially hybrid computations

More information

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams 22 nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

INTRODUCTION. As shown in Figure 1a, the phenomena of lightningmesosphere-ionosphere

INTRODUCTION. As shown in Figure 1a, the phenomena of lightningmesosphere-ionosphere ABSTRACT Intense, transient quasi-electrostatic (QE) fields, which exist above the thunderclouds following a positive cloud-to-ground lightning discharge, can produce an upward travelling runaway electron

More information

Streamer properties and associated x-rays in perturbed air

Streamer properties and associated x-rays in perturbed air Downloaded from orbit.dtu.dk on: Nov 03, 2018 Streamer properties and associated x-rays in perturbed air Köhn, Christoph; Chanrion, Olivier; Babich, L P; Neubert, Torsten Published in: Plasma Sources Science

More information

Lecture 6: High Voltage Gas Switches

Lecture 6: High Voltage Gas Switches Lecture 6: High Voltage Gas Switches Switching is a central problem in high voltage pulse generation. We need fast switches to generate pulses, but in our case, they must also hold off high voltages before

More information

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders

Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051351, 2012 Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders Wei Xu, 1 Sebastien Celestin, 1 and Victor P. Pasko

More information

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth L. ZEGHICHI (), L. MOKHNACHE (2), and M. DJEBABRA (3) () Department of Physics, Ouargla University, P.O Box.5, OUARGLA 3,

More information

All about sparks in EDM

All about sparks in EDM All about sparks in EDM (and links with the CLIC DC spark test) Antoine Descoeudres, Christoph Hollenstein, Georg Wälder, René Demellayer and Roberto Perez Centre de Recherches en Physique des Plasmas

More information

Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics

Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics 504 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 31, NO. 4, AUGUST 2003 Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics Woo Seok Kang, Jin Myung Park,

More information

The production and propagation of energetic particles and LF/VLF radio waves associated with terrestrial gamma-ray flashes

The production and propagation of energetic particles and LF/VLF radio waves associated with terrestrial gamma-ray flashes The production and propagation of energetic particles and LF/VLF radio waves associated with terrestrial gamma-ray flashes Joseph R. Dwyer Space Science Center (EOS) and Department of Physics, University

More information

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Electric Field Measurements in Atmospheric Pressure Electric Discharges 70 th Gaseous Electronics Conference Pittsburgh, PA, November 6-10, 2017 Electric Field Measurements in Atmospheric Pressure Electric Discharges M. Simeni Simeni, B.M. Goldberg, E. Baratte, C. Zhang, K.

More information

Experimental study of hard x-rays emitted from metrescale positive discharges in air Kochkin, P.; Nguyen, C.V.; van Deursen, A.P.J.; Ebert, U.M.

Experimental study of hard x-rays emitted from metrescale positive discharges in air Kochkin, P.; Nguyen, C.V.; van Deursen, A.P.J.; Ebert, U.M. Experimental study of hard x-rays emitted from metrescale positive discharges in air Kochkin, P.; Nguyen, C.V.; van Deursen, A.P.J.; Ebert, U.M. Published in: Journal of Physics D: Applied Physics DOI:

More information

Journal of Geophysical Research: Space Physics

Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Key Points: Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude Correspondence

More information

Positive streamers in air of varying density: experiments on the scaling of the excitation density.

Positive streamers in air of varying density: experiments on the scaling of the excitation density. Positive streamers in air of varying density: experiments on the scaling of the excitation density. D Dubrovin (1,2), S Nijdam (3), TTJ Clevis (3), LCJ Heijmans (3), U Ebert (3,4), Y Yair (2, 5) and C

More information

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A 1. Mention the gases used as the insulating medium in electrical apparatus? Most of the electrical apparatus use air as the insulating

More information

Application of Rarefied Flow & Plasma Simulation Software

Application of Rarefied Flow & Plasma Simulation Software 2016/5/18 Application of Rarefied Flow & Plasma Simulation Software Yokohama City in Japan Profile of Wave Front Co., Ltd. Name : Wave Front Co., Ltd. Incorporation : March 1990 Head Office : Yokohama

More information

Multiple scales in streamer discharges, with an emphasis on moving boundary approximations

Multiple scales in streamer discharges, with an emphasis on moving boundary approximations Multiple scales in streamer discharges, with an emphasis on moving boundary approximations U. Ebert 1,2, F. Brau 3, G. Derks 4, W. Hundsdorfer 1, C.-Y. Kao 5, C. Li 2, A. Luque 6, B. Meulenbroek 7, S.

More information

Cross Sections: Key for Modeling

Cross Sections: Key for Modeling Cross Sections: Key for Modeling Vasili Kharchenko Department of Physics, University of Connecticut Harvard-Smithsonian Center for Astrophysics, Cambridge, USA 1. Introduction: a) non-thermal atoms and

More information

Emergence of sprite streamers from screening-ionization waves in the lower ionosphere

Emergence of sprite streamers from screening-ionization waves in the lower ionosphere LETTERS PUBLISHED ONLINE: 25 OCTOBER 2009 DOI: 10.1038/NGEO662 Emergence of sprite streamers from screening-ionization waves in the lower ionosphere Alejandro Luque 1 * and Ute Ebert 1,2 * Sprite discharges

More information

Solution of Time-dependent Boltzmann Equation

Solution of Time-dependent Boltzmann Equation WDS'5 Proceedings of Contributed Papers, Part III, 613 619, 5. ISBN 8-8673-59- MATFYZPRESS Solution of Time-dependent Boltzmann Equation Z. Bonaventura, D. Trunec, and D. Nečas Masaryk University, Faculty

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Measurements of electric-field strengths in ionization fronts during breakdown Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

Measurements of electric-field strengths in ionization fronts during breakdown Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W. Measurements of electric-field strengths in ionization fronts during breakdown Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W. Published in: Physical Review Letters DOI: 10.1103/PhysRevLett.98.075002 Published:

More information

Electrical Discharges Characterization of Planar Sputtering System

Electrical Discharges Characterization of Planar Sputtering System International Journal of Recent Research and Review, Vol. V, March 213 ISSN 2277 8322 Electrical Discharges Characterization of Planar Sputtering System Bahaa T. Chaid 1, Nathera Abass Ali Al-Tememee 2,

More information

Electron Current Extraction and Interaction of RF mdbd Arrays

Electron Current Extraction and Interaction of RF mdbd Arrays Electron Current Extraction and Interaction of RF mdbd Arrays Jun-Chieh Wang a), Napoleon Leoni b), Henryk Birecki b), Omer Gila b), and Mark J. Kushner a) a), Ann Arbor, MI 48109 USA mkush@umich.edu,

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in non-equilibrium plasma 6.

More information

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves

Modelling of low-temperature plasmas: kinetic and transport mechanisms. L.L. Alves Modelling of low-temperature plasmas: kinetic and transport mechanisms L.L. Alves llalves@tecnico.ulisboa.pt Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa,

More information

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification ARGON EXCIMER LAMP A. Sobottka, L. Prager, L. Drößler, M. Lenk 1 Introduction Ar-Zufuhr Excimer-Plasma Inertisierung Polymerfolie Sintermetall Inertisierung Post curing [1] EP 1050395 A2 2 Introduction

More information

Evaluation of Monte Carlo tools for high energy atmospheric physics

Evaluation of Monte Carlo tools for high energy atmospheric physics Evaluation of Monte Carlo tools for high energy atmospheric physics Casper Rutjes 1, David Sarria 2, Alexander Broberg Skeltved 3, Alejandro Luque 4, Gabriel Diniz,6, Nikolai Østgaard 3, and Ute Ebert

More information

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, USA

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, USA 1 MAGNETIZED DIRECT CURRENT MICRODISCHARGE, I: EFFECT OF THE GAS PRESSURE Dmitry Levko and Laxminarayan L. Raja Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at

More information

arxiv: v2 [physics.plasm-ph] 23 Feb 2013

arxiv: v2 [physics.plasm-ph] 23 Feb 2013 arxiv:1302.4114v2 [physics.plasm-ph] 23 Feb 2013 High order fluid model for streamer discharges: I. Derivation of model and transport data S. Dujko 1,2, A.H. Markosyan 1, R.D. White 3 and U. Ebert 1,4

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Lecture 4. Detectors for Ionizing Particles

Lecture 4. Detectors for Ionizing Particles Lecture 4 Detectors for Ionizing Particles Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Content Interaction of Radiation with Matter General

More information

Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations

Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013720, 2009 Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and

More information

RPCs and applications to the Particle Physics

RPCs and applications to the Particle Physics RPCs and applications to the Particle Physics 5th Particle Physics Workshop Islamabad 20-25 Nov 2006 By R. Santonico Basic detector physics Gaseous detectors brief history Primary Ionization Uniform field

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

The leader propagation velocity in long air gaps

The leader propagation velocity in long air gaps The leader propagation velocity in long air gaps Liliana Arevalo, Dong Wu Research and development ABB Power Grids, HVDC Ludvika, Sweden Liliana.Arevalo@se.abb.com Pasan Hettiarachchi, Vernon Cooray, André

More information

Terrestrial gamma ray flash production by active lightning leader channels

Terrestrial gamma ray flash production by active lightning leader channels JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015647, 2010 Terrestrial gamma ray flash production by active lightning leader channels B. E. Carlson, 1 N. G. Lehtinen, 1 and U. S. Inan 1,2

More information

PIC-MCC simulations for complex plasmas

PIC-MCC simulations for complex plasmas GRADUATE SUMMER INSTITUTE "Complex Plasmas August 4, 008 PIC-MCC simulations for complex plasmas Irina Schweigert Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk Outline GRADUATE SUMMER

More information

Current sheath formation in the plasma focus

Current sheath formation in the plasma focus Plasma Science and Applications (ICPSA 2013) International Journal of Modern Physics: Conference Series Vol. 32 (2014) 1460321 (8 pages) The Author DOI: 10.1142/S2010194514603214 Current sheath formation

More information

Gasdynamic Diode: How to Stop 100-kV Streamer

Gasdynamic Diode: How to Stop 100-kV Streamer Gasdynamic Diode: How to Stop 100-kV Streamer A Yu Starikovskiy 1,* and N L Aleksandrov 2 1 Princeton University, Princeton, NJ08544, USA 2 Moscow Institute of Physics and Technology, Dolgoprudny, 141700,

More information

Dynamics of streamer propagation in air

Dynamics of streamer propagation in air J. Phys. D: Appl. Phys. 32 (1999) 913 919. Printed in the UK PII: S0022-3727(99)96805-5 Dynamics of streamer propagation in air N L Allen and P N Mikropoulos Department of Electrical Engineering and Electronics,

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Sharath Nagaraja and Vigor Yang Georgia Institute of Technology Atlanta, GA 30332-0150 AFOSR MURI Fundamental Mechanisms, Predictive Modeling,

More information

Characteristics and classification of plasmas

Characteristics and classification of plasmas Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Multiple microdischarge dynamics in dielectric barrier discharges

Multiple microdischarge dynamics in dielectric barrier discharges JOURNAL OF APPLIED PHYSICS VOLUME 84, NUMBER 8 15 OCTOBER 1998 Multiple microdischarge dynamics in dielectric barrier discharges Xudong Peter Xu a) and Mark J. Kushner b) University of Illinois, Department

More information

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range

Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Modeling and Simulation of Plasma Based Applications in the Microwave and RF Frequency Range Dr.-Ing. Frank H. Scharf CST of America What is a plasma? What is a plasma? Often referred to as The fourth

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

More information

Numerical Simulation of Atmospheric-pressure Non-equilibrium Plasmas: Status and Prospects

Numerical Simulation of Atmospheric-pressure Non-equilibrium Plasmas: Status and Prospects 104 International Journal of Plasma Environmental Science & Technology, Vol.7, No.2, JULY 2013 Numerical Simulation of Atmospheric-pressure Non-equilibrium Plasmas: Status and Prospects W. S. Kang 1, M.

More information

Simulation of Prebreakdown Phenomena in Air Gaps of Rod Plane Configuration of Electrodes

Simulation of Prebreakdown Phenomena in Air Gaps of Rod Plane Configuration of Electrodes Simulation of Prebreakdown Phenomena in Air s of Rod Plane Configuration of Electrodes V. P. CHARALAMBAKOS, C. P. STAMATELATOS, D. P. AGORIS, E. C. PYRGIOTI Department of Electrical and Computer Engineering

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

3. Gas Detectors General introduction

3. Gas Detectors General introduction 3. Gas Detectors 3.1. General introduction principle ionizing particle creates primary and secondary charges via energy loss by ionization (Bethe Bloch, chapter 2) N0 electrons and ions charges drift in

More information

arxiv: v1 [physics.ao-ph] 28 Feb 2010

arxiv: v1 [physics.ao-ph] 28 Feb 2010 Sprite discharges on Venus and Jupiter-like planets: a laboratory investigation D. Dubrovin 1, S. Nijdam 2, E.M. van Veldhuizen 2, U. Ebert 2,3, Y. Yair 4, C. Price 1 arxiv:1003.0207v1 [physics.ao-ph]

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 1 18, doi:1.1/jgra.53, 13 Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges Ningyu Liu 1 and Joseph R. Dwyer

More information

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search Kiseki Nakamura Kobe university for the AXEL collaboration PMT AXEL experiment High pressure xenon gas TPC for

More information

Simulations of the plasma dynamics in high-current ion diodes

Simulations of the plasma dynamics in high-current ion diodes Nuclear Instruments and Methods in Physics Research A 415 (1998) 473 477 Simulations of the plasma dynamics in high-current ion diodes O. Boine-Frankenheim *, T.D. Pointon, T.A. Mehlhorn Gesellschaft fu(

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Vigor Yang and Sharath Nagaraja Georgia Institute of Technology Atlanta, GA AFOSR MURI Fundamental Mechanisms, Predictive Modeling, and

More information

How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters

How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 2333 2339, doi:1.12/jgra.5143, 213 How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

arxiv: v1 [physics.plasm-ph] 12 Jan 2017

arxiv: v1 [physics.plasm-ph] 12 Jan 2017 arxiv:1701.03300v1 [physics.plasm-ph] 12 Jan 2017 Pilot system development in metre-scale laboratory discharge Pavlo Kochkin 1, Nikolai Lehtinen 1, Alexander (Lex) P.J. van Deursen 2, Nikolai Østgaard

More information

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES*

A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES* A KINETIC MODEL FOR EXCIMER UV AND VUV RADIATION IN DIELECTRIC BARRIER DISCHARGES* Xudong Peter Xu and Mark J. Kushner University of Illinois Department of Electrical and Computer Engineering Urbana, IL

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

Low energy electron production by relativistic runaway electron avalanches in air

Low energy electron production by relativistic runaway electron avalanches in air JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016494, 2011 Low energy electron production by relativistic runaway electron avalanches in air Joseph R. Dwyer 1 and Leonid P. Babich 2 Received

More information

Title. Author(s)Hasegawa, H.; Date, H.; Shimozuma, M. CitationJournal of Physics D Applied Physics, 40(8): Issue Date

Title. Author(s)Hasegawa, H.; Date, H.; Shimozuma, M. CitationJournal of Physics D Applied Physics, 40(8): Issue Date Title Electron swarm parameters in water vapour Author(s)Hasegawa, H.; Date, H.; Shimozuma, M. CitationJournal of Physics D Applied Physics, 40(8): 2495-24 Issue Date 2007-04-21 Doc URL http://hdl.handle.net/2115/26412

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

Residual resistance simulation of an air spark gap switch.

Residual resistance simulation of an air spark gap switch. Residual resistance simulation of an air spark gap switch. V. V. Tikhomirov, S.E. Siahlo February 27, 2015 arxiv:1502.07499v1 [physics.acc-ph] 26 Feb 2015 Research Institute for Nuclear Problems, Belarusian

More information

Modeling plasma-based CO 2 conversion: From chemistry to plasma design

Modeling plasma-based CO 2 conversion: From chemistry to plasma design Modeling plasma-based CO 2 conversion: From chemistry to plasma design Annemie Bogaerts T. Kozak, R. Snoeckx, G. Trenchev, K. Van Laer Research group PLASMANT, University of Antwerp, Belgium CO 2 + CH

More information

Ionization Detectors

Ionization Detectors Ionization Detectors Basic operation Charged particle passes through a gas (argon, air, ) and ionizes it Electrons and ions are collected by the detector anode and cathode Often there is secondary ionization

More information

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON

nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON nerix PMT Calibration and Neutron Generator Simulation Haley Pawlow July 31, 2014 Columbia University REU, XENON Dark Matter XENON nerix Project 1-> PMT Calibration Project 2-> Neutron Generator Simulation

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

OR Explain thermal breakdown in solid dielectrics. How this mechanism is

OR Explain thermal breakdown in solid dielectrics. How this mechanism is Subject : High Voltage Engineering (2090) ITM Universe, Vadodara Electrical Engineering Department Class : Electrical Sem : th Long Questions Sr. No Question Unit No : 0 Explain Charge Simulation method

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

Investigation into the Role of Ions and Excited. Molecules in the Corona Process in Air. Andrew Graham Swanson

Investigation into the Role of Ions and Excited. Molecules in the Corona Process in Air. Andrew Graham Swanson Investigation into the Role of Ions and Excited Molecules in the Corona Process in Air Andrew Graham Swanson June 29, 2015 School of Electrical and Information Engineering Investigation into the Role of

More information

MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF)

MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF) MAPPING OF ATOMIC NITROGEN IN SINGLE FILAMENTS OF A BARRIER DISCHARGE MEASURED BY TWO PHOTON FLUORESCENCE SPECTROSCOPY (TALIF) C. LUKAS, M. SPAAN, V. SCHULZ VON DER GATHEN, H. F. DÖBELE Institut für Laser

More information

Journal of Geophysical Research: Atmospheres

Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: We describe the statistics of X-ray production by sparks with a data set of over 900 sparks Theresultsarewelldescribedby roughly 85 kev mean X-ray energy X-ray fluence is power

More information

Aram H. Markosyan March 2015

Aram H. Markosyan March 2015 Aram H. Markosyan March 2015 University of Michigan, Electrical Engineering and Computer Science Dept., 1301 Beal Ave, Ann Arbor, MI 48109-2122, USA Phone: +1 (734) 647-4840, Homepage: www.markosyanaram.com,

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Theoretical approach to estimate radiation damage within FEL irradiated samples. Beata Ziaja

Theoretical approach to estimate radiation damage within FEL irradiated samples. Beata Ziaja Theoretical approach to estimate radiation damage within FEL irradiated samples Beata Ziaja Hasylab, DESY Hamburg and INP, Krakow Prague, 23-24 November 2006 I. Mechanisms 2 Radiation damage Contribution

More information

Monte Carlo Model of Runaway Electrons in the Mesosphere. N. G. Lehtinen, T. F. Bell and U. S. Inan (STAR Laboratory, Stanford, CA 94305)

Monte Carlo Model of Runaway Electrons in the Mesosphere. N. G. Lehtinen, T. F. Bell and U. S. Inan (STAR Laboratory, Stanford, CA 94305) Monte Carlo Model of Runaway lectrons in the Mesosphere N. G. Lehtinen, T. F. Bell and U. S. Inan (STAR Laboratory, Stanford, CA 9435) Lightning-mesosphere interaction phenomena 1 km 8 km 6 km 4 km 2 km

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

arxiv: v1 [physics.plasm-ph] 10 Nov 2014

arxiv: v1 [physics.plasm-ph] 10 Nov 2014 arxiv:1411.2464v1 [physics.plasm-ph] 10 Nov 2014 Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas A. Derzsi 1, I. Korolov

More information

Similarity analysis of the streamer zone of Blue Jets

Similarity analysis of the streamer zone of Blue Jets Similarity analysis of the streamer zone of Blue Jets N.A. Popov 1, M.N. Shneider 2 and G. M. Milikh 3 1 Moscow State University, Moscow, Russia 2 Department of mechanical and aerospace engineering Princeton

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders

Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011350, 2006 Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of

More information