Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Size: px
Start display at page:

Download "Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)"

Transcription

1 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor, Keio University 1996 ull Professor, Tokyo nstitute of Technology Award (Selected) 196 The Chemical Society of Japan Award (for young chemist) 1999 agoya Silver dal Award 2003 The Society of Synthetic rganic Chemisty, Japan Award 200 umboldt Award (Germany) 200 The Chemical Society of Japan Award 20 dal with Purple ibbon 2014 Japan Academy Prize Akira Suzuki Baran lab Group eting 1 X 2 BY 2 Pd 0 (cat.), ligand, base Takanori Suzuki (okkaido University) 1 2 ACE, 2014, 3, 70. Eiichi akamura (University of Tokyo) Science, 2001, 291, Kouichi arasaka ab 4 2 B() Masahiro Murakami (Kyoto University) ' ' Tetrahedron, 194, 40, Shu Kobayashi (University of Tokyo) ligand Pr(Tf) 3 Masahiko Yamaguchi (Tohoku University) ' ' aq. JACS, 2003, 12, 299. samu Shiina (Tokyo University of Science) 2 uyou Mitsunobu 2 CL, 2002, 26. Yujiro ayashi (Tohoku University) ACE, 200, 44, ACE, 200, 47, 202. obuharu wasawa (Tokyo nstitute of Technology) C 2 ligand [h], [Al] Takahiko Akiyama (Gakushuin University) P C 2 JACS, 2011, 133, 121. cat. [h] [h] ature, 1994, 370, P 3 DEAD BCSJ, 1967, 40, 93. ACE, 2004, 43, 166.

2 Baran lab Group eting Asymmetric pinacol-type rearrangement >99% ee 1 3%, >99% ee EE Ms, 3, 0 o C 1 =aryl, vinyl 77%, >99% ee 3 steps 3 Al, -7 o C 7%, >99% ee 1 2 Tetrahedron Lett. 193, 24, B 3 T, -7 o C Ms, 3, 0 o C S Al Al, -7 o C % DBAL- -7 o C 1) (C) 2, DMS 3, -7 o C Ms 2) C=CC 2 Cr 2, 0 o C 72% EE 2 2 then 2 S 4 EE 92% BM EE Ms 3 Al -7 o C to -20 o C % (3 steps) =BM 3 Al -7 o C 0% ' '= quant. '=Ms EE Total synthesis of protomycinolide V (+)-eldanolide Tetrahedron Lett. 19, 26, EE 9 A A n-bu 9 hexane EE 0 o C EE 91% protomycinolide V J. Am. Chem. Soc. 196,, 221.

3 Epoxy silyl ether rearrangement substrate product Ti 4, -7 o C % 3 Al -7 to -0 o C 7% 1) Co(C) 3 2) Tf, 3) CA, Bn Co-complexed alkynyl group -an excellent migrator- Ms (C) 3 Co glycosyl donors Co(C) 3 Bn 6% 79% J. Am. Chem. Soc. 196,, 327. (C) 3 Co Co(C) 3 Co-complex >> 90%, 3 steps J. Am. Chem. Soc. 1996, 11, 949. Glycosylation -one of the oldest but unresolved problems- X X =,,,, S, S 2, P()() 2, Ac, Ms, Se, etc. eview, see; :Chem. ev. 1993, 93, 103. C :Tetrahedron 199, 4, C 3 Schmidt ACE, 190, 19, 731 S Mukaiyama CL, 2003, 32, Ac Ac Entry tallocene Cp 2 Ti 2 Cp 2 Zr 2 Cp 2 f 2 Cp 2 M 2 Ag 4 = cyclohexamethanol Solvent t Bu Ac Conditions 0 o C, 2 h -20 o C, min -20 o C, 30 min Cp 2 Zr 2 Ag 4 solvent Conditions Ac -20 o C, 40 min Baran lab Group eting Cp 2 Zr 2 -Ag 4 -an efficient activator of glycosyl fluorides α Yield 90% 90% 6% t Bu α Yield 93% 20 o C, 30 min 9% Ac Ac β α : β 1 : : : 1 β α : β 1.4 : 1 0 : 1 t Bu Caution : Ag 4 is potentially explosive. Tetrahedron Lett. 19, 29, 367. Modified condition : Cp 2 f 2, AgTf (less reactive but much safer) Angew. Chem. nt. Ed. 200, 44, 371. Total synthesis of mycinamicin V Ac Cp 2 Zr 2 Ag 4 21 =sugar, rt 6% Ac 21 Tetrahedron Lett. 19, 29, 37. mycinamicin V

4 earrangement of -Glycoside to C-Glycoside Step 1 0 mol% activaor Tf T, -7 o C min =, MM, Bn 74~2% Bn Bn T -7 o C % Bn Bn Ac Bn Bn Bn Bn Step 2 Cp 2 f 2 Ag 4 4ÅMS -7 o C to -20 o C 3 steps, -20 o C B % 14% Sn 4 67% 11% Cpf 2 -Ag 4-76% Tetrahedron Lett. 19, 29, 693. [2+4] cycloaddition -an efficient generation of aryne- Total synthesis of (+)-gilvocarcin M Tetrahedron Lett. 1991, 32, 673. Bn Bn Bn Bn 7%, α:β = :1 Tf (+)-gilvocarcin M J. Am. Chem. Soc. 1992, 114, 36. [2+2] cycloaddition of benzyne and ketene silyl acetal Bn Bn Si n Si3 3 Bu Entry Tf Bn ' TBS TBS C C ' eductant Sm 2 Sm 2, MPA Ti 4, Zn Conditions 0 o C T, -7 o C Sm 2 -mediated pinacol cyclization Yield 99% 93% Baran lab Group eting trans/cis >99 : 1 >99 : 1 20 : 1 4 Ti 4, Mg(g) 94% 16 : 1 C 2 MM Sm 2 C C >99% ee 1) aq. 2) () 3 C PTSA 3) S 3 Py, 3 DMS T, 0 o C 64-90% =,, alkyl '=alkyl, Bn MM ' ' C 2 Synlett 199, 177. elv. Chim. Acta 2002,, 39. inductive effect C C Chiral Transmission Bn >99% ee Bn Angew. Chem. nt. Ed. 1999, 3, ' δ- δ+ '

5 Total synthesis of TA- TA- Bn from [2+2] cycloaddition Bn Bn Bn MM =MM Bn Sm 2 then Bz 6% MM (C) 2 DMS 3-7 to 2 o C Bn =TBDPS Bn t Bu 2 then Tf % 6 ' Bz Amine-promoted cyclocondensation -synthesis of isoxazoles- 1 CS 1 3 C rt 2 rt 9~99% stable 71~7% CS pyridine 1 =, MM, Tetrahedron Lett. 2003, 44, =,, etc. previous work fast 3 decomp. 3 =,, 62~3% yields pinacol cyclization Bn Bn Bn MM Bn 6π cyclization Sm Sm ' Bn Bn Bn Bn =sugar Bn Bn Bz Bz MM C 2 Bn Bn 1:1 mixture Bn Baran lab Group eting Bn 1) CA, aq. C 2) 2, Pd/C, 3% (2 steps) Bz C 2 Bz C 2 Bz B 3 2 Ac including separation TA- Angew. Chem. nt. Ed. 2004, 43, unstable achiral rg. Lett. 2003,, 391. chiral

6 ntramolecular aldehyde-ketone benzoin reaction 20 mol% MM MM S DBU t Bu, 40 o C Total synthesis of BE-43472B Baran lab Group eting 90%, dr=>20:1 C 2 79%, dr=>20:1 BE-43472B J. Am. Chem. Soc. 2003, 12, 432. soxazole-directed pinacol rearrangement Bn T 9% ee 3M 2 S 4 T, 40 o C Bn Bn 99%, 9% ee B mol% B 3 2, 0 o C Bn Bn, 9% ee no racemization C 2 MM C 2 94%, 60% ee Bn = 92% 9% ee 9% ee 92%, 0% ee 6% 71% ee Co Co (C) 3 (C) 3 2% ee Angew. Chem. nt. Ed. 2007, 46, 322. C 2 t Bu T, -7 o C quant. MM C 2 single isomer

7 Baran lab Group eting MM C 2 a 2 C 3, rt 3% (2 steps) Boc C Tf rt pinacol rearrangement C Boc, 0 o C S C C 2 Boc CSA reflux 9% Boc BE-43472B Angew. Chem. nt. Ed. 2013, 2, 66. egioselective C-glycosylation sugar (2 eq.) C: C : both Tf 2 : 27 : 21 Sc(Tf) 3 >9 : nd : nd T/DMPU -0 o C; Se then aq % (2 steps) / 0 o C to rt Ac CC Bn 3 (1 eq.) Bn 3 94% Ac Sc(Tf) 3 (0 mol%) Drierite, -30 o C to - o C 9% % CA-Si 2 Lewis acid (30 mol%) Drierite -30 o C to - o C 77~2% sugar sugar Angew. Chem. nt. Ed. 2014, 3, 12.

8 Baran lab Group eting Total synthesis of saptomycin B 2 2 Bn Bn 3 saptomycin B Bn DCE, -30 to o C Ac Sc(Tf) 3 (0 mol%) Drierite DCE, -30 to 2 o C Bn 3 3 Bn 3 Ac Sc(Tf) 3 (30 mol%) Drierite Bn 3 3 Bn Bn Bn Bn K 2 C 3 Ac Ac 2% saptomycin B Angew. Chem. nt. Ed. 2014, 3, Catalytic generation of arynes Tf Tf sp 3 sp Proposed mechanism Bn Tf Tf Tf t Bu 2 C fast sp 2 : favorable mol% Bn Tf slow sp 2 : unfavorable 77% Tf (catalytic) 30 mol% Tf Tf u Tf (1) u u (stoichiometric) Bn T -7 to -60 o C 2% (2) Angew. Chem. nt. Ed. 2012, 1, 336. C 2 t Bu pka ( 2 ) 24 20

9 Baran lab Group eting Total synthesis of (+)-Cinnamtannin B 1 Bn Bn =TBS Bn 93% Bn Bn Bn Bn TBS Bn not detected (less stabilized than A) Bn Bn (+)-cinnamtannin B 2 =Bn a possible precursor Model study unreactive TBS TBS DDQ (C 2 ) 2 Bn reflux 69-1% B to -20 o C Bn their strategy Bn putative biogenesis TBS Bn intermediate A TBS BS - o C Bn Bn Bn Bn Bn Bn TBS 2, Ag 2, 4Å MS, -7 to -40 o C TBS SXy Bn (1.2 eq.) Bn Bn B % Xy=2,6-xylyl Bn Bn 1 Bn 1 Bn Bn Bn SXy Bn Bn Bn =TBS =Bn 2 =TBS (+)-cinnamtannin B 2 Angew. Chem. nt. Ed. 2014, 3, 129.

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols B() 2 H H B() 2 H H Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab Education Experience Fraser Fleming University of Drexel Pavel agory University of Michigan Cambridge University,

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003 Catalytic Asymmetric Pauson-Khand eaction U. Khand; G.. Knox; P. L. Pauson; W. E. Watts J. Chem. Soc. Chem. Commun. 1971, 36 Won-jin Chung 02/25/2003 The General Pattern of the Pauson-Khand eaction Co

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Total Synthesis of Oxazolomycin A

Total Synthesis of Oxazolomycin A Total Synthesis of xazolomycin A Me xazolomycin A Me Eto, K.; Yoshino, M.; Takahashi K.; Ishihara, J.; atakeyama S. rg. Lett. 2011, 13, 5398 Dimas Paz Wipf group- Current Literature ctober 8, 2011 Dimas

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition A ew Strategy for Efficient Synthesis of Medium and Large ing Lactones without High Dilution or Slow Addition BF 3 Et 2 TIPS 2,4,6-collidine n + n+2 ' ' Zhao, W.; Li, Z; Sun, J. J. Am. Chem. Soc. 2013

More information

Total Synthesis of ( )-Virginiamycin M2

Total Synthesis of ( )-Virginiamycin M2 Total Synthesis of ( )-Virginiamycin M2 Jie Wu and James S. Panek, Angewandte Chemie International Edition, 2010, 49, 6165-6168 btained from the CDC Public ealth Image Library. Image credit: CDC/Dr. David

More information

Total Synthesis of Gracilioether F: Development and Application of Lewis Acid Promoted Ketene-Alkene [2+2] Cycloadditions and Late Stage C-H Oxidation

Total Synthesis of Gracilioether F: Development and Application of Lewis Acid Promoted Ketene-Alkene [2+2] Cycloadditions and Late Stage C-H Oxidation Total Synthesis of Gracilioether F: Development and Application of Lewis Acid Promoted Ketene-Alkene [2+2] ycloadditions and Late Stage - xidation hristopher M. Rasik and M. Kevin Brown Angew. hem. Intd.

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of omoallylic Primary Amines 1 3 2 3 ML n 1 2 2 3 Masaharu Sugiura, Keiichi irano and Shu Kobayashi JACS ASAP ryan Wakefield @ Wipf

More information

Total Syntheses of Minfiensine

Total Syntheses of Minfiensine Total Syntheses of Minfiensine Douany, A. B.; umphreys, P. G.; verman, L. E.*; Wrobelski, A. D., J. Am. Chem. Soc. 2008, ASAP. D: 10.1021/ja800163v Shen, L.; Zhang, M.; Wu, Y.; Qin, Y.*, Angew. Chem. nt.

More information

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)]

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)] 3. Boron -- eview [Suzuki Chem. ev. 95, 2457 (1995)] U77b ydroboration also attractive but B Pd transmetallation difficult - must produce stable B product - solved (by Suzuki) by adding base to make Borates

More information

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis Asymmetric Lewis Base trategies for eterocycle ynthesis Dr Andrew mith EatCEM, chool of Chemistry, University of t Andrews 1st cottish-japanese ymposium of rganic Chemistry, University of Glasgow Friday

More information

Catalytic Reactions in Organic Synthesis

Catalytic Reactions in Organic Synthesis 17 April, 2008 Catalytic eactions in rganic Synthesis hodium Complexes and edox Catalysts Koichi AASAKA, Motoki YAMAE, Shunsuke CIBA Division of Chemistry and Biological Chemistry, School of ysical and

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Scandium-Catalyzed Asymmetric Reactions

Scandium-Catalyzed Asymmetric Reactions Scandium-Catalyzed Asymmetric eactions Jimmy Wu Evans Group Seminar February 11, 2005 I. Background II. eutral BIL Ligands III. Anionic BIL Ligands IV. Pybox Ligands V. Bip yridine Ligands VI. rganop hosp

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

CEM 852 Final Exam. May 6, 2010

CEM 852 Final Exam. May 6, 2010 CEM 852 Final Exam May 6, 2010 This exam consists of 7 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. n answering your questions,

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol eactions atjen, L. Garcia-Garcia, P., Lay, F., Beck, M. E., List, B.; Angew. Chem. Int. Ed. 2010, ASAP. Convergent Total

More information

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization Total Synthesis of (+/-)-Goniomitine via a Formal itrile/donor-acceptor Cyclopropane [3 + 2] Cyclization (-)-Goniomitine Christian L. Morales and Brian Pagenkopf* rganic Letters, ASAP Current Literature

More information

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione Xiangbo Zhao, Wu Li, Junjie Wang, and Dawei Ma* Shanghai Institute

More information

Regioselective Reductive Cross-Coupling Reaction

Regioselective Reductive Cross-Coupling Reaction Lit. Seminar. 2010. 6.16 Shinsuke Mouri (D3) Regioselective Reductive Cross-Coupling Reaction Glenn C. Micalizio obtained a Ph.D. at the University of Michigan in 2001 under the supervision of Professor

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Denmark Group Meeting. & Electrophilic rearrangement of amides

Denmark Group Meeting. & Electrophilic rearrangement of amides Denmark Group Meeting Palladium catalyzed Dearomatizationeaction & Electrophilic rearrangement of amides 11 th Bo Peng th Feb. 2014 1 https://maps.google.com 2 Palladium catalyzed Dearomatization eaction

More information

Strategies for Stereocontrolled Synthesis

Strategies for Stereocontrolled Synthesis Chemistry. Synthetic rganic Chemistry II Lecture 3 March, 2007 Rick L. Danheiser Massachusetts Institute of Technology! Thermodynamic Control Strategies! Kinetic Control Strategies! Strategies for the

More information

Total Synthesis of (+)-Sieboldine A J. Am. Chem. Soc. 2010, 132,

Total Synthesis of (+)-Sieboldine A J. Am. Chem. Soc. 2010, 132, Total Synthesis of (+)-Sieboldine A J. Am. Chem. Soc. 2010, 132, 7876 7877. Current Literature Presentation 10JUL2010 Michael Yang Mike Yang @ Wipf Group Page 1 of 15 7/10/2010 Sieboldine A Background

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

Chapter 5 Three and Four-Membered Ring Systems

Chapter 5 Three and Four-Membered Ring Systems Chapter 5 Three and Four-mbered ing ystems 5.1 Aziridines Aziridines are good alkylating agents because of their tendency to undergo ring-opening reaction with nucleophiles 例 mitomycin C antibiotic and

More information

C-O C-O C-N A A. (KHMDS) C-N (scheme 1) C-O C-N (1)

C-O C-O C-N A A. (KHMDS) C-N (scheme 1) C-O C-N (1) C- C- C- A A 2007 2008 -t- (Boc)-- (MM)- () (KMDS) C- (scheme ) C- C- () C- C- C- C- C- C- B C- B (scheme 2) C- B (2) C- manzacidin A Manzacidine A (5) - ATP (fig. ) C- 5 Ph MM Boc ethyl lactate X n=,2

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation eactions of Substituted Ketenes Scott G. elson, Cheng Zhu, and Xiaoqiang Shen J. Am. Chem Soc. 2004, 126, 14-15. Michael C. Myers, Literature

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

SECTION 12. «POT-POURRI» in Organic Synthesis (2018) SECTIN 12 «PT-PURRI» in rganic Synthesis (2018) 1 Total Synthesis of Erythromycin A via a Spiroketal ERYTRMYCIN A DESLNGCAMPS et al. Can. J. Chem. 1985, 63, 2810-2820. 2 Tetrahydropyran Derivative as Starting

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

A Stereoselective Synthesis of (+)-Gonyautoxin 3

A Stereoselective Synthesis of (+)-Gonyautoxin 3 A Stereoselective Synthesis of (+)-Gonyautoxin 3 Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 12630-12631 Total Synthesis of (+)-Lithospermic Acid by Asymmetric Intramolecular Alkylation via

More information

transmetallate displace ox. add. M + (insert) (β-elim.)

transmetallate displace ox. add. M + (insert) (β-elim.) Chapter IV. Transition Metal σ-alkyl Complexes I. General For much of the rest of this course it will be necessary to understand how σ-alkyl metal complexes are formed and how they react. This is summarized

More information

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer Catalytic alkylation of remote C bonds enabled by proton-coupled electron transfer Reporter: Ji Zhou Checker: Shubo u Date: 2016/11/14 Choi, G. J.; Zhu, Q.-L.; Miller, D. C.; Gu, C. J.; Knowles, R. R.

More information

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

O + k 2. H(D) Ar. MeO H(D) rate-determining. step? ame: CEM 633: Advanced rganic Chem: ysical Problem Set 6 (Due Thurs, 12/8/16) Please do not look up references until after you turn in the problem set unless otherwise noted. For the following problems,

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation Asymmetric Synthesis of Medium-Sized ings by Intramolecular Au(I)-Catalyzed Cyclopropanation 1 2 Iain D. G. Watson, Stefanie itter, and F. Dean Toste JACS, ASAP, 1/22/2009 DI: 10.1021/ja8085005 2.5 mol%

More information

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone

Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone DI:10.15227/orgsyn.089.0374 Discussion Addendum for: Trifluoromethylation at the -Position of, -Unsaturated Ketones: 4-Phenyl-3-Trifluoromethyl-2-Butanone C 3 Ph hcl(pph 3 ) 3 C 3 I C 3 Ph T C 3 Prepared

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Requirements for an Effective Chiral Auxiliary Enolate Alkylation Requirements for an Effective Chiral Auxiliary Enolate Alkylation 1. Xc must be low cost, and available in both enentiomeric forms 2. The cleavage of Xc from the substrate must occur under mild enough

More information

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts Synthetic Methodology Using Tertiary osphines as Nucleophilic Catalysts 1 3 2 u 2 (P 3 ) 3 4 1 2 D. Ma, X. Lu 1988 1 2 Pd 2 (dba) 3.CCl 3 /P 3 /Ac or Pd(Ac) 2 /P 3 1 2 B. M. Trost 1988 1 3 2 u 2 (P 3 )

More information

Indolynes as Electrophilic Indole Surrogates: Fundamental Reactivity, Regioselectivity, and Synthetic Applications

Indolynes as Electrophilic Indole Surrogates: Fundamental Reactivity, Regioselectivity, and Synthetic Applications Indolynes as Electrophilic Indole Surrogates: Fundamental eactivity, egioselectivity, and Synthetic Applications The indole heterocycle is observed in an astonishing number of medicinal agents and natural

More information

I. Liu Lab. Ka<e Boknevitz 1

I. Liu Lab. Ka<e Boknevitz 1 A ighly Convergent Total Synthesis of Leustroducsin B Barry M. Trost,* Berenger Biannic, Cheyenne S. Brindle, B. Michael Keefe, Thomas J. unger, and Ming-Yu gai Department of Chemistry, Stanford University,

More information

Isao Kuwajima. Supervised Work (Corey) Born Nov BS (Tokyo Institute of Technology) LiCuBu 2 C 7H15 OH

Isao Kuwajima. Supervised Work (Corey) Born Nov BS (Tokyo Institute of Technology) LiCuBu 2 C 7H15 OH Yuzuru Kanda Baran lab Group eting Biography Supervised Work (Corey) - 1937 Born ov 11 I - 1961 BS (Tokyo Institute of Technology) CuBu 2 under T. Mukaiyama C 715-1966.D in chemisty (in the same lab) ex/

More information

Synthesis of the Stenine Ring System from Pyrrole

Synthesis of the Stenine Ring System from Pyrrole Current Literature Presentation gor psenica 06/18/2011 Synthesis of the Stenine Ring System from Pyrrole Bates, R. W.; Sridhar, S. J. rg. Chem., 2011, 76, 5026 5035 gor psenica @ Wipf Group Page 1 of 16

More information

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam

Initials: 1. Chem 633: Advanced Organic Chemistry 2011 Final Exam Initials: 1 ame: Chem 633: Advanced rganic Chemistry 2011 Final Exam Please answer the following questions clearly and concisely. In general, use pictures and less than 10 words in your answers. Write

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

s-buli (1.2 eq.), ( )-sparteine (1.2 eq.) Et 2 O, 78 ºC ; 1-2 (1.2 eq.), 78 ºC ; solvent switch to CHCl 3 *, reflux

s-buli (1.2 eq.), ( )-sparteine (1.2 eq.) Et 2 O, 78 ºC ; 1-2 (1.2 eq.), 78 ºC ; solvent switch to CHCl 3 *, reflux Problem Session (4) ) Please provide the reaction mechanisms. ) Please fill in the blank -6. - TDPS - TI - (. eq.), TF, 78 ºC to rt ; - (. eq.), 78 ºC to rt ; a 4 ( eq.) solvent switch to CD * 65 ºC 8%,

More information

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles) Approaches to the Synthesis of Tetrahydropyrans (and closely related heterocycles) William Morris Literature Presentation July 6, 2004 I. Intro A Nomenclature B Prevalence in Nature C Biosynthetic Considerations

More information

Total Synthesis of Cyclosporine: Access to N-Methylated Peptides via Isonitrile Coupling Reactions

Total Synthesis of Cyclosporine: Access to N-Methylated Peptides via Isonitrile Coupling Reactions Total Synthesis of Cyclosporine: Access to -thylated Peptides via Isonitrile Coupling Reactions Xiangyang Wu, Jennifer L. Stockdill, Ping Wang, Samuel J. Danishefsky* J. Am. Chem. Soc. 2010,132, 4098-4100

More information

Nickel-Catalyzed Multicomponent Coupling of Alkynes. -Recent development in methodologies and applications. Zhenjie Lu. Department of Chemistry, MSU

Nickel-Catalyzed Multicomponent Coupling of Alkynes. -Recent development in methodologies and applications. Zhenjie Lu. Department of Chemistry, MSU 28 58.69 i ickel ickel-catalyzed Multicomponent Coupling of Alkynes -ecent development in methodologies and applications Zhenjie u Department of Chemistry, MSU January 28, 2004 Background Introduction

More information

Organic Cumulative Exam October 13, 2016

Organic Cumulative Exam October 13, 2016 rganic Cumulative Exam ctober 3, 206 Answer only three of the five questions. o more than three question answers will be graded and any work not to be considered must be clearly marked as such. Clearly

More information

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon 11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon Seth B. erzon, Liang Lu, Christina M. Woo, and Shivajirao L. Gholap J. Am. Chem. Soc. ASAP DI 10.1021/ja200034b Melissa Sprachman Current

More information

Synthesis of a- and/or c-benzoyloxy-a,b-enones from a-halo-a,b-enones

Synthesis of a- and/or c-benzoyloxy-a,b-enones from a-halo-a,b-enones Tetrahedron Letters Tetrahedron Letters 46 (05) 681 685 Synthesis of a- and/or c-benzoyloxy-a,b-enones from a-halo-a,b-enones Yujiro Hayashi, * Mitsuru Shoji and Satoshi Kishida Department of ndustrial

More information

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012 A 1,3 Strain and the Anomeric Effect Michael Shaghafi Chem. Topics Feb. 6, 2012 Introduction: Definition of A 1,3 Strain m L L m m 3 L 3 1 1 otation about σ-bond between α-stereocenter and olefin is associated

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

JOC: 1985 Year in Review

JOC: 1985 Year in Review Baran Group eting JC: 1985 Year in eview Syntheses discussed: thodoligies discussed: Quadrone 2 C (+)-irsutic Acid C (±) Coriolin (!)-Longifolene (!)-astanecine Manganese (III)-mediated "-lactone annulation

More information

Synthesis of Amphidinolide X and an Exploration of Key Reactions

Synthesis of Amphidinolide X and an Exploration of Key Reactions PJM 1/12/05 Synthesis of Amphidinolide X and an Exploration of Key eactions Lepage,.; Kattnig, E.; Furstner, A. JACS, 2004, 126, 15970-15971. 7 13 1 6 19 - Produced by marine dinoflagellates, Amphidinium

More information

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine ine-step nantioselective Total Synthesis of (+)-Minfiensine Jones, S. B.; Simmons, B.; MacMillan, D. W. C.* J. Am. Chem. Soc. 2009, ASAP. DI: 10.1021/ja906472m Kara George Wipf Group - Current Literature

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

CEM 852 Final Exam. May 5, 2011

CEM 852 Final Exam. May 5, 2011 CEM 852 Final Exam May 5, 2011 This exam consists of 8 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. In answering your questions,

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Asymmetric Deprotonation

Asymmetric Deprotonation ( )-sparteine i-pr, t 2, -98 C 84% ee Asymmetric Deprotonation gands, Bases, and Applications CF 3 TMS t-bu TMSCl, MPA TF, -100 C t-bu 93% ee Fe (i-pr) 2 1. n-bu ( )-sparteine t 2, -78 C 2. 2 PCl P 2 Fe

More information

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2)

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2) Prof. Ang Li Literature Seminar 2017. 10. 28 Kosuke Minagawa (D2) 1 2 3 aspidodasycarpine 1) 2 C sespenine 3) atural Products Synthesized by Ang Li group clostrubin 6) drimentine A 7) i-bu rubriflordilactone

More information

Recent Development in. Tandem Radical Reactions (TRR)

Recent Development in. Tandem Radical Reactions (TRR) ecent Development in Tandem adical eactions (T) Feng u Jan. 13, 2006 Contents Brief Introduction of the istory of T Definition of T Intramolecular T Intermolecular T T as Key Steps in Total Synthesis of

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH Asymmetric Total Synthesis of ( )-Plicatic Acid via a Highly Enantioselective and Diastereoselective Nucleophilic Epoxidation of Acyclic Trisubstituted lefins H H H H CH ( )-Plicatic Acid H H Sun, B.F.;

More information

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori,

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori, 1 C h a p t e r 1 Enantioselective LUM-Lowering rganocatalysis. I. Introduction. The presentation of the obel Prize in 2001 to William S. Knowles, Ryoji oyori, and K. Barry Sharpless recognized the influence

More information

Enan$oselec$ve Total Synthesis of Amphidinolide F

Enan$oselec$ve Total Synthesis of Amphidinolide F Enan$oselec$ve Total Synthesis of Amphidinolide F Subham Mahapatra and ich G. Carter regon State University Angew. Chem. nt. Ed., 2012, 51, 7948 Nicolas Millius Bern, 07.02.2013 ntroduc$on isolated from

More information

JOC Year-in-Review, 1984

JOC Year-in-Review, 1984 Baran Lab Group eting JC Year-in-eview, 198 Y oshihiro Ishihara Statistics for J. rg. Chem. 198, Volume 9, Issues 1-26: 1313 Papers 1 erbert C. Brown 8 Albert Padwa 8 Leo A. Paquette 7 Dale L. Boger 7

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives ynthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives Russell C. mith Denmark Group Meeting 8-9-2005 most extensive project in organic synthesis this phenomenon is

More information

Mechanism Problem. 1. NaH allyl bromide, THF N H

Mechanism Problem. 1. NaH allyl bromide, THF N H Mechanism Problem 1. a allyl bromide, TF 2. 9-BB (1.2 equiv), TF, rt; ame (1.2 equiv); t-buli (2.4 equiv), TMEDA (2.4 equiv) 30 to rt; allyl bromide; 30% 2 2, aq. a, 0 C (58% yield) Mechanism Problem 9-BB

More information

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof.

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof. Material outline: For the Scientist in you: Definitions Theoretical treatment Kinetic esolutions General eferences: Vedejs, ACIEE, 2005, 3974 Jacobsen, Adv. Syn. Cat. 2001, 5 Kagan, Topics in Stereochemistry,

More information