Chapter 5 Three and Four-Membered Ring Systems

Size: px
Start display at page:

Download "Chapter 5 Three and Four-Membered Ring Systems"

Transcription

1 Chapter 5 Three and Four-mbered ing ystems 5.1 Aziridines Aziridines are good alkylating agents because of their tendency to undergo ring-opening reaction with nucleophiles 例 mitomycin C antibiotic and antitumor activity aziridine ring C mitomycin C ing ynthesis 4 5 X 4 5 X thod otes 3 2 P + 3 Br - I I aminoalcohol or 3 aminoalcohol + 2 aminoalcohol + 3 PBr 2 chloroamine + a in DM olefin, IC, olefin, I 3, then LiAl 4 or P 3 Wenker synthesis Gabriel synthesis Azidines from azides and olefins Three-m Chinpiao Chen 2009/3/20 11:47 23

2 + s=l [-(arylsulfonyl)imino]- phenyliodinane 5-1 s ~50% ee h h P 5-1 J. ys. rg. Chem. 1998, 597; Can. J. Chem. 1998, 738. l=ts 2 Ts * 44% ee Chem. Commun. 1998, a l 2 (10 mol%) Ts Ts Cu-catalyst, M-5A * a Tetrahedron, 1998, 13485; Tetrahedron Lett. 1998, CC 2 Et [(η 5 -C 5 5 )Fe(C) 2 (TF)] + [BF 4 ] - C 2 Et J. rg. Chem. 1998, C + 2 C CC 2 Et Yb(Tf) 3 Chem. Lett. 1998, 685. C 2 C 2 Et 05-Three-m Chinpiao Chen 2009/3/20 11:47 24

3 + 2 CC 2 Et n 4 C 2 Et J. Chem. oc. Perkin Trans. 2, 1998, Ts TM Br- Cs 2 C TM J. rg. Chem. 1998, Ts Functionalization at nitrogen -ubstituent C 2 C 2 C()C 3 (C 2 ) 3 C 2 C 2 C C=CC C 2 eagent C 2 C 2, Et 3 3 CC (C 2 ) 3, C 2 + Et 3 - C 2 =CC C=CC C 2 =C= 2 a ing-opening reactions + 2 M 4, 29.5 o C = = 58 7 J. Am. Chem. oc. 1974, C Ar C 2 Ar 100 o C 2 C C 2 X Y 2 C Ar X Y C 2 05-Three-m Chinpiao Chen 2009/3/20 11:47 25

4 The ring-opening of aziridines to azomethine ylides and subsequent cycloaddition. Ar = C 6 4-4, C; X=Y = 2 CC=CC 2, Et 2 C=C 2 Et, C=, norbornene. Tetrahedron Lett. 1971, 473. Tol t- BuLi Li C 2 Et Et C Tetrahedron Lett. 1998, K [Bn 2 ] 2 Cu(C)Li 2 Ts Ts aza-payne rearrangement. Chem. oc. ev. 1998, 145. Ts Bn 2 4 c (Tf) 3 + Bn 5 ynlett, 1998, Bn 5 Boc TBDM Boc MgBr 2 TBDM Br Tetrahedron Lett. 1998, Cu(Tf) 2 J. rg. Chem. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 26

5 e e Bu 3 n ynlett, 1998, Fragmentation reactions o C o C xiranes (Epoxides) C 2 2 C(C 2 ) 4 C ing ynthesis chanism of epoxidation by peroxy acids. 05-Three-m Chinpiao Chen 2009/3/20 11:47 27

6 t-bu C Ti(i-Pr) 4, (-)-diethyl tartrate C1021 Asymmetric epoxidation of an allylic alcohols. Pure & Appl. Chem. 1983, rganic eactions, 1996, 48, 1. C 3 C 3 B, aq. dioxane Kt-Bu Br electivity of epoxide formation. J. Chem. oc. Perkin Trans. 2, 1993, Darzens reaction. Comprehensive rganic ynthesis, Vol. 2, 1991, p C 3 e Tetrahedron Lett. 1998, Mn Tetrahedron Lett. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 28

7 - = C = J. rg. Chem. 1998, Chem. Commun. 1998, 429. Mn X X t-bu t-bu J. Am. Chem. oc. 1998, l Z Mn 10 Tetrahedron Lett. 1998, (,)-13 t-bu Co Ac t-bu t-bu t-bu 13 J. rg. Chem. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 29

8 xone J. rg. Chem. 1998, J. rg. Chem. 1998, xone Et 2 C X 19 Chem. Commun. 1998, t-bu V t-bu t-bu 25 Tetrahedron Lett. 1998, Bn TE MCPBA Bn TE Tetrahedron Lett. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 30

9 Br- 35 l Chem. Commun. 1998, Cu(acac) 2 C C 2 DCM J. Am. Chem. oc. 1998, C 2 Br C a J. rg. chem. 1998, eactions - B E2 elimination and ring opening of oxiranes Bn LA J. eterocyclic Chem. 1998, 865. Bn Boc Et 2 Al 3 Boc 3 Tetrahedron Lett. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 31

10 TM 2 ynlett, 1998, 510. TM Lewis acid Tetrahedron Lett. 1998, 393. i 4 55 P 55 J. rg. Chem. 1998, TM TM TM Tetrahedron Lett. 1998, Li (-)-sparteine 63 t-bu 65 t-bu ymlett, 1998, Tetrahedron Lett. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 32

11 Li + J. Chem. oc. Perkin 1, 1998, Bn Bn TE Tf TBDP n-buli 2 Tol Bn J. rg. Chem. 1998, Bn TBDP 2 Tol LDA J. Am. Chem. oc. 1998, ' 2 n-buli Li ' Li Li : Li ' ' J. rg. Chem. 1998, ynlett, 1998, 337. Ar Pd(Ac) 2, PBu 3 C, t-bu Ar C Pd(Ac) 2, PBu 3 3A M, t-bu Tetrahedron, 1998, Tetrahedron Lett. 1998, Three-m Chinpiao Chen 2009/3/20 11:47 33

12 u(lll), cat. acetone yn. Commun. 1998, C, C 3 C Ti(TFA) 2 yn. Commun. 1998, X cat. Eu(dpm) 3 X Tetrahedron Lett. 1998, ml 2 = aryl X 2.2 ml 2 = aryl, alkyl ynlett, 1998, ml 2 Tetrahedron, 1998, Thiiranes thiirane thiirane-1-oxide thiirane-1,1-dioxide - - C - C C - ynthesis of thiiranes from oxiranes 05-Three-m Chinpiao Chen 2009/3/20 11:47 34

13 Y - - Y Polymerization initiated by nucleophilic attack. etc. t-bu t-bu C 2 2, 100 o C t-bu t-bu Tetrahedron Lett. 2001, C 3 50% a(aq) Bn(Et) 3 elv. Chim. Acta. 1999, benzene elv. Chim. Acta. 1920, irradiation Azirines C 2 C C 2 05-Three-m Chinpiao Chen 2009/3/20 11:47 35

14 3 + 3 heat/hv A base B heat C P 3 A: = =, =, 110 o C, 63%. = =, = et 2, 20 o C, 94%, =,, = (C 2 ) 6, hν, pentane, 93%. B: =, =, =, a, 2, 20 o C, 63%. C: = =, = Bu t, 120 o C, 57%. Tetrhedron Lett. 1995, J. Am. Chem. oc. 1995, Examples of addition reactions to C= bond of azirines Azirine eagent Product ef. EtMgBr 2 C 2 Et Py a b c 2 C d a. Tetrahedron lett. 1969, b. J. Am. Chem. oc. 1967, c. J. Am. Chem. oc. 1972, d. elv. Chim. Acta. 1979, Three-m Chinpiao Chen 2009/3/20 11:47 36

15 X X hν X heat X X X =, 70% X =, 90% X =, 200 o C, 80%. X =, 140 o C, 87%. Thermal and photochemical isomerization of 3-phenylazirines bearing conjugative substituents. Internal addition of nitrile ylides derived from azirines. 5.5 Diaziridines and 3-diazirines 4 diaziridine 3-diazirine Ag 2 hν heat 05-Three-m Chinpiao Chen 2009/3/20 11:47 37

16 Et p-ts liq. 3 F 3 C F 3 C Et Tetrahedron Lett. 2000, ynthesis of diaziridines 2 - ynthesis of 3-chlorodiaziridines from amidines Li, 2, a 2 2, DM, pentane J. Am. Chem. oc, 1992,959. irradiation Tetrahedron lett. 1998, xaziridines ArC 3 C 2 Tetrahedron Lett. 1998, C 2 05-Three-m Chinpiao Chen 2009/3/20 11:47 38

17 2 3 Bull. Acad. ci. U Div. Chem. ci. 1989, 793. Et 2 a 2 C 3 Chem.. Ber. 1958, Et 2 m-cpba, K 2 C 3, 2 2 J. Am. Chem. oc. 1989, As reagent for asymmetric oxygen transfer, Pure Appl. Chem. 1993, C Boc Boc Tetrahedron Lett. 1998, KMD 2 Tetrahedron, 1998, Et 2 C Et 2 C Et 2 C M M Et 2 C Tetrahedron Lett. 1988, Three-m Chinpiao Chen 2009/3/20 11:47 39

18 5.7 Azetidines and azetidinones Ts C 2 Et Br C 2 Et Ts P 3 J. rg. Chem. 1981, C C 2 = C 2 = 2 C 2 C 2 Ac C 2 2 C 2 2 C C a + C C 2 - C 2 05-Three-m Chinpiao Chen 2009/3/20 11:47 40

19 2 C LDA, 2 C TF, -78 o C C 2 Cbz Flavobacterium buteocens enzyme 2 C C 2 Cbz Cbz +, 2 C optically active Cbz 1. 2, Pd/C 1. ab 4 2. TM, TEA, Et 2 2. Ac 2, Py 2 C Cbz Cr 3, Py - ) 2 Mg C 2 PB = TM 2 1. Ts 3, TEA, C 3 C 2. 1, P() 2, DMAP 2 h 2 (Ac) 4 C 2 PB benzene C 2 PB 1. ai P(P) 2 2. (E)- Ag- C=C- Ac C 2 PB C 2 PB Ac 1. MCPBA 2. TLC sepn. C 2 PB Ac 2, Pd/C Ac C 2 (-)-Carpetimycin A 5.8 ther four-membered heterocycles xetanes 05-Three-m Chinpiao Chen 2009/3/20 11:47 41

20 obafluorin 2 conc (major) + (minor) 2 C CC 2 C 2 2 C C 2 2 C Thietanes Br ( 2 ) 2 C a + 2 Et Br - Br 05-Three-m Chinpiao Chen 2009/3/20 11:47 42

21 benzothietane naphtho[1,8-bc]thiete 700 o C C Torr J. Chem. oc. 1952, Tetrahedron Lett. 1980, C 2, Pb(Ac) 4 C 2 2, rt... J. Chem. oc. Perkin Trans.1, 1981, ome unsaturated four-membered rings C 2 C 2 oxete thiete 2,3-dihydroazete dimethyl 1,2-dihydrodiazete- 1,2-dicarboxylate 05-Three-m Chinpiao Chen 2009/3/20 11:47 43

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab Education Experience Fraser Fleming University of Drexel Pavel agory University of Michigan Cambridge University,

More information

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H VIBLATIE 2 C 1 C 2 Ac a 3: catharanthine C 2 Ac C 2 2: ( )-vindoline xidation 5' 2 C 3' 16' 20' Ac C 2 1: (+)-vinblastine b 4 C 2 TFAA, -50 C Polonovski fragmentation 6' 5' 16' C 2 5 TFA 4' 3' 15' 16'

More information

CEM 852 Final Exam. May 6, 2010

CEM 852 Final Exam. May 6, 2010 CEM 852 Final Exam May 6, 2010 This exam consists of 7 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 150. n answering your questions,

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S Generalized igmatropic Processes [3,3]-sigmatropic Processes 1 3,=C,,, 1 3 3,=C,,, 3 [2,3]-sigmatropic Processes 1 3,=C,,, 1 3 Ene eactions 1 3 1 3 Cope earrangement [3,3]- igmatropic earrangements Transition

More information

Comparative Synthesis of Ingenol. Tyler W. Wilson SED Group Meeting

Comparative Synthesis of Ingenol. Tyler W. Wilson SED Group Meeting Comparative Synthesis of Ingenol Tyler W. Wilson SED Group eting 2.27.07 Ingenol: Biology, Isolation, and istory During WWII a latex was manufactured by precipitating the milky juice of the Euphorbia Ingen

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

Hennoxazole A. Philip Williams Group Meeting December 12, OMe. OMe 1 6 O H

Hennoxazole A. Philip Williams Group Meeting December 12, OMe. OMe 1 6 O H ennoxazole A 1 6 11 17 24 Philip Williams Group eting December 12, 2007 Discovered Discovered by Paul cheuer at the University of awaii in 1991. Isolated 480mg ennoxazole A from 4.5kg from the sponge Polyfibrospongia

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

JACS 1982: A Survey of Papers with a Focus on Synthetic Organic Chemistry

JACS 1982: A Survey of Papers with a Focus on Synthetic Organic Chemistry JAC 1982: A urvey of Papers with a Focus on ynthetic rganic Chemistry Baran Lab Group eting 15 ctober 2003 Carlos A. Guerrero eagents and thods 1 2 [] 2 2 1 1 PhC, Et 3 2 [] 2 1 2 1 By 1982, the [3 + 2]

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities. Problem session (3) Daiki Kuwana Please fill in the blank and explain reaction mechanisms and stereoselectivities. 1. 1-1 1. (Ac) 2 (10 mol%), DPEphos (20 mol%) Et 3, toluene, 90 C 2. s 4 (14 mol%), M;

More information

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis Asymmetric Lewis Base trategies for eterocycle ynthesis Dr Andrew mith EatCEM, chool of Chemistry, University of t Andrews 1st cottish-japanese ymposium of rganic Chemistry, University of Glasgow Friday

More information

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols B() 2 H H B() 2 H H Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

Total Syntheses of Minfiensine

Total Syntheses of Minfiensine Total Syntheses of Minfiensine Douany, A. B.; umphreys, P. G.; verman, L. E.*; Wrobelski, A. D., J. Am. Chem. Soc. 2008, ASAP. D: 10.1021/ja800163v Shen, L.; Zhang, M.; Wu, Y.; Qin, Y.*, Angew. Chem. nt.

More information

CEM 852 Exam LDA, THF, 0 C, 15 min; then

CEM 852 Exam LDA, THF, 0 C, 15 min; then CEM 85 Exam- April, 005 This exam consists of 5 pages. Please write ALL your answers in the answer books. Please write legibly and draw all structures clearly. Good luck. 1. Provide examples of the following

More information

CHEM 234: Organic Chemistry II Reaction Sheets

CHEM 234: Organic Chemistry II Reaction Sheets EM234:rganichemistry eactionsheets ucleophilic addition at carbonyl groups: Grignards and reducing agents u: u u u: u u = or = or l u u u ucleophilic addition at carbonyl groups: oxygen and nitrogen nucleophiles:

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition A ew Strategy for Efficient Synthesis of Medium and Large ing Lactones without High Dilution or Slow Addition BF 3 Et 2 TIPS 2,4,6-collidine n + n+2 ' ' Zhao, W.; Li, Z; Sun, J. J. Am. Chem. Soc. 2013

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

Molecular Rearrangements

Molecular Rearrangements Ø Migration of one the molecule group from one atom to another within Ø Generally the migrating group never leaves the molecule Ø There are five types of skeletal rearrangements- 1. Electron deficient

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives ynthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives Russell C. mith Denmark Group Meeting 8-9-2005 most extensive project in organic synthesis this phenomenon is

More information

CEM 852 Exam-2 April 11, 2015

CEM 852 Exam-2 April 11, 2015 CEM 852 Exam-2 April 11, 2015 This exam consists of 6 pages. Please make certain that your exam has all of the necessary pages. Total points possible for this exam are 100. In answering your questions,

More information

Julio Alvarez-Builla, Juan Jose Vaquero,

Julio Alvarez-Builla, Juan Jose Vaquero, Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and Jose Barluenga Modern Heterocyclic Chemistry Volume 1 WILEY- VCH WILEY-VCH Verlag GmbH & Co. KG aa List of Contributors XV Volume 1 1 Heterocyclic

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Mechanism Problem. 1. NaH allyl bromide, THF N H

Mechanism Problem. 1. NaH allyl bromide, THF N H Mechanism Problem 1. a allyl bromide, TF 2. 9-BB (1.2 equiv), TF, rt; ame (1.2 equiv); t-buli (2.4 equiv), TMEDA (2.4 equiv) 30 to rt; allyl bromide; 30% 2 2, aq. a, 0 C (58% yield) Mechanism Problem 9-BB

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

transmetallate displace ox. add. M + (insert) (β-elim.)

transmetallate displace ox. add. M + (insert) (β-elim.) Chapter IV. Transition Metal σ-alkyl Complexes I. General For much of the rest of this course it will be necessary to understand how σ-alkyl metal complexes are formed and how they react. This is summarized

More information

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH Asymmetric Total Synthesis of ( )-Plicatic Acid via a Highly Enantioselective and Diastereoselective Nucleophilic Epoxidation of Acyclic Trisubstituted lefins H H H H CH ( )-Plicatic Acid H H Sun, B.F.;

More information

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts Synthetic Methodology Using Tertiary osphines as Nucleophilic Catalysts 1 3 2 u 2 (P 3 ) 3 4 1 2 D. Ma, X. Lu 1988 1 2 Pd 2 (dba) 3.CCl 3 /P 3 /Ac or Pd(Ac) 2 /P 3 1 2 B. M. Trost 1988 1 3 2 u 2 (P 3 )

More information

Conjugate (1,4-) addition

Conjugate (1,4-) addition 1 Conjugate (1,4-) addition uc R 1 R 2 uc R 1 R 2 uc R 1 E R 2 E ucleophilic attack on C=C bond normally requires electron deficient alkene Know as 1,4-addition or conjugate addition As enolate formed

More information

JOC Year-in-Review, 1984

JOC Year-in-Review, 1984 Baran Lab Group eting JC Year-in-eview, 198 Y oshihiro Ishihara Statistics for J. rg. Chem. 198, Volume 9, Issues 1-26: 1313 Papers 1 erbert C. Brown 8 Albert Padwa 8 Leo A. Paquette 7 Dale L. Boger 7

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 18, 2013 Your name: This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4.

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

R or S? oxidation #: hybridization:

R or S? oxidation #: hybridization: Remember Lone pair-assisted ionization. ame 15 F07-Exam o. 1 Page I. (0 points) The following compounds are those used in our study on the enzymatic transformation of cholesterol to pregnenolone. 1) Designate

More information

Organic Tutorials 3 rd Year Xmas Vac

Organic Tutorials 3 rd Year Xmas Vac rganic Tutorials 3 rd Year Xmas Vac Third Year Reactive Intermediates: Radicals, Arynes, Carbenes etc. Radicals References: Moody and Whitham Reactive Intermediates, xford Chemistry Primer 8; Carey and

More information

Olefin-Forming Reactions I

Olefin-Forming Reactions I C549 R.M. Williams lefin-forming Reactions I The McMurry lefination Reaction. An important alternative to the acyloin condensation is the McMurry olefination which is a free radical coupling reaction initiated

More information

R or S? 2) oxidation numbers of the designated carbon atoms: note: An oxidation number must have a sign. F 3 C OCH 3 oxidation #: OH.

R or S? 2) oxidation numbers of the designated carbon atoms: note: An oxidation number must have a sign. F 3 C OCH 3 oxidation #: OH. ame 5 F0-Exam o. Page I. ( points) The following compounds are those used in our study on the mechanism of the chemical carcinogenesis of benzo[a]pyrene. ) Designate in each of the boxes below the stereochemistry

More information

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure Chapter 12 Alcohols from Carbonyl Compounds xidation-eduction & rganometallic Compounds Created by Professor William Tam & Dr. Phillis Chang Structure ~ 120 o ~ 120 o C ~ 120 o Carbonyl carbon: sp 2 hybridized

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

Abstracts VII. Phthalocyanines and Related Compounds. M. S. Rodr guez-morgade and T. Torres

Abstracts VII. Phthalocyanines and Related Compounds. M. S. Rodr guez-morgade and T. Torres VII p1 thalocyanines and Related Compounds 17.9.24 M.. Rodr guez-morgade and T. Torres This review updates the original cience of ynthesis chapter (ection 17.9) on phthalocyanines and various ring-fused,

More information

Suggested solutions for Chapter 30

Suggested solutions for Chapter 30 s for Chapter 30 30 PRBLEM 1 uggest a mechanism for this synthesis of a tricyclic aromatic heterocycle. 2 Cl base A simple exercise in the synthesis of a pyridine fused to a pyrrole (or an indole with

More information

Structure and Reactivity: Prerequired Knowledge

Structure and Reactivity: Prerequired Knowledge Structure and eactivity: Prerequired Knowledge!!! The concepts presented in this summary are required for lecture and examination!!! 1. Important Principles in rganic Chemistry In general, structures which

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon 11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon Seth B. erzon, Liang Lu, Christina M. Woo, and Shivajirao L. Gholap J. Am. Chem. Soc. ASAP DI 10.1021/ja200034b Melissa Sprachman Current

More information

Lecture 1 ADVANCED SYNTHESIS Stereochemistry Introduction

Lecture 1 ADVANCED SYNTHESIS Stereochemistry Introduction ecture 1 ADVACED YTEI tereochemistry Introduction ne of the most important issues in modern organic synthesis ost natural compounds are enantiomerically pure Frequently different enantiomers have different

More information

3.7. Pyridinium Chloro Chromate (PCC):

3.7. Pyridinium Chloro Chromate (PCC): xidation 3.7. Pyridinium hloro hromate (P): 97 l l r r 3 r l P is a very important oxidising reagent which will give controlled oxidation in the case of primary alcohol. It does not give over oxidation

More information

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012 A 1,3 Strain and the Anomeric Effect Michael Shaghafi Chem. Topics Feb. 6, 2012 Introduction: Definition of A 1,3 Strain m L L m m 3 L 3 1 1 otation about σ-bond between α-stereocenter and olefin is associated

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

[3,3]-Sigmatropic rearrangements

[3,3]-Sigmatropic rearrangements 1 [3,3]-Sigmatropic rearrangements heat R 1 R 3 R 1 R 3 R 1 R 3 A class of pericyclic reactions whose stereochemical outcome is governed by the geometric requirements of the cyclic transition state Reactions

More information

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University) 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor,

More information

Reporter: Yue Ji. Date: 2016/12/26

Reporter: Yue Ji. Date: 2016/12/26 Literature Report (11) Total Synthesis of Rubriflordilactone B Reporter: Yue Ji Checker: Mu-Wang Chen Date: 2016/12/26 Yang, P.; Yao, M.; Li, J.; Li, Y.; Li, A.* Angew. Chem. Int. Ed. 2016, 55, 6964. Laboratory

More information

Problem Session(5) Please provide each reaction mechanisms and explain the stereoselectivities.

Problem Session(5) Please provide each reaction mechanisms and explain the stereoselectivities. Problem ession(5) Please provide each reaction mechanisms and explain the stereoselectivities. 2017.10.28. iroaki Matoba Boc 1.BF 3 Et 2,C 2 Cl 2,-78 C; allyltm,-78to-20 C 2.MsCl,Et 3,C 2 Cl 2,0 Ctort

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Although we won t go into this, the reactions can be regioselective if non-symmetrical alkenes are used.

Although we won t go into this, the reactions can be regioselective if non-symmetrical alkenes are used. 2.1 rganic ynthesis A. Armstrong - 2004-2005 Functional Group Interconversions - Lecture 5 ection 5: xidation of C- bonds bearing no heteroatom 5.1 xidation of allylic positions Many reagents will do this

More information

Catalytic Reactions in Organic Synthesis

Catalytic Reactions in Organic Synthesis 17 April, 2008 Catalytic eactions in rganic Synthesis hodium Complexes and edox Catalysts Koichi AASAKA, Motoki YAMAE, Shunsuke CIBA Division of Chemistry and Biological Chemistry, School of ysical and

More information

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions Chapter 5B Functional Group Transformations: The Chemistry of fcarbon-carbon C b π-bonds B d and Related Reactions Oxymercuation-Demercuration Markovnikov hydration of a double bond 1 Mechanism Comparision

More information

Section Practice Exam II Solutions

Section Practice Exam II Solutions Paul Bracher Chem 30 Section 7 Section Practice Exam II s Whether problems old r problems new, You d better practice, r you ll fail exam II. -- Anonymous TF Problem 1 a) Rank the following series of electrophiles

More information

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione Xiangbo Zhao, Wu Li, Junjie Wang, and Dawei Ma* Shanghai Institute

More information

Problem Set 2: Reactions of Carbocations - KEY

Problem Set 2: Reactions of Carbocations - KEY Problem Set 2: eactions of Carbocations - KEY Due Tuesday, 10/11/16 1. a. Formation of 1 and 2 silyl ethers is always high-yielding, but selective silylation of a single hydroxyl group can be challenging.

More information

H CH 2 -OH (4) H b. H H (5) (6) a. b.

H CH 2 -OH (4) H b. H H (5) (6) a. b. ame 215 F010-Exam o. 2 Page 2 I. (15 points) For each of the following pairs of compounds, predict which compound is more acidic. Compare the two underlined s for each pair and circle the compound that

More information

Synthetic Efforts Toward Palau'amine

Synthetic Efforts Toward Palau'amine ynthetic Efforts Toward Palau'amine Doug Behenna, Ryan McFadden Eric Ashley, Jenn tockdill Akihiko Iwashita August 9, 2004 2 2 2 Isolation of Palau'amine and Congeners R 2 R 1 R 1 R 2 2 2 2 2 2 2 R 1 =

More information

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic Journal Club (3) Tomoya akamura Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic Justin T. Malinowski, Robert J. Sharpe, Jeffrey S. Johnson Science 03, 30, 80 8.. Introduction -.

More information

(c) S. orbital is (a) 1 (b) 0 (c) +1 (d) undefined.

(c) S. orbital is (a) 1 (b) 0 (c) +1 (d) undefined. QUESTI PAPER CEMISTRY-CY Q. Q.25 : Carry E mark each.. The maximum non-pv work that a system can perform at constant P is 2. Consider the reaction : G S A A B C The unit of the thermodynamic equilibrium

More information

Short Lit

Short Lit Short Lit. - 7-12-2010 Jonathan A. Brekan a Department of Chemistry, orthwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, United States of America Citronellal Monoterpenoid distillate

More information

JOC: 1985 Year in Review

JOC: 1985 Year in Review Baran Group eting JC: 1985 Year in eview Syntheses discussed: thodoligies discussed: Quadrone 2 C (+)-irsutic Acid C (±) Coriolin (!)-Longifolene (!)-astanecine Manganese (III)-mediated "-lactone annulation

More information

CHEM 203. Final Exam December 18, 2013 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 18, 2013 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Your name: Final Exam December 18, 2013 ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3.

More information

Epoxidation with Peroxy Acids

Epoxidation with Peroxy Acids Epoxidation with Peroxy Acids RC 3 R C more reactive more likely Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M.; Rastelli, A. J. rg. Chem. 2000, 65, 2030. Singleton, D. A.; Merrigan, S. R.; Liu, J.; ouk,

More information

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide Mild Cobalt-Catalyzed ydrocyanation of lefins with Tosyl Cyanide 1 3 2 + Ts Co cat., Si 3 Et, 1-3 h, T 1 2 3 Gaspar, B.; Carreira, E. M. Angew. Chem. Int. Ed. ASAP Current Literature Kalyani Patil 12 May

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H AWER GUIDE APRIL/MAY 2006 EXAMIATI CEMITRY 249 1. (a) PDC / C 2 2 (b) t-bume 2 i (1 equiv) / imidazole (1 equiv) i TBDM protection of the less sterically hindered alcohol (c) BuLi (1 equiv) then (d) 2

More information

water methanol dimethyl ether Ether can only act as a hydrogen bond acceptor H-bond acceptor O R

water methanol dimethyl ether Ether can only act as a hydrogen bond acceptor H-bond acceptor O R Chapter 14: Ethers and Epoxides; Thiols and Sulfides 14.1 Introduction to Ethers An ether group is an oxygen atom that is bonded to two carbons. The ether carbons can be part of alkyl, aryl, or vinyl groups.

More information

Functional Group Transformations

Functional Group Transformations Ways to make esters Baeyer-Villiger oxidation Favorskii rearrangement C 2 Et aet/et mcpba Mitsunobu reaction C 2 + ' DEAD, PPh 3 C 2 ' Ph 3 P Et 2 C C 2 Et Ph 3 P Et 2 C C 2 Et Ph 3 P Et 2 C C 2 Et + C

More information

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

Heterocyclic Chemistry

Heterocyclic Chemistry Heterocyclic Chemistry Third Edition Thomas L. Gilchrist University of Liverpool 1 Longman Contents Preface to the third edition Preface to the second edition Preface to the first edition Acknowledgements

More information

LG XH. Alicyclic and Heterocyclic Chemistry. Lecture 8. Synthesis of four-membered rings (irreversible reactions only)

LG XH. Alicyclic and Heterocyclic Chemistry. Lecture 8. Synthesis of four-membered rings (irreversible reactions only) Alicyclic and eterocyclic hemistry. Lecture 8 ynthesis of four-membered rings (irreversible reactions only) Because of the strain in the rings, the syntheses of this size of ring must be irreversible just

More information

CYCLOBUTADIENE IN ORGANIC SYNTHESIS

CYCLOBUTADIENE IN ORGANIC SYNTHESIS Lit. Seminar 061129 CYCLBUTADIENE IN GANIC SYNTESIS Usage of Unstable Intermediate: Cyclobutadiene as A Case 0. Introduction (C) 3 Fe 2 steps Kenzo YAMATSUGU (M2) (+)-Asteriscanolide difficulty to use

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

Application of Two Direct C(sp 3 )-H Functionalizations for the Total Synthesis of (+)-Lactacystin

Application of Two Direct C(sp 3 )-H Functionalizations for the Total Synthesis of (+)-Lactacystin Application of Two Direct C(sp 3 )- Functionalizations for the Total Synthesis of (+)-Lactacystin two stereoselective C(sp 3 )- functionalisations 2 C S Ac (S)-pyroglutaminol (+)-lactacystin S. Yoshioka,

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

mcpba e.g. mcpba (major) Section 7: Oxidation of C=X bonds

mcpba e.g. mcpba (major) Section 7: Oxidation of C=X bonds Section 7: xidation of C=X bonds Functional Group Interconversions - Lecture 6 7.1 Epoxidation of Alkenes Epoxides are VEY useful in synthesis - the strain of the three membered ring makes these cyclic

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information