Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Size: px
Start display at page:

Download "Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds"

Transcription

1 Strategies for Catalytic Asymmetric Electrophilic a alogenation of Carbonyl Compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, amashima, Y.; Sodeoka, M. et al J. Am. Chem. Soc. 2002, 124, France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, alland,. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126, Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 5 (early view) Ali Z. Ding Advisor: Prof. W. D. Wulff May

2 Introduction a-alogenated Carbonyl Compounds Linchpins for further stereospecific manipulations alogen substituents can sometimes dramatically alter its physical, chemical and biological properties Increasingly important structural motifs in medicinal chemistry and material sciences. Me F F 3 C BMS MaxiPost Currently being assessed worldwide in phase III clinical trials for treatment of acute ischemic stoke estreich, M. Angew. Chem. Int. Ed., 2005, 44, Ibrahim,.; Togni, A. Chem. Commun. 2004,

3 Introduction Approaches to the Chiral a-alogenated Carbonyl Compounds (1) eagent-controlled halogenation: asymmetric halogenation of enolates using chiral electrophilic halogenating agents! 1 [X + ] Y 2 (2) Substrate-controlled halogenation: diastereoselective electrophilic halogenation of chiral enolates or enol ethers 1 X! 2 Y [X + ] 1 Y* 1 X! Y* 2 2 (3) Catalytic asymmetric halogenation of carbonyl compounds 1 2 Y Catalyst [X + ] 1 X! 2 Y estreich, M. Angew. Chem. Int. Ed., 2005, 44, Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,

4 oncatalytic alogenation Substrate-controlled alogenation: Use of Chiral Auxiliaries estreich, M. Angew. Chem. Int. Ed., 2005, 44, Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,

5 oncatalytic alogenation eagent-controlled alogenation: Chiral Fluorinating eagents Pioneering work: Differding, E. and Lang,. W. Tetrahehron Lett. 1988, 29, Moderate yields and low to moderate enantioselectivities Syntheses of these reagents require several steps Wong, C.-., Angew. Chem. Int. Ed., 2005, 44, 192 Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55,

6 oncatalytic alogenation eagent-controlled alogenation: Cinchona Alkaloids Fluorinating eagents [F + ] F X - [F + ] = 2BF - 4 F PhS 2 PhS 2 F Selectfluor, -fluorobenzenesulfonimide or F-TEDA or FSI Cinchona alkaloids (CA) are readily available in both pseudo-enantiomeric forms Easily prepare, more reactive Can be generated and used in situ Can be reloaded by F-TEDA or FSI and reused without loss in selectivity Can such CA be used catalytically in these reactions? Ibrahim,.; Togni, A. Chem. Commun. 2004,

7 Catalytic Asymmetric Fluorination rgano-catalytic Enantioselective Fluorination by Phase-Transfer Catalysts Kim, D. Y. and Park, E. J. rg. Lett., 2002, 4,

8 Catalytic Asymmetric Fluorination rgano-catalytic Enantioselective Fluorination by L-Proline Derevatives + F + Source * F! ab 4 F! Challenges: -fluorination of catatlyst Fluorination of substrate should be faster acemization and difluorination Both SM and product can form enamine species a-proton of product is more acidic F atom is not big enough to contribute to an added steric shielding Products are not stable to survive silica gel Screen catalysts and solvents Lower the catalyst loading Screen fluorinating reagents Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 5

9 Catalytic Asymmetric Fluorination rgano-catalytic Enantioselective Fluorination by L-Proline Derevatives Ph Ph X 14a, X= 14b, X= , TMS Ar Ar Ar= CF 3 CF 3 MTBE= FSI, 16(1mol%) MTBE, T F ab 4 Me, T F! PhS 2 PhS 2 FSI F = Pr (96%ee), Bu(91%ee), ex (96%ee), Bn(C 2 ) 3 (91%ee), Yield: 55-95% Bn (93%ee), Cy (96%ee), tbu(97%ee), 1-Ad (96%ee) In the solvents other than MTBE, catalyst 16 decomposes Products were reduced to alcohol in situ Dr. MacMillan s Work: Enantioselective rganocatalytic Direct a-fluorination: Beeson, T. D. and MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, in press True nucleophiles toward electrophilic fluorine: enols, enolates or enamines Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 5

10 Catalytic Asymmetric Fluorination Chiral Lewis Acid Catalyzed Asymmetric Fluorination Addition of sub-stoichiometric amount of Lewis acid significantly accelerates formation of fluorination product Ti-based Lewis acids are the most potent catalysts Umemoto, T et al J. Am. Chem. Soc., 1990, 112, intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39,

11 Catalytic Asymmetric Fluorination Ti 2 [,-(TADDLLato)] Catalyzed Asymmetric Fluorination 12 intermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, Ibrahim,.; Togni, A. Chem. Commun. 2004,

12 Catalytic Asymmetric Fluorination Mechanism of Ti Catalyzed Asymmetric Fluorination 12 The bidentate nature of substrates is beneficial for high facial selectivity Piana, S.; Togni, A. et al Angew. Chem., Int. Ed., 2002, 41, Ibrahim,.; Togni, A. Chem. Commun. 2004,

13 Catalytic Asymmetric Fluorination Asymmetric Fluorination Catalyzed by ther Lewis Acids 13 Alcoholic solvents can work well ot sensitive to water Catalyst can be recycled and re-used without loss of any slectivity amashima, Y.; Sodeoka, M. et al J. Am. Chem. Soc., 2002, 124,

14 Catalytic Asymmetric Fluorination Asymmetric Fluorination Catalyzed by ther Lewis Acids FIP= F 3 C CF 3 13 Ph M Ph X - 62 M= Cu, X - = Tf 63 M= i, X - = 4 Ibrahim,.; Togni, A. Chem. Commun. 2004, Ma, J.-A. and Cahard, D. Tetrahedron: Asymmetry, 2004, 15, 1007 Shibata,.; Ishimaru, T.; agai, T., Kohno, J. and T. Toru Synlett 2004,

15 Catalytic Asymmetric Chlorination & Bromination Chiral Lewis Acid Catalyzed Asymmetric Chlorination & Bromination 1 2 Me + X 5mol% 38 or 39 MeC, rt 1 2 X Me X=, up to 88%ee X= Br, up to 23%ee intermann, L. and Togni, A. elv, Chim. Acta, 2000, 83, Me I + Bn Me mol% eq py toluene, 50 o C Me Bn Me (S)-66, 67%, 71%ee With 2, (S)-66, 62%, 30%ee intermann, L. and Togni, A. elv, Chim. Acta, 2004, 87, X 10mol% 67 Et X X=, up to 77%ee X= Br, up to 82%ee Marigo, M.; Kumaragurubaran,.; Jørgensen, K. A. Chem. Eur. J. 2004,10, t-bu 2 Tf - Cu t-bu (S, S)-67 estreich, M. Angew. Chem. Int. Ed., 2005, 44,

16 Catalytic Asymmetric Chlorination & Bromination rgano-catalyzed Asymmetric Chlorination & Bromination Acyl alides Tadem halogenation/esterification process of acyl halides 67 Base TF -78 o C C 68 (2.0eq) 69(10mol%) 70 or 71 (1.0eq) TF, -78 o C Ar X 72 LG X 72 u C 68 Base 67 Ph LG - 69 Me u 69 + u Br Br Br Br LG X 74 X LG - LG + u X or 71 The choice of chlorinating agents is pivotal for the reaction to turn over France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126,

17 rgano-catalytic Asymmetric Chlorination & Bromination ptimization of eaction Conditions The choice of chlorinating agents: the window is very narrow X Unreactive: Too reactive:, 2 The choice of base: reactive, cheap, easy to handle Me 2 Me 2 Me 2 Me 2 70 C 6 5 Me 2 Me 2 C 5 C France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126,

18 rgano-catalytic Asymmetric Chlorination & Bromination Choice of Base and Summary a, 15-crown-5 69(10mol%), 70(1.0eq) TF, -78 o 5 C 6 C to rt, 4h = Ph, PhC 2, 1-p, p- 2 Ph, Et, o-ph Yield: 43-79%, ee: 90-99% ac 3, 15-crown-5 69(10mol%), 70(1.0eq) Ph, -35 o 5 C 6 C to rt, 5h = Ph, PhC 2, 1-p, p-meph Yield: 56-68%, ee: 88-91% Moderate yields, high enantioselectivity Inexpensive reagents Can be scaled up Ketenes from other sources (Wolff rearrangement) can be used as well France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126,

19 rgano-catalytic Asymmetric Chlorination Asymmetric Chlorination of Aldehydes Catalyzed by Chiral Amines examples Yield: 60-88% ee: 97-99% 78 Such cyclic transition state might enforce activation of 70 in the asymmetric environment of an e-rich enamine mediated by proton Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126,

20 rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: Catalysts and Chlorinating eagents CS L-Proline doesn t work well CS doesn t work well Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126,

21 rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: the Solvent Effects Inert to halogenation reagent ptimal selectivity, reaction rate, and chemical yield Product epimerization, formation of,-dichlorooctanal, or octanal aldol dimerization were comprehensively suppressed using these conditions Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126,

22 rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: The Scope Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126,

23 rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: b-chiral Aldehydes Internal asymmetric induction is almost completely over-compensated Selectivity is sterically and chemically good Substrate scope is broad All the reagents (70, 82 and - 82) are bench stable and commercially available Products are stable Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126,

24 rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: Jørgensen s Work Catalyst! ipr ipr CS CS 2 3c Ph 3i Ph alland,. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126,

25 rgano-catalytic Asymmetric Chlorination of Aldehydes Asymmetric Chlorination of Aldehydes: The Scope CS (1.3eq) 3c or 3i (10mol%)! C 2 2, rt, 1-10h 1 2 CS 2 3c Asymmetric Bromination & Iodination of Aldehydes 1d 1a BS 3i (10mol%) C 2 2, rt IS 3i (10mol%) C 2 2, rt! I! Br 80%ee 24%ee Ph 3i Ph alland,. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126,

26 rgano-catalytic Asymmetric Chlorination of Ketones rgano-catalyzed Asymmetric Chlorination of Ketones CS Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43,

27 rgano-catalytic Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Effects of Additives & Solvent CS Ph Ph 3i C 3 C is the best solvent Significant improvement by adding acids: Promotion of enamine formation Suppression of catalyst chlorination Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43,

28 rgano-catalytic Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: The Scope 3i (20mol%) 2-2 -PhC 2 (50mol%) CS (2eq), MeC, 20h 1 2! Ph Ph 3i CS igh e.e. Moderate yields: poly-chlorination occurs Broad substrate scope Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43,

29 Asymmetric Chlorination of Ketones Back to eagent Controlled Asymmetric Chlorination of Ketones eagent-controlled process can sometimes be competitive alternative! 1 Si X X 1 Lewis acid! X= or Chirality of auxiliary (X) could be transferred to silicon enolates Lewis acids are necessary to activate 1 Chlorinating reagents 1 can be prepared easily Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126,

30 Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Effects of X group & Si Group Zr 4 is uniquely reactive The size of X group The size of si group Yields are high (>90%) Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126,

31 Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Scope

32 Asymmetric Chlorination of Ketones Asymmetric Chlorination of Ketones: Potential to be Catalytic Si Zr 4 ( ) ( ) n n 1-p 1c 1-p 1-p 2c 1-p CF 3 S 2 CF 3 S 2 2c can be easily recovered and chlorinated back to 1c ecovered 1c can be re-used for the reaction This novel process might be extended to catalytic asymmetric variants! Zhang, Y. ; Shibatomi, K.; Yamamoto,. J. Am. Chem. Soc. 2004, 126,

33 Catalytic Asymmetric alogenation of Carbonyl Compounds Conclusions Enantioselective electrophilic a-halogenation of carbonyl compounds: a topical area of current asymmetric catalysis A new tool has presented itself to synthetic organic chemistry More applications are expected

34 To What They Should Thank? 2BF - 4 F PhS 2 PhS 2 F Dr. Togni ET Selectfluor, -fluorobenzenesulfonimide or F-TEDA or FSI Br X Br Br Br Wong, C.-., Angew. Chem. Int. Ed., 2005, 44, 192 X=, CS X= Br, BS X= I, IS Taylor, S. D.; Kotoris, C. C. and um, G. Tetrahedron, 1999, 55, Dr. Lectka Johns opkins U. Dr. MacMillan Caltech Dr. Jørgensen Aarhus U. Dr. Yamamoto U. of Chicago

"-Amino Acids: Function and Synthesis

-Amino Acids: Function and Synthesis "-Amino Acids: Function and Synthesis # Conformations of "-Peptides # Biological Significance # Asymmetric Synthesis Sean Brown MacMillan Group eting ovember 14, 2001 Lead eferences: Cheng,. P.; Gellman,

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

CATALYTIC, ENANTIOSELECTIVE, ELECTROPHILIC

CATALYTIC, ENANTIOSELECTIVE, ELECTROPHILIC CATALYTIC, EATISELECTIVE, ELECTPILIC α-fuctializati F CABYL CMPUDS eported by athan Werner September 8, 006 ITDUCTI Carbonyl compounds occupy a central role in synthetic chemistry because of the broad

More information

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives Direct rganocatalytic Enantioselective Mannich eactions of Ketimines: An Approach to ptically Active Quaternary α-amino Acid Derivatives Wei Zhang, Steen Saaby, and Karl Anker Jorgensen The Danish ational

More information

Stereoselective reactions of the carbonyl group

Stereoselective reactions of the carbonyl group 1 Stereoselective reactions of the carbonyl group We have seen many examples of substrate control in nucleophilic addition to the carbonyl group (Felkin-Ahn & chelation control) If molecule does not contain

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis Chiral Brønsted Acid Catalysis Aryl Aryl Aryl Aryl S CF 3 2 P Fe CF 3 CF 3 2 Jack Liu ov. 16, 2004 CF 3 Introduction Chiral Brønsted acid catalysis in nature: enzymes and peptides Chiral Brønsted acid

More information

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY ewis acid activation ewis base activation ISCIA ADVACED SC F GAIC CEMISTY Dual in Enantioselective Synthesis of Cyanohydrins Me A A Me UM ewis base catalysis is the process by which an electronpair donor

More information

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005 Chiral Proton Catalysis in rganic Synthesis Samantha M. Frawley rganic Seminar September 14 th, 2005 Seminar utline Introduction Lewis Acid-assisted Chiral Brønsted Acids Enantioselective protonation for

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

C H Activated Trifluoromethylation

C H Activated Trifluoromethylation Literature report C H Activated Trifluoromethylation Reporter:Yan Fang Superior:Prof. Yong Huang Jun. 17 th 2013 Contents Background Trifluoromethylation of sp-hybridized C-H Bonds Trifluoromethylation

More information

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

Asymmetric Lewis Base Strategies for Heterocycle Synthesis Asymmetric Lewis Base trategies for eterocycle ynthesis Dr Andrew mith EatCEM, chool of Chemistry, University of t Andrews 1st cottish-japanese ymposium of rganic Chemistry, University of Glasgow Friday

More information

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination Palladium-Catalyzed Electrophilic Aromatic C luorination +2 Pd II 2 B 4 C (5 mol %) SI (2 eq) MeC, rt 61%, 69:31 o:p C Yamamoto, K; Li, J.; Garber, J. A..; Rolfes, J. D.; Boursalian, G. B.; Borghs, J.

More information

Stereoselective reactions of enolates

Stereoselective reactions of enolates 1 Stereoselective reactions of enolates Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones These are

More information

Stereoselective reactions of enolates: auxiliaries

Stereoselective reactions of enolates: auxiliaries 1 Stereoselective reactions of enolates: auxiliaries Chiral auxiliaries are frequently used to allow diastereoselective enolate reactions Possibly the most extensively studied are the Evan s oxazolidinones

More information

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols B() 2 H H B() 2 H H Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.

More information

Suggested solutions for Chapter 41

Suggested solutions for Chapter 41 s for Chapter 41 41 PBLEM 1 Explain how this synthesis of amino acids, starting with natural proline, works. Explain the stereoselectivity of each step after the first. C 2 C 2 3 CF 3 C 2 2 Pd 2 C 2 +

More information

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris 1 ew Catalytic Asymmestric eactions Karl Anker Jørgensen Danish ational eserach Foundation: Center for Catalysis Department of Chemistry, Aarhus University Denmark kaj@chem.au.dk When something goes wrong

More information

Asymmetric Nucleophilic Catalysis

Asymmetric Nucleophilic Catalysis Asymmetric ucleophilic Catalysis Chiral catalyst X 2 Chiral catalyst X = alkyl, X 1 2 1 Vedejs, E.; Daugulis,. J. Am. Chem. Soc. 2003, 125, 4166-4173 Shaw, S. A.; Aleman,.; Vedejs, E. J. Am. Chem. Soc.

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College Chiral Diol Promoted Boronates Addi3on Reac3ons Lu Yan Morken Group Boston College Main Idea R R B or R R B Ar * exchange B * * or B Ar R 1 R 1 R 2 R 1 R 2 Products not nucleophilic enough nucleophilic

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University) 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor,

More information

Back to Sugars: Enzymatic Synthesis

Back to Sugars: Enzymatic Synthesis Back to Sugars: Enzymatic Synthesis Zhensheng Ding ov. 04 orthrup, A. B.; M acm illan, D. W. C. Science 2004, 305, 1752 orthrup, A. B. and MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799 orthrup,

More information

Short Literature Presentation 10/4/2010 Erika A. Crane

Short Literature Presentation 10/4/2010 Erika A. Crane Copper-Catalyzed Enantioselective Synthesis of trans-1- Alkyl-2-substituted Cyclopropanes via Tandem Conjugate Additions-Intramolecular Enolate Trapping artog, T. D.; Rudolph, A.; Macia B.; Minnaard, A.

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk Lewis Base Catalysis: the Aldol eaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk Scott E. Denmark 1975 - S.B. in Chemistry MIT (ichard. olm and Daniel S. Kemp) 1980 - D.Sc in

More information

Enantioselective Protonations

Enantioselective Protonations Enantioselective Protonations Marc Timo Gieseler 25.02.2013 15.03.2013 Group Seminar AK Kalesse 1 verview Introduction Enantioselective Protonation of Cyclic Substrates Enantioselective Protonation of

More information

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation eactions of Substituted Ketenes Scott G. elson, Cheng Zhu, and Xiaoqiang Shen J. Am. Chem Soc. 2004, 126, 14-15. Michael C. Myers, Literature

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

B X A X. In this case the star denotes a chiral center.

B X A X. In this case the star denotes a chiral center. Lecture 13 Chirality III October 29, 2013 We can also access chiral molecules through the use of something called chiral auxiliaries, which basically is a chiral attachment that you add to your molecule

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine ine-step nantioselective Total Synthesis of (+)-Minfiensine Jones, S. B.; Simmons, B.; MacMillan, D. W. C.* J. Am. Chem. Soc. 2009, ASAP. DI: 10.1021/ja906472m Kara George Wipf Group - Current Literature

More information

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Requirements for an Effective Chiral Auxiliary Enolate Alkylation Requirements for an Effective Chiral Auxiliary Enolate Alkylation 1. Xc must be low cost, and available in both enentiomeric forms 2. The cleavage of Xc from the substrate must occur under mild enough

More information

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution

Alpha Substitution and Condensations of Enols and Enolate Ions. Alpha Substitution Alpha Substitution and ondensations of Enols and Enolate Ions hap 23 W: 27, 28, 30, 31, 37, 39, 42-44, 47, 51, 54-56 Alpha Substitution Replacement of a hydrogen on the carbon adjacent to the carbonyl,

More information

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009 Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction chanisms Group eting Aaron Bailey 12 May 2009 What is a Non-Linear Effect? In asymmetric catalysis, the ee (er) of the

More information

Abstracts VII. Phthalocyanines and Related Compounds. M. S. Rodr guez-morgade and T. Torres

Abstracts VII. Phthalocyanines and Related Compounds. M. S. Rodr guez-morgade and T. Torres VII p1 thalocyanines and Related Compounds 17.9.24 M.. Rodr guez-morgade and T. Torres This review updates the original cience of ynthesis chapter (ection 17.9) on phthalocyanines and various ring-fused,

More information

Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl compounds*

Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl compounds* Pure Appl. Chem., Vol. 78, No. 2, pp. 391 396, 2006. doi:10.1351/pac200678020391 2006 IUPAC Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic O- and F-atom transfer to 1,3-dicarbonyl

More information

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama Halogen Bond Applications in Organic Synthesis Literature Seminar 2018/7/14 M1 Katsuya Maruyama 1 Contents 1. Introduction 2. Property of Halogen Bond 3. Application to Organic Synthesis 2 1. Introduction

More information

Conjugate (1,4-) addition

Conjugate (1,4-) addition 1 Conjugate (1,4-) addition uc R 1 R 2 uc R 1 R 2 uc R 1 E R 2 E ucleophilic attack on C=C bond normally requires electron deficient alkene Know as 1,4-addition or conjugate addition As enolate formed

More information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides Negishi Coupling of Secondary Alkylzinc alides with Aryl Bromides and Chlorides X X = Br, Cl 2 1 ZnBr 1, 2 = Alkyl Cat. Pd(OAc) 2 Ligand TF/Toluene rt or 60 o C 1 2 J. Am. Chem. Soc. 2009, ASAP Article

More information

Organocatalysed Sigmatropic Rearrangement. Petri Pihko Group Literature Seminar, Nicolas Probst 08/03/2011

Organocatalysed Sigmatropic Rearrangement. Petri Pihko Group Literature Seminar, Nicolas Probst 08/03/2011 rganocatalysed Sigmatropic earrangement Petri Pihko Group Literature Seminar, icolas Probst 08/03/2011 2010 Wiley-VC Verlag Gmb & Co. KGaA, Weinheim Chem. Eur. J. 2010, 16, 5260 5273 rganocatalysis and

More information

Topic 18: Nucleophilic Sigma Bonds

Topic 18: Nucleophilic Sigma Bonds Professor David L. Van Vranken Chemistry 201: rganic eaction Mechanisms I Topic 18: ucleophilic Sigma Bonds E E C E eferences: terature cited ecall the Six Types of Canonical Frontier rbitals We ve already

More information

[3,3]-Sigmatropic rearrangements

[3,3]-Sigmatropic rearrangements 1 [3,3]-Sigmatropic rearrangements heat R 1 R 3 R 1 R 3 R 1 R 3 A class of pericyclic reactions whose stereochemical outcome is governed by the geometric requirements of the cyclic transition state Reactions

More information

π-alkyne metal complex and vinylidene metal complex in organic synthesis

π-alkyne metal complex and vinylidene metal complex in organic synthesis Literature Seminar 080220 Kenzo YAMATSUGU (D1) π-alkyne metal complex and vinylidene metal complex in organic synthesis 0. Introduction ' ' = π-alkyne metal complex vinylidene metal complex ecently, electrophilic

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine -oxide rg. Biomol. Chem., 2007, 5, 3428 Luo, Z.-B.; Wu, J.-Y.; ou, X.-L.; Dai, L.-X. Ts toluene Ts 80 o C John

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof.

Kinetic Resolutions. Some definitions and examples Resolution: A process leading to the separation of enantiomers, or derivatives thereof. Material outline: For the Scientist in you: Definitions Theoretical treatment Kinetic esolutions General eferences: Vedejs, ACIEE, 2005, 3974 Jacobsen, Adv. Syn. Cat. 2001, 5 Kagan, Topics in Stereochemistry,

More information

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines Literature Report V Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines Reporter Checker Date : Xiao-Yong Zhai : Xin-Wei Wang : 2018-04-02 You,

More information

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009 Nucleophilic Heterocyclic Carbene Catalysis Nathan Werner Denmark Group Meeting September 22 th, 2009 Thiamine Thiamine Vitamin B 1 The first water-soluble vitamin described Is naturally synthesized by

More information

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04 Morita Baylis Hillman Reaction Aaron C. Smith 11/10/04 Outline 1. Background 2. Development of Asymmetric Variants 3. Aza-Baylis Hillman Reaction 4. Applications of Baylis Hillman Adducts Outline 1. Background

More information

Direct Catalytic Cross-Coupling of Organolithium

Direct Catalytic Cross-Coupling of Organolithium Literature report Direct Catalytic Cross-Coupling of Organolithium Compounds Reporter: Zhang-Pei Chen Checker: Mu-Wang Chen Date: 02/07/2013 Feringa, B.L.et al. Feringa, B. L. et al. Nature Chem. 2013,

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene VII Abstracts 2011 p1 2.12.15 rganometallic Complexes of Scandium, Yttrium, and the Lanthanides P. Dissanayake, D. J. Averill, and M. J. Allen This manuscript is an update to the existing Science of Synthesis

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Denmark Group Meeting. & Electrophilic rearrangement of amides

Denmark Group Meeting. & Electrophilic rearrangement of amides Denmark Group Meeting Palladium catalyzed Dearomatizationeaction & Electrophilic rearrangement of amides 11 th Bo Peng th Feb. 2014 1 https://maps.google.com 2 Palladium catalyzed Dearomatization eaction

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Dual enantioselective control by heterocycles of (S)-indoline derivatives* Pure Appl. Chem., Vol. 77, No. 12, pp. 2053 2059, 2005. DOI: 10.1351/pac200577122053 2005 IUPAC Dual enantioselective control by heterocycles of (S)-indoline derivatives* Yong Hae Kim, Doo Young Jung,

More information

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002 Ynolate Chemistry While enolates have numbered among the most important reagents of organic chemistry for more than a century, ynolates have hitherto remained unknown although their chemistry should be

More information

Chiral Brønsted Acid Catalysis

Chiral Brønsted Acid Catalysis another. 1 One interesting aspect of chiral Brønsted acid catalysis is that the single s orbital of hydrogen Chiral Brønsted Acid Catalysis Reported by Matthew T. Burk December 3, 2007 INTRODUCTION The

More information

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions 1. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP. 2. Storer, R. L.; Carrera, D. E.;

More information

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group

D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group D. X. Hu Towards Catalytic Enantioselective Halogenation of Alkenes Burns Group Literature Review Organic Synthesis 10, 20, 50 Years from Now? Catalytic Enantioselective Halogenation October 6 th, 2012

More information

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005

Department of Chemistry, University of Saskatchewan Saskatoon SK S7N 4C9, Canada. Wipf Group. Tyler E. Benedum Current Literature February 26, 2005 Ward, D.E; Jheengut, V.; Akinnusi, O.T. Enantioselective Direct Intermolecular Aldol Reactions with Enantiotopic Group Selectivity and Dynamic Kinetic Resolution, Organic Letters 2005, ASAP. Department

More information

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)- Literature Report Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)- aseseazines A and B Reporter: Mu-Wang Chen Checker: Zhang-Pei Chen Date: 2013-05-28 Reisman,

More information

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide Mild Cobalt-Catalyzed ydrocyanation of lefins with Tosyl Cyanide 1 3 2 + Ts Co cat., Si 3 Et, 1-3 h, T 1 2 3 Gaspar, B.; Carreira, E. M. Angew. Chem. Int. Ed. ASAP Current Literature Kalyani Patil 12 May

More information

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions 1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions 2. Copper Catalyzed One-Pot Synthesis of Multisubstituted Quinolinones Hao Wang Denmark Group Presentation

More information

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July Stereodivergent Catalysis Aragorn Laverny SED Group Meeting July 31 2018 1 Stereodivergent Catalysis In the context of asymmetric synthesis, a stereodivergent process is one that allows access to any given

More information

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol eactions atjen, L. Garcia-Garcia, P., Lay, F., Beck, M. E., List, B.; Angew. Chem. Int. Ed. 2010, ASAP. Convergent Total

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs)

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs) Catalyzed -acylation of carbamates and oxazolidinones by eteropolyacids (PAs) Ali Gharib 1,2 *, Manouchehr Jahangir 1, Mina Roshani 1 1 Department of Chemistry, Islamic Azad University, Mashhad, IRA 2

More information

Career Review of Dean Toste I. 2015/9/9 Zhi Ren

Career Review of Dean Toste I. 2015/9/9 Zhi Ren Career Review of Dean Toste I 2015/9/9 Zhi Ren Introduction F. Dean Toste, now in UC Berkeley Career: Full Professor since 2009-now Associate Professor 2006-2009 Assistant Professor 2002-2006 Faculty Scientist

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary

Chiral Auxiliaries. attach auxiliary Substrate Substrate Auxiliary Chiral Auxiliaries Previously on Advanced ynthesis... Discussed the need for stereoselective synthesis Looked at the use of resolution, the chiral pool and substrate control t there are some potential

More information

Stereoselective Organic Synthesis

Stereoselective Organic Synthesis Stereoselective rganic Synthesis Prabhat Arya Professor and Leader, Chemical Biology Program Dean, Academic Affairs, Institute of Life Sciences (An Associate Institute of University of yderabad Supported

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Enolates: Z(O,R) (O,R)- and E(O,R) (O,R)-enolates

Enolates: Z(O,R) (O,R)- and E(O,R) (O,R)-enolates Enolates: Z(,) (,)- and E(,) (,)-enolates egardless of other groups the encircled ' and - determine whether one is Z(,)- or E(,)- enolate. - - ' ' (E)-enolate (Z)-enolate Enolates: deprotonation 90 ' Most

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

i-pr 2 Zn CHO N Sato, I.; Sugie, R.; Matsueda, Y.; Furumura, Y.; Soai, K. Angew. Chem., Int. Ed. Engl. 2004, 43, 4490

i-pr 2 Zn CHO N Sato, I.; Sugie, R.; Matsueda, Y.; Furumura, Y.; Soai, K. Angew. Chem., Int. Ed. Engl. 2004, 43, 4490 Asymmetric Synthesis Utilizing Circularly Polarized Light Mediated by the otoequilibration of Chiral lefins in Conjuction with Asymmetric Autocatalysis l-cpl r-cpl (S) () Sato, I.; Sugie,.; Matsueda, Y.;

More information

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Asymmetric Radical Reactions. Zhen Liu 08/30/2018 Asymmetric adical eactions Zhen Liu 08/30/2018 Contents Introduction eactions Using Chiral Auxiliary Chiral Lewis Acid-diated eactions Transition tal-catalyzed eactions eactions Using Chiral rganocatalysts

More information

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction Reporter: Zhang Sulei Supervisors: Prof. Yang Zhen Prof. Chen Jiahua Prof. Tang Yefeng 2015-10-05 1 Contents Background

More information

Asymmetric Copper-Catalyzed Synthesis of α-amino Boronate Esters from N-tert- Butanesulfinyl Aldimines

Asymmetric Copper-Catalyzed Synthesis of α-amino Boronate Esters from N-tert- Butanesulfinyl Aldimines Asymmetric Copper-Catalyzed Synthesis of α-amino Boronate Esters from -tert- Butanesulfinyl Aldimines R BR 2 J. Am. Chem. Soc. 2008, 130, 6910. Melissa A. Beenen, Chihul An, and Jonathan A. Ellman rrent

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group Literature eport Functionalization of C(sp 3 ) Bonds Using a Transient Directing Group eporter: Mu-Wang Chen Checker: Yue Ji Date: 2016-04-05 Yu, J.-Q. et al. Science 2016, 351, 252-256. Scripps esearch

More information

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop CT402 Recent Advances in omogeneous Catalysis rganocatalysis Workshop Dr Louis C. Morrill School of Chemistry, Cardiff University Main Building, Rm 1.47B MorrillLC@cardiff.ac.uk For further information

More information

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013 Chiral Anions in Asymmetric Catalysis annah aley Burke Group Literature Seminar 13 April 2013 Key Ac2va2on Modes for Asymmetric Catalysis L M X 1 2 Coordinative interaction 'Lewis acid catalysis' Lewis

More information

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar

Corey-Bakshi. Bakshi-Shibata Reduction. Name Reaction Nilanjana Majumdar Corey-Bakshi Bakshi-Shibata Reduction Name Reaction Nilanjana Majumdar 02.27.09 utline Introduction Background CBS Reaction Application to Synthesis Introduction Born: 12 th July, 1928 in Methuen, Massachusetts,

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information