Nickel-Catalyzed Multicomponent Coupling of Alkynes. -Recent development in methodologies and applications. Zhenjie Lu. Department of Chemistry, MSU

Size: px
Start display at page:

Download "Nickel-Catalyzed Multicomponent Coupling of Alkynes. -Recent development in methodologies and applications. Zhenjie Lu. Department of Chemistry, MSU"

Transcription

1 i ickel ickel-catalyzed Multicomponent Coupling of Alkynes -ecent development in methodologies and applications Zhenjie u Department of Chemistry, MSU January 28, 2004

2 Background Introduction Conjugate addition using cuprates - well established reactions 3 i CuC 3 Cu(C)i 3 3 i CuC 3 Cu(C)i 3 Stoichiometric copper complex must be used. Alkenylcuprate are thermally unstable. The loss of double bond stereochemistry may occur. Conjugate addition using nickel-catalyzed transmetallation process 3 4 ZrCp 2 ()Cl ClCp 2 Zr 3 1) 4 2) 3 +, i(0) 4 3 up to 84% yield 1. Carey, F. A.; Sundberg,. J. Advanced rganic Chemistry. Part B, 2001, Schwartz, J.; oots, M. J.; Kosugi,. J. Am. Chem. Soc. 1980, 102, 1333.

3 Discovery of ickel-catalyzed Coupling eaction with Alkynes 'Zn ' hydrolysis cat. i ' 2 Zn cat. i 2 Zn, TMSCl '' ' TMS ' " hydrolysis ' ' Conjugate addition Tandem coupling " 1. Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994, 116, Ikeda, S.; Yamamoto,.; Kondo, K; Sato, Y. rganometallics. 1995, 14, 5015.

4 ickel Catalyzed Multi-Component Coupling of Alkynes - A General Scheme + '' ' + 2 Zn cat. i TMSCl ' " "E" "u" ' " "E", "u" i(0) "u" ' "E" " "E" = enone, enal, aldehyde, imine, C 2, epoxide "u" = (M) 1. Ikeda, S.; Sato, Y. J. Am. Chem. Soc. 1994, 116, Ikeda, S.; Yamamoto,.; Kondo, K; Sato, Y. rganometallics. 1995, 14, 5015.

5 Major Contributors in the Field i ickel Professor John Montgomery Wayne State University Intramolecular coupling of enones or enals with alkynes Professor Timothy F. Jamison Massachusetts Institute of Technology Asymmetric coupling of aldehydes, imines and epoxides with alkynes Professor Shin-ichi Ikeda agoya City University Intermolecular coupling of enones or enals with alkynes Professor Miwako Mori okkaido University Coupling of C 2 with alkynes, and aldehydes with dienes

6 utline 4 n n intra 3 intra 4 3 inter 4 i(0), (M) + 3 inter 3 C C

7 Intramolecular Coupling of Alkynes and Enones intramolecular 4 i(0), (M) n intermolecular 4 3

8 Intramolecular Coupling of Enones or Enals and Alkynes Intramolecular Cyclization of Enones with Alkynes 3 single cyclization 3 (M) without 3 (M) [2+2+2] 3 E + E [3+2]

9 Intramolecular Coupling of Enones or Enals with Alkynes Single Cyclization of Enone and Alkyne Bu 2 Zn or BuZnCl i(cd) 2 (5 mol%) Bu 2 Zn or BuZnCl i(cd) 2 (5 mol%) P 3 (25 mol%) a b Bu Alkylative coupling eductive coupling entry ligand a yield, % b yield, % Bu P 3 Bu Bu P 3 Bu Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc. 1996, 118, 2099.

10 Intramolecular Coupling of Enones or Enals with Alkynes Proposed chanism i(cd) 2 i i 3 A ZnBu 2 (transmetallation) BuZn n i with P 3 without P 3 b reductive coupling reductive elimination BuZn n i C β- elimination B reductive elimination Bu a alkylative coupling 1. Montgomery, J.; Savchenko, A. V. J. Am. Chem. Soc. 1996, 118, Montgomery, J.; blinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, Montgomery, J. Acc. Chem. es. 2000, 33, 467.

11 Intramolecular Coupling of Enones or Enals with Alkynes X-ray Structures of ickel-metallocycles i i i A B X-ray structures of the nickel-metallocycles supported the proposed mechanism. Amarasinghe, K. K. D.; Chowdhury, S. K.; eeg, M. J.; Montgomery, J. rganometallics. 2001, 20, 370.

12 Intramolecular Coupling of Enones or Enals with Alkynes Total Synthesis of Isogeissoschizoid Skeleton P(Et 2 ) 1 Et 3 Cl TIPS 1 TIPS 2 Zn i(cd) 2 (10 mol%) toluene/c 3 C 84%(95:5dr) ( +_ )-isogeissoschizoid 2 TIPS Fornicola,. S.; Subburaj, K.; Montgomery, J. rg. ett. 2002, 4, 615.

13 Intramolecular Coupling of Enones or Enals with Alkynes Alkylative Coupling - Vinyl Zr as Coupling Partner + Cp 2 ClZr 2.5 equiv. i(cd) 2 (10 mol%) 3 ZnCl 2 (20 mol%) 3 entry 3 yield, % 1 C C (C 2 ) 4 TBS 75 4 C i, Y.; Amarasighe, K. K. D.; Montgomery, J. rg. ett. 2002, 4, 1743.

14 Intramolecular Coupling of Enones or Enals with Alkynes Total Synthesis of Isodomoic Acid G Cp 2 ClZr TIPS i(cd) 2 (10 mol%) ZnCl 2 (20 mol%), 0 o C 70% TIPS 2 C 2 C 2 C Isodomoic acid G i, Y.; Amarasinghe, K. K. D.; Ksebati, B.; Montgomery, J. rg. ett. 2003, 5, 3771.

15 Intramolecular Coupling of Enones or Enals with Alkynes Discovery of [2+2+2] Cyclization i(cd) 2 (20 mol%) P 3 (40 mol%), Zn TF, 25 o C a alkylative coupling b reductive coupling c dimerization Zn yield of a yield of b yield of c (n-bu) 2 Zn trace (t-bu) 2 Zn none Proposed mechanism 1 i(cd) 2 (20 mol%) i i P 3 1 i c Seo, J.; Chui,. M. P.; eeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 476.

16 Intramolecular Coupling of Enones or Enals with Alkynes [2+2+2] Cyclization i(cd) 2 (20 mol%) P 3, TF, 25 o C 3 entry 2 product Yield (%) , 4:1dr 3 36 Seo, J.; Chui,. M. P.; eeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 476.

17 Intramolecular Coupling of Enones or Enals with Alkynes [3+2] Cyclization i(cd) 2 (100 mol%) TMEDA i E + E A not observed entry electrophile product (yield,%) entry electrophile product (yield,%) % 4 Cl 72% 2 I 72% % 72% Single diastereomer obtained in entry 1~4. 1. Chowdhury, S. K.; Amarasinghe, K. K. D.; eeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, Mahandru, G. M.; Skauge, A...; Chowdhury, S. K.; Amarasinghe, K. K. D.; eeg, M. J; Montgomery, J. J. Am. Chem. Soc. 2003, 125,

18 Intramolecular Coupling of Enones or Enals with Alkynes Proposed chanism of [3+2] Cyclization i(cd) 2 (100 mol%) i i TMEDA A' A E + E E C i E i 2 1 B Mahandru, G. M.; Skauge, A...; Chowdhury, S. K.; Amarasinghe, K. K. D.; eeg, M. J; Montgomery, J. J. Am. Chem. Soc. 2003, 125,

19 Intramolecular Coupling of Enones or Enals with Alkynes Cyclization of β- substituted enal Cascade Cyclization i(cd) 2 (100 mol%) TMEDA i i 1 61% A B single diastereomer Cyclization of α- substituted enal i(cd) 2 (100 mol%) TMEDA i i % C D single diastereomer Mahandru, G. M.; Skauge, A...; Chowdhury, S. K.; Amarasinghe, K. K. D.; eeg, M. J; Montgomery, J. J. Am. Chem. Soc. 2003, 125,

20 Intramolecular Coupling of Enones or Enals with Alkynes Proposed chanism of Two Cyclizations i(cd) 2 / i E + i E i i E E i [3+2] [2+2+2] 1. Chowdhury, S. K.; Amarasinghe, K. K. D.; eeg, M. J.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, Montgomery, J.; Amarasinghe, K. K. D.; Chowdhury, S. K.; blinger, E.; Seo, J.; Savchenko, A. V. Pure. Appl. Chem. 2002, 74, 129.

21 Intramolecular Coupling of Enones or Enals with Alkynes Summary of Intramolecular Coupling i(0) i i 3 2Zn/ 3 () E E + = TMEDA = P 3 [3+2] [2+2+2]

22 Intermolecular Coupling of Enones and Alkynes intramolecular 4 i(0), (M) n intermolecular 4 3

23 Intermolecular Coupling of Enones or Enals and Alkynes Catalytic Enantiomeric Intermolecular Coupling TMS i(acac) 2 (5 mol%) + *(10 mol%) Zn, TMSCl n n n < triglyme entry n alkyne product yield, % ee, % * t-bu 1 1 Et Et Et Et 2 2 Et Et Et Et 3 1 Si 3 Si 3 60 (100%regioselectivity) 63 Ikeda, S. I.; Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712.

24 Intermolecular Coupling of Enones or Enals and Alkynes Cyclic Cotrimerization TMS, Proposed mechanism i(0) (10mol%) TMSCl (M) + i(acac) 2 (5 mol%) P 3 (10 mol%) 3 Al/, egioselectivity is highly substrate dependent. i Al i Al A i trimerization product i C 1. Ikeda, S. I.; Mori,.; Sato, Y. J. Am. Chem. Soc. 1997, 119, Ikeda, S. I. Acc. Chem. es. 2000, 33, 511. B

25 Intermolecular Coupling of Enones or Enals and Alkynes Control of egioselectivity in Trimerization with the Same Alkyne n + 2 equiv. 1)i(acac) 2 (10 mol%) / 3 Al/ 2)DBU, in air + + n n n a b c entry ligand n yield, % (a + b) ratio (a : b) 1 P 3 2 Bu 83 92:8 A 2 A 2 Bu :0 3 P 3 1 TMS 33 0:100 4 A 1 TMS 69 96:4 5 P 3 1 t-bu 45 11:89 6 A 1 t-bu :0 1. Mori,.; Ikeda, S. I.; Sato, Y. J. Am. Chem. Soc. 1999, 121, Ikeda, S. I.; Kondo,.; Mori,. Chem. Commun. 2000, 815.

26 Intermolecular Coupling of Enones or Enals and Alkynes Control of Enantioselectivity in Trimerization with the Same Alkyne X + i(acac) 2 (5 mol%) * (10 mol%) 3 Al/ (40 mol%) TF, rt X A higher yield lower ee or B lower yield higher ee entry X ligand product yield, % ee, % 1 A C 2 n-bu Bu 2 B egioselectivity > 95:5 in every example. Ikeda, S. I.; Kondo,.; Arii, T.; dashima, K. Chem. Commun. 2002, A C 2 t-bu 4 B t Bu A C 2 t-bu 6 B t Bu Bu t Bu t Bu

27 Intermolecular Coupling of Enones or Enals and Alkynes Summary of Intermolecular Coupling i i(0) *,TMSCl, Zn i 3 Al/, * trimerization

28 Coupling of Aldehydes and Alkynes intramolecular i(0), (M) + 3 intermolecular n 3

29 Coupling of Aldehydes and Alkynes Introduction to The Coupling of Aldehydes and Alkynes i i (M) A i i? (M) B Tsuda, T.; Kiyoi, T.; Saegusa, T. J. rg. Chem. 1990, 35, 2554.

30 Coupling of Aldehydes and Alkynes Catalytic eductive Coupling of Aldehydes 3 < 2 equiv. + i(cd) 2 (10 mol%) Bu 3 P (20 mol%) Et 3 B (200 mol%) toluene, rt 3 entry 3 product yield, %(regioselectivity) 1 n-ex ex 76% (96:4) 2 o-tolyl 83% (93:7) 3 n-pr Pr 85% (92:8) 4 n-ept Si 3 ept 89% (>98:2) Si 3 uang, W. S.; Chan, J.; Jamison, T. F. rg. ett. 2000, 2, 4221.

31 Coupling of Aldehydes and Alkynes Proposed chanism 3 + n i(0) large substituent i 3 small substituent (or tether chain) 3 i 4 (M) (transmetallation) n i (M) 3 1 D = PBu 3 β- elimination n i 4 (M) 3 1 C = TF 4 3 reductive coupling 3 alkylative coupling blinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065.

32 Coupling of Aldehydes and Alkynes Catalytic Asymmetric Coupling of Aliphatic Alkynes + 3 < 2 equiv. i(cd) 2 (10 mol%) * (10 mol%) Et 3 B (200 mol%) EtAc, rt 3 a + 3 b Fe P A entry ligand 3 product yield,% (a : b) ee, a (%) ee, b (%) 1 A i-pr Cy 65 (2.2:1) A n-pr Cy 30 (2.2:1) A n-pr n-pr /A Proposed mechanism i-pr Cy i BEt 3 P Fe Cy P i 3 β- elimn. i-pr BEt 3 Cy P 3 i BEt 2 i-pr reductive elimn. Cy i-pr Colby, E. A.; Jamison, T. F. J. rg. Chem. 2003, 68, 156.

33 Coupling of Aldehydes and Alkynes Catalytic Asymmetric Coupling of Aromatic Alkynes + 3 < 2 equiv. i(cd) 2 (10 mol%) * (20 mol%) Et 3 B (200 mol%) EtAc:DMI(1:1) 3 a + 3 b P 2 (+)-MDPP entry 3 alkyne yield,%(a : b) ee of a (%) 1 i-pr 95 (>95:5) 90 2 i-pr C 2 Boc 60 (>95:5) 96 DMI 3 n-pr 4 82 (>95:5) (91:9) 73 5 i-pr Miller, K. M.; uang, W. S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442.

34 Coupling of Aldehydes and Alkynes Proposed Model for Enantio- and egioselectivity sterically disfavored, electronically favored sterically and electronically disfavored i P i P sterically favored electronically disfavored A i P B i P sterically and electronically favored C D D P 3 i Et 3 B major 1. Miller, K. M.; uang, W. S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, Whittall, I..; umphrey, M. G.; Samoc, M.; uther-davies, B.; ockless, D. C.. J. rganomet. Chem. 1997, 544, 189.

35 Coupling of Aldehydes and Alkynes Total Synthesis of (-)-Terpestacin + 3 Si Co(C) 3 TIPS I Si 3 Co(C) 3 1 P Ac 2 2 TBS 1 Fe ()-A i(cd) 2 (10 mol%) ()-A (10 mol%), Et 3 B 70% combined (dr 3:1; regio: 2:1) TBS 3 Si 2 (-)- Terpestacin Chan, J.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125,

36 Coupling of Aldehydes and Alkynes Total Synthesis of (+)-Allopumiliotoxin 339A SEM + Br Bn i(cd) 2 (10 mol%) PBu 3, Et 3 Si, TF 93% (+)-Allopumiliotoxin-339A Bn TES Tang, X.Q.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6950.

37 Coupling of Aldehydes and Alkynes Two-Step Four-Component Coupling i(acac) 2 ( mol%) DIBA- TMSCl Bu 3 Sn 3 via 4 i(cd) 2 / ( mol%) Zn or 3 B via i i entry 3 % yield of 1 % yield of 2 (dr) 1 n-hexyl (Et 3 B) PBu ( 2 Zn) none 63 74(2.7:1) 3 ( 2 Zn) none 67 80(5.3:1) ozanov, M.; Montgomery, J. J. Am. Chem. Soc. 2002, 124, 2106.

38 Coupling of Aldehydes and Alkynes Summary of Coupling eaction Between Aldehydes and Alkynes i i(0) inter/ intramolecular i reductive coupling *, 3 B alkylative coupling Zn 2 or B 3

39 Coupling of ther Electrophile Equivalents and Alkynes ther Electrophile Equivalents i(0), (M) 3 i 2 (M) C i 4 i i C (M) (M) (M)

40 Coupling of ther Electrophile Equivalents and Alkynes Coupling of Alkynes and C 2 + C 2 1)1 equiv. i(cd) 2 2 equiv. DBU 2) 2Zn or ZnX C 2 53 ~ 81% yield C 2 =, Bz, Bu,, alkylative product; = Et, major product is reductive coupling product. An efficient way to prepare β,β -disubstituted α,β-unsaturated acid under mild conditions. Proposed mechanism + C 2 i(0) i C i A -ZnX i Zn X C ZnX i B ZnX Takimoto, M.; Shimizu, K.; Mori, M. rg. ett. 2001, 3, 3345.

41 Coupling of ther Electrophile Equivalents and Alkynes Total Synthesis of Erythrocarine Boc Boc C Br Si 3 1)C 2, 1.1equiv. i(cd) equiv. DBU, 0 o C TMS2)C 2 2 ZnCl 69%(2 steps) TMS C 2 ( +_ )-Erythrocarine Ac Shimizu, K.; Takimoto, M. Mori, M. rg. ett. 2003, 5, 2323.

42 Coupling of ther Electrophile Equivalents and Alkynes Imine as Electrophile Equivalent i(cd) 2 (5 mol%) Cyp 3 P (5 mol%) Et 3 B (300 mol%) Ac/ Et 3 a b 4 entry product yield (%) a : b regioselectivity Et 1 o-tol Et 2 (p-cf 3 )C :6 90: :4 89:11 Et 3 C :6 91:9 Et 4 npr npr Et Bu 5 npr c-c 6 11 npr 91 94:6-52 >96:4-1. Patel, S. J.; Jamison, T. F. Angew.Chem. Int. Ed. 2003, 42, Miller, K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron: Asymm. 2003, 14, 3619.

43 Coupling of ther Electrophile Equivalents and Alkynes Imine as Electrophile Equivalent Proposed mechanism + Ar i(cd) 2 (5 mol%) (+)-MDPP (20 mol%) Et 3 B (300 mol%) Ac/ P 2 (+)-MDPP Et a Ar + b Ar ee of a ee of b p-clc P-CF 3 C Ar Et a BEt 2 Ar 2 a and b were isolated in identical ee. 1. Patel, S. J.; Jamison, T. F. Angew.Chem. Int. Ed. 2003, 42, Miller, K. M.; Molinaro, C.; Jamison, T. F. Tetrahedron: Asymm. 2003, 14, i P 3 3 P Et i BEt2 reductive elimination Ar + Ar Et 3 B i P 3 Ar BEt 2 1 Ar P 3 i BEt2 β- elimination b P 3 i BEt2 BEt 2 Ar reductive elimination Ar

44 Coupling of ther Electrophile Equivalents and Alkynes Epoxide as Electrophile Equivalent i(cd) 2 (10 mol%) Bu 3 3 P (20 mol%) + 3 Et 3 B (200 mol%) < up to 71% yield, 3 = aryl, alkyl > 95:5 regioselectivity = alkyl > 99% ee Proposed mechanism + 3 n i-p 3 3 P i A 3 P 3 i B 3 Et 3 B i P 3 Et i P 3 BEt 2 BEt Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076.

45 Multicomponent Coupling of Alkynes Summary 3 n n intra 3 inter 3 i(0), (M) + 3 intra inter * 3 C 2 C 2 *

46 Multicomponent Coupling of Alkynes ecent Applications in Total Synthesis ( +_ )-Isogeissoschizoid Skeleton 2 C 2 C i 3 i 3 2 C Isodomoic acid G X i (-)-Terpestacin (+)-Allopumiliotoxin-339A ( +_ )-Erythrocarine

47 Multicomponent Coupling of Alkynes Future Development Alkylative coupling of aldehyde 3 4 i(0), 4 (M) 3 (More complicated 4 ) Coupling of ketone for the generation of tetra-substituted alkene & tertiary allylic alcohol i(0), 5 (M) 3 4

48 Multicomponent Coupling of Alkynes Future Development Tandem coupling-aldol condensation TMS n Mukaiyama aldol n Control of absolute stereochemistry * or E 2 i(0) i(0), 3 (M) chiral * [2+2+2] [3+2] 3 ()

49 Acknowledgement Professor William Wulff Professor Jetze Tepe Wulff Group mbers: Friends: Jie Mannish Chunrui Zhensheng Gang Keith Kostas Yu Victor Glenn Vijay ewman eddy Alex Feng Yana Jun Tao Chang ingling Xiaoyu ei Jason

Catalytic Reductive Coupling Reactions. Erin Vogel Michigan State University 3:00 p.m. 28 September 2005

Catalytic Reductive Coupling Reactions. Erin Vogel Michigan State University 3:00 p.m. 28 September 2005 Catalytic eductive Coupling eactions rin Vogel Michigan State University 3:00 p.m. 28 September 2005 eductive ydrogenation 3P h P3 P3 Wilkinson s Complex 3P P3 h P3 2 P3 P3 h P3 P3 3P h P3 fast P3 h 3P

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides ickel-catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides Eunjae Shim Zakarian Group Literature Talk / Dec 13 th, 2018 University of California, Santa Barbara Table of Contents

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University) 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor,

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Mechanism and Transition-State Structures for Nickel- Catalyzed Reductive AlkyneAldehyde Coupling Reactions

Mechanism and Transition-State Structures for Nickel- Catalyzed Reductive AlkyneAldehyde Coupling Reactions Mechanism and Transition-State Structures for Nickel- Catalyzed Reductive AlkyneAldehyde Coupling Reactions The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

Asymmetric Deprotonation

Asymmetric Deprotonation ( )-sparteine i-pr, t 2, -98 C 84% ee Asymmetric Deprotonation gands, Bases, and Applications CF 3 TMS t-bu TMSCl, MPA TF, -100 C t-bu 93% ee Fe (i-pr) 2 1. n-bu ( )-sparteine t 2, -78 C 2. 2 PCl P 2 Fe

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

transmetallate displace ox. add. M + (insert) (β-elim.)

transmetallate displace ox. add. M + (insert) (β-elim.) Chapter IV. Transition Metal σ-alkyl Complexes I. General For much of the rest of this course it will be necessary to understand how σ-alkyl metal complexes are formed and how they react. This is summarized

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Spiro Monophosphite and Monophosphoramidite Ligand Kit Spiro Monophosphite and Monophosphoramidite Ligand Kit metals inorganics organometallics catalysts ligands custom synthesis cgm facilities nanomaterials 15-5162 15-5150 15-5156 15-5163 15-5151 15-5157

More information

Organocopper Chemistry

Organocopper Chemistry rganocopper Chemistry ave a great historical importance, but still remain highly useful reactions. If not the first organometallic reactions developed they are among the first. Most often used in conjugate

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage henium-catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage Kuninobu, Y.; Takata,.; Kawata, A.; Takai, K. rg. Lett. ASAP Et 5 6 cat. [ebr(c) 3 (thf)] 2 5 6 Current Literature

More information

Regioselective Reductive Cross-Coupling Reaction

Regioselective Reductive Cross-Coupling Reaction Lit. Seminar. 2010. 6.16 Shinsuke Mouri (D3) Regioselective Reductive Cross-Coupling Reaction Glenn C. Micalizio obtained a Ph.D. at the University of Michigan in 2001 under the supervision of Professor

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Ready; Catalysis Conjugate Addition

Ready; Catalysis Conjugate Addition eady; Catalysis Conjugate Addition Topics covered 1. 1,4 addition involving copper a. stoichiometric reactions b. catalytic reactions c. allylic substitution. Conjugate addition without copper a. Ni-based

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols B() 2 H H B() 2 H H Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.

More information

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chem 253 Problem Set 7 Due: Friday, December 3, 2004 Chem 253 roblem Set 7 ue: Friday, ecember 3, 2004 Name TF. Starting with the provided starting material, provide a concise synthesis of. You may use any other reagents for your synthesis. It can be assumed

More information

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts Synthetic Methodology Using Tertiary osphines as Nucleophilic Catalysts 1 3 2 u 2 (P 3 ) 3 4 1 2 D. Ma, X. Lu 1988 1 2 Pd 2 (dba) 3.CCl 3 /P 3 /Ac or Pd(Ac) 2 /P 3 1 2 B. M. Trost 1988 1 3 2 u 2 (P 3 )

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide Mild Cobalt-Catalyzed ydrocyanation of lefins with Tosyl Cyanide 1 3 2 + Ts Co cat., Si 3 Et, 1-3 h, T 1 2 3 Gaspar, B.; Carreira, E. M. Angew. Chem. Int. Ed. ASAP Current Literature Kalyani Patil 12 May

More information

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)- Literature Report Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)- aseseazines A and B Reporter: Mu-Wang Chen Checker: Zhang-Pei Chen Date: 2013-05-28 Reisman,

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44% VII Abstracts 2010 p1 2.4.12 Arene rganometallic Complexes of Chromium, Molybdenum, and Tungsten M. Uemura This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (h 6 -Arene)chromium

More information

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group 1/12 Branched-egioselective ydroformylation with Catalytic Amounts of a eversibly Bound Directing Group h(i)/me C/ 2 MS 4A branched major by Christian U. Grünanger and Bernhard Breit Angew. Chem. Int.

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Catalysis by Group IV Elements CHEM 966 (Tunge) Good reference: Titanium and Zirconium in Organic Synthesis Ilan Marek Ed., 2002.

Catalysis by Group IV Elements CHEM 966 (Tunge) Good reference: Titanium and Zirconium in Organic Synthesis Ilan Marek Ed., 2002. Catalysis by Group IV Elements CEM 966 (Tunge) Good reference: Titanium and Zirconium in rganic Synthesis Ilan Marek Ed., 2002. Electronegativity: Ti(1.54); (1.33); f(1.3) Much of the chemistry is dominated

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Selective Synthesis of Multisubstituted Cycloheptadienes 1 2 Cat. Ni 0 1 2 Komagawa, S.; Saito, S. Angew.

More information

Mechanism Problem. 1. NaH allyl bromide, THF N H

Mechanism Problem. 1. NaH allyl bromide, THF N H Mechanism Problem 1. a allyl bromide, TF 2. 9-BB (1.2 equiv), TF, rt; ame (1.2 equiv); t-buli (2.4 equiv), TMEDA (2.4 equiv) 30 to rt; allyl bromide; 30% 2 2, aq. a, 0 C (58% yield) Mechanism Problem 9-BB

More information

Denmark Group Meeting. & Electrophilic rearrangement of amides

Denmark Group Meeting. & Electrophilic rearrangement of amides Denmark Group Meeting Palladium catalyzed Dearomatizationeaction & Electrophilic rearrangement of amides 11 th Bo Peng th Feb. 2014 1 https://maps.google.com 2 Palladium catalyzed Dearomatization eaction

More information

Total Synthesis of ( )-Virginiamycin M2

Total Synthesis of ( )-Virginiamycin M2 Total Synthesis of ( )-Virginiamycin M2 Jie Wu and James S. Panek, Angewandte Chemie International Edition, 2010, 49, 6165-6168 btained from the CDC Public ealth Image Library. Image credit: CDC/Dr. David

More information

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002 Ynolate Chemistry While enolates have numbered among the most important reagents of organic chemistry for more than a century, ynolates have hitherto remained unknown although their chemistry should be

More information

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol eactions atjen, L. Garcia-Garcia, P., Lay, F., Beck, M. E., List, B.; Angew. Chem. Int. Ed. 2010, ASAP. Convergent Total

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

Literature Report III

Literature Report III Literature Report III Regioselective ydroarylation of Alkynes Reporter: Zheng Gu Checker: Cong Liu Date: 2017-08-28 Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc. 2017,

More information

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed CEM 330 Final Exam December 5, 2014 Your name: ASWERS This a closed-notes, closed-book exam The use of molecular models is allowed This exam consists of 12 pages Time: 2h 30 min 1. / 30 2. / 30 3. / 30

More information

Suggested solutions for Chapter 34

Suggested solutions for Chapter 34 s for Chapter 34 34 PRBLEM 1 Predict the structure of the product of this Diels- Alder reaction. C 2 +? 3 Si Can you deal with a moderately complicated Diels- Alder? The diene is electron- rich and will

More information

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 1! Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang! 2! utline! 1. Brief Introduction! 2. ucleophilic Dominoes! 3. Electrophilc Dominoes! 4. Radical

More information

eatles Oasis - 199

eatles Oasis - 199 eatles - 1964 asis - 199 Biography 2001-present: University of 1997-2000: Professor, Shef 1988-1997: Various Reader 1986-1988: Post-doc with G 1983-1986: D at Universi 1983: Undergrad at Cambrid Enantioselective

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold Tandem h(i)-catalyzed [(5+2)+1] Cycloaddition/Aldol eaction for the Construction of Linear Triquinane Skeleton: Total Syntheses of (+)-irsutene and (+)-1- Desoxyhypnophilin JACS ASAP Article: Published

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009 Nucleophilic Heterocyclic Carbene Catalysis Nathan Werner Denmark Group Meeting September 22 th, 2009 Thiamine Thiamine Vitamin B 1 The first water-soluble vitamin described Is naturally synthesized by

More information

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute lefin Metathesis MP: ing-opening metathesis polymerization Thermodynamically favored for 3,4, 8, larger ring systems Bridging groups (bicyclic olefins) make ΔG polymerization more favorable as a result

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

Scandium-Catalyzed Asymmetric Reactions

Scandium-Catalyzed Asymmetric Reactions Scandium-Catalyzed Asymmetric eactions Jimmy Wu Evans Group Seminar February 11, 2005 I. Background II. eutral BIL Ligands III. Anionic BIL Ligands IV. Pybox Ligands V. Bip yridine Ligands VI. rganop hosp

More information

π-alkyne metal complex and vinylidene metal complex in organic synthesis

π-alkyne metal complex and vinylidene metal complex in organic synthesis Literature Seminar 080220 Kenzo YAMATSUGU (D1) π-alkyne metal complex and vinylidene metal complex in organic synthesis 0. Introduction ' ' = π-alkyne metal complex vinylidene metal complex ecently, electrophilic

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation eactions of Substituted Ketenes Scott G. elson, Cheng Zhu, and Xiaoqiang Shen J. Am. Chem Soc. 2004, 126, 14-15. Michael C. Myers, Literature

More information

Non-Metathesis Ruthenium-Catalyzed Reactions for Organic Synthesis

Non-Metathesis Ruthenium-Catalyzed Reactions for Organic Synthesis on-tathesis thenium-catalyzed eactions for rganic Synthesis Tristan Lambert MacMillan Group eting May 23, 2002 I. Properties of thenium II. eductions III. xidations IV. Isomerizations V. C-C bond forming

More information

Discussion Addendum for: Nickel-catalyzed Homoallylation of Aldehydes with 1,3-Dienes

Discussion Addendum for: Nickel-catalyzed Homoallylation of Aldehydes with 1,3-Dienes DI:10.15227/orgsyn.090.0105 Discussion Addendum for: Nickel-catalyzed Homoallylation of Aldehydes with 1,3-Dienes CH anti:syn = 30:1 CH cat. Et 2 Zn anti:syn = 30:1 Prepared by Masanari Kimura.* 1 riginal

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Asymmetric Radical Reactions. Zhen Liu 08/30/2018 Asymmetric adical eactions Zhen Liu 08/30/2018 Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Organic Electron Donors

Organic Electron Donors rganic Electron onors Yang Li Zakarian esearch Group epartment of Chemistry and Biochemistry University of California, anta Barbara 11/15/2018 2 2 2 2 2 2 TAF1 TAE TAF2 TTF BPL utlines rganic Electron

More information

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles) Approaches to the Synthesis of Tetrahydropyrans (and closely related heterocycles) William Morris Literature Presentation July 6, 2004 I. Intro A Nomenclature B Prevalence in Nature C Biosynthetic Considerations

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols A Modular Approach to Polyketide Building Blocks: Cycloadditions of itrile xides and Homoallylic Alcohols rganic Letters, 2005, ASAP ina Lohse-Fraefel and Erick M. Carreira * H H H + ' 1. t-bucl, -78 C

More information

CEM 852 Exam LDA, THF, 0 C, 15 min; then

CEM 852 Exam LDA, THF, 0 C, 15 min; then CEM 85 Exam- April, 005 This exam consists of 5 pages. Please write ALL your answers in the answer books. Please write legibly and draw all structures clearly. Good luck. 1. Provide examples of the following

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition A ew Strategy for Efficient Synthesis of Medium and Large ing Lactones without High Dilution or Slow Addition BF 3 Et 2 TIPS 2,4,6-collidine n + n+2 ' ' Zhao, W.; Li, Z; Sun, J. J. Am. Chem. Soc. 2013

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes Metal Catalyzed uter Sphere Alkylations of Unactivated lefins and Alkynes Stephen Goble rganic Super-Group Meeting Literature Presentation ctober 6, 2004 1 utline I. Background Introduction to Carbometallation

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting 01-15-2008 Timothy Chang Outlines - Fundamental considerations, C-H versus C-C activation - Orbital interactions -

More information

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 4362 amashima, Y.; Sodeoka,

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Synthesis of Amphidinolide X and an Exploration of Key Reactions

Synthesis of Amphidinolide X and an Exploration of Key Reactions PJM 1/12/05 Synthesis of Amphidinolide X and an Exploration of Key eactions Lepage,.; Kattnig, E.; Furstner, A. JACS, 2004, 126, 15970-15971. 7 13 1 6 19 - Produced by marine dinoflagellates, Amphidinium

More information

A Simple Introduction of the Mizoroki-Heck Reaction

A Simple Introduction of the Mizoroki-Heck Reaction A Simple Introduction of the Mizoroki-Heck Reaction Reporter: Supervisor: Zhe Niu Prof. Yang Prof. Chen Prof. Tang 2016/2/3 Content Introduction Intermolecular Mizoroki-Heck Reaction Intramolecular Mizoroki-Heck

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F Chemistry 253 roblem et 3 Due: Friday, ctober 15th ame TF 1. For the following products of cross coupling reactions and indicated bond disconnections, please indicate a reasonable cross coupling protocol

More information