Treemaps for Directed Acyclic Graphs

Size: px
Start display at page:

Download "Treemaps for Directed Acyclic Graphs"

Transcription

1 Trmps or Dirt Ayli Grphs Vssilis Tsirs, Soi Trintilou, n Ionnis G. Tollis Institut o Computr Sin, Fountion or Rsrh n Thnology-Hlls, Vssilik Vouton, P.O. Box 1385, Hrklion, GR Gr {tsirs,strint,tollis}@is.orth.gr n Dprtmnt o Computr Sin, Univrsity o Crt, P.O. Box 2208, Hrklion, Crt, GR Gr {tsirs,strint,tollis}@s.uo.gr Astrt. Gn Ontology inormtion rlt to th iologil rol o gns is orgniz in hirrhil mnnr tht n rprsnt y irt yli grph (DAG). Trmps grphilly rprsnt hirrhil inormtion vi two-imnsionl rtngulr mp. Thy iintly isply lrg trs in limit srn sp. Trmps hv n us to visuliz th Gn Ontology y irst trnsorming th DAG into tr. Howvr this trnsormtion hs svrl unsirl ts suh s prouing trs with lrg numr o nos n sttring th rtngls ssoit with th uplits o no roun th srn. In this ppr w introu th prolm o visulizing DAG s trmp, w prsnt two spil ss, n w isuss omplxity rsults. Kywors: Trmp, Dirt Ayli Grph (DAG) Visuliztion, Gn Ontology. 1 Introution Th Gn Ontology Consortium (GO) [14] tss stor thousns o trms tht sri inormtion rlt to th iologil rol o gns. Th inormtion in GO is orgniz in hirrhil mnnr whr th trms r pl in lyrs tht go rom gnrl to spii. Th GO orgniztion n rprsnt y irt yli grph (DAG) whr th st o vrtis V is th st o trms n n g is us to lr th is or prt o rltionship twn two trms. Trmps grphilly rprsnt hirrhil inormtion vi two-imnsionl rtngulr mp, proviing ompt visul rprsnttions o lrg trs through r, olor n shing ts [3,5,11]. Trmps, hv lso n us to visuliz ompoun grphs tht ontin oth hirrhil rltions n jny rltions [7]. This work ws support in prt y INFOBIOMED o: IST n th Grk Gnrl Srtrit or Rsrh n Thnology unr Progrm ARIS- TEIA, Co 1308/B1/3.3.1/317/ S.-H. Hong, T. Nishizki, n W. Qun (Es.): GD 2007, LNCS 4875, pp , Springr-Vrlg Brlin Hilrg 2007

2 378 V. Tsirs, S. Trintilou, n I.G. Tollis In th ontxt o GO, trmps hv n us to visuliz mirorry t, whr h gn trnsript is ssign ll possil pths tht strt rom it n trmint to th root (th ll trm) o GO [1]. Symoniis t l. in [12] propos to ompos th omplt GO DAG into tr y upliting th nos with mny in-oming gs, n thn to us trmp lgorithm to visuliz th tr, s Figur 1. Th uplition o no howvr triggrs th uplition o ll o its snnts. Thror th trnsormtion o DAG into tr ls to trs with (potntilly xponntilly) mny mor nos thn th originl DAG. Symoniis t l. in [12] rport tht th initil GO DAG h trms, whil th prou quivlnt tr h trms. Anothr rwk o upliting th nos is tht th rtngls ssoit with th multipl rplis o no r sttr roun th srn. In this ppr w introu th Fig. 1. Exmpl o trnsorming DAG into tr n thn rwing it s trmp prolm o rwing DAG s trmp without onvrting it to tr irst. W onsir svrl vritions o th prolm, w prsnt som hrtriztions o simpl milis o DAGs tht mit suh rwing, n provi omplxity rsults or th gnrl prolm. 2 Prolm Dinition 2.1 Nottions Suppos tht G = (V,E) is lyr irt yli grph (DAG) with prtition o th no st V into susts L 1,L 2,...,L h, suh tht i (u, v) E, whr u L i n v L j,thni>j. Without loss o gnrlity w ssum tht th lyring is propr, sin th long gs tht spn mor thn two lyrs my rpl y pths hving ummy vrtis in th intrnl lyrs [2]. Lt R v not th isply rgion o no v V. Evry irt g = (u, v) rom no u to no v orrspons to rwing rgion R = R v R u whih is th prt o th hil s rwing rgion R v tht is rwn within th prnt s rwing rgion R u. Givn vrtx v V w not th st o its in-oming n out-going gs y Γ (v) ={ E/stintion() =v} n Γ + (v) ={ E/origin() =v} rsptivly.

3 2.2 Trmp Drwing Constrints Trmps or Dirt Ayli Grphs 379 Trmps hv th invrint tht th rwing rtngl o ny no (irnt rom th root) is ontin within th rwing rtngl o its prnt. Whn th grph is tr this invrint n sily stisi sin vry no hs on prnt. Whn th grph is DAG, th ov invrint shoul rpl y th invrint tht th rwing rtngl o ny no is ontin within th union o th rtngls o its prnt nos. Aprt rom this invrint it is plusil to ssum tht th rwing rtngls o siling nos o not ovrlp n tht th rwing rtngl o prnt no is ovr y th rwing rtngls o its hilrn nos. Th ov invrint n ssumptions r summriz in th ollowing inition. Dinition 1 (Trmp si rwing onstrints). Th rwing is onstrin y th ollowing ruls. B1. Th isply r o th DAG (srn) is rtngl. B2. Evry no is rwn s rtngl (R v is rtngl or vry v V ). B3. I two istint nos u, v V r ssign to th sm lyr thir rtngls o not ovrlp (r(r u R v )=0). B4. Th rtngl o hil no oupis non-zro r in h on o its prnt no rtngls. (r(r )=r(r u R v ) 0i =(u, v) E). B5. Th rtngl o hil no is ontin in th union o rtngls o its prnt nos (R v (u,v) E R u ). B6. Th rtngl o prnt no is ovr y th rtngls o its hilrn nos (R u (u,v) E R v ). Th rwing ruls o th ov inition r quit gnrl sin thy o not onstrin th r o th l nos, n th proportion o hil s no r tht is rwn on h on o its prnt rtngls. To simpliy th nlysis o th prolm w onstrint ths two prmtrs y mking th ollowing ssumptions. Dinition 2 (Trmp itionl rwing onstrints) A1. Th l nos r rwn in qul r ( srn r numr o l nos )rtngls. A2. Th rwing rtngl o hil no oupis th sm r on h on o its prnt rtngls (For vry non sour no v, r(r )= r(rv) Γ (v), or vry Γ (v)). In th ollowing w will us th trm trmp rwing to hrtriz rwing oring to th si n itionl rwing onstrints. Hving in th rwing ruls, w n in th ollowing prolms: 1. Givn DAG G 1,osG 1 mit trmp rwing? 2. In s tht th nswr to th irst prolm is ngtiv, wht is th minimum numr o no uplitions tht r n to trnsorm G 1 intodag G 2 tht mits trmp rwing?

4 380 V. Tsirs, S. Trintilou, n I.G. Tollis 2.3 Exmpls n Countr-Exmpls o DAGs Tht Amit Trmp Drwing Exmpls o DAGs tht mit trmp rwing ppr in Figur 2. From th () Th K 33 DAG () A irulr DAG Fig. 2. Exmpls o DAGs tht n rwn s trmps g h i j () Consutiv onitions violtion () Ar imln Fig. 3. Exmpls o DAGs tht o not mit trmp rwing ountr-xmpls o Figur 3 w s tht thr r DAGs tht nnot rwn s trmps. Th DAG in Figur 3() nnot rwn u to jny onstrint violtion. Th l nos,, g, h, i, j onstrin th prnt nos,,, to rwn in jnt rtngls. Howvr w nnot hv onigurtion whr ll th pirs {, },{, },{, },{, },{, },{, } o rtngls r jnt. In this s in orr to rw th DAG w n ithr uplit on o th nos,, g, h, i, j or rw on o ths nos using two isjoint rtngls. Th two oprtions r similr n whn ppli to hil no rmov th orrsponing jny onstrint. In gnrl, u to th our olor (mp oloring) thorm thr xists ountrxmpl involving iv prnt nos n tn hilrn nos (on hil no or vry pir o prnt nos), vn in th s tht w rlx onstrint B2, llowing rwings to simply onnt rgions o th pln. Th xmpl o Figur 3() shows DAG tht os not mit trmp rwing, u to r imln mong th irst lyr nos,,. Assuming

5 Trmps or Dirt Ayli Grphs 381 tht th l nos hv unit r, thn nos n hv r 1/2+1/3 whil no hs r 1 + 1/3. Howvr, i w rlx onstrint A2, thn this DAG mits trmp rwing. 2.4 No Duplition Usully, DAG nountr in prti os not mit trmp rwing. In this s w shoul rlx on or mor o onstrints B1-B6, A1-A2 or hng th orm o th DAG. Symoniis t l. in [12] hos to trnsorm th DAG into orst o trs y multipl no uplitions. An xmpl o no uplition is shown in Figur 3(), whr tr th rtion o two rplis o no, on with two prnts n on with on prnt, th DAG is trnsorm into nw DAG whih mits rwing, s Figur Fig. 4. Atr th uplition o no th DAG o Figur 3 is trnsorm into DAG tht hs trmp rwing Spil Css W will ontinu y onsiring two spil ss. Th irst s is s on rstrit orm o DAGs, th son on rstrit orm o trmps. 3.1 Two Trminl Sris Prlll Digrphs A Two Trminl Sris Prlll (TTSP) igrph is rursivly in s ollows [2,13]. An g joining two vrtis is TTSP igrph. Lt G 1 n G 2 two TTSP igrphs. Thir sris n prlll ompositions, in low, r lso TTSP igrphs. Th sris omposition o G 1 n G 2 is th igrph otin y intiying th sink o G 1 with th sour o G 2. Th prlll omposition o G 1 n G 2 is th igrph otin y intiying th sour o G 1 with th sour o G 2 n th sink o G 1 with th sink o G 2. Du to its rursiv strutur TTSP igrph lwys mits trmp rwing. Th s TTSP igrph is rwn s rtngl. In sris omposition th rtngl o grph G 2 is rwn on th top o th rtngl o grph G 1.In prlll omposition th rtngl o th omposit grph is sli into th rtngls o G 1 n G 2.

6 382 V. Tsirs, S. Trintilou, n I.G. Tollis Algorithm 1. Construt th omposition tr o G [13] n mrg th jnt P -nos. In th rsulting tr th P -nos my hv two or mor hilrn. 2. Using th omposition tr lult th siz o th omponnts. () In sris omposition siz(g) =siz(g 1 )=siz(g 2 ). () In prlll omposition siz(g) =siz(g 1 )+siz(g 2 )+...+siz(g k ). 3. Using th omposition tr rursivly rw th omponnt rtngls. () Th rtngls hv r proportionl to th siz o th orrsponing omponnt. () In sris omposition, th rtngls o th two omponnts oini. () In prlll omposition, us ny o th xisting trmp lgorithms to ly out th omponnt rtngls. G 1 G 1 () Th s TTSP igrph G 2 G 2 G 2 is rwn on top o G 1 () Sris omposition G 1 G 2 G 1 G2 () Prlll omposition Fig. 5. Rursiv inition o TTSP igrph n th orrsponing rursiv trmp rwings () A TTSP () Sli n Di lyout () Squrii lyout Fig. 6. Exmpl o TTSP igrph trmp rwing 3.2 On Dimnsionl Trmps Dinition 3. A trmp is ll on imnsionl i th rtngl rprsnting no is ivi with vrtil (or horizontl) lins into smllr rtngls rprsnting its hilrn n th orinttion o th lins is th sm or ll th nos o hirrhy.

7 Trmps or Dirt Ayli Grphs 383 Sin th hight (rsp. with) o ll th rtngls is onstnt n qul to th hight (rsp. with) o th srn, th prolm is on imnsionl n th rtngls R q n rprsnt y intrvls I q. Also only th orring n not lngth o th intrvls I = I u I v, =(u, v) E onstrin th prolm. For this rson w onsir th out-going gs o vry non-l no u V s sunos insi th no. Th in-oming gs o no n onsir s in-oming gs o vry on o its sunos. A rwing n L k I n o th sunos n L k o lyr k {2,...,h} orrspons to n orring o th sunos n L k. Fig. 7. A on imnsionl trmp xmpl. A suno is rt or h out-going g. Dinition 4 (ONE DIMENSIONAL TREEMAP FOR DAG). Th rognition prolm INSTANCE: ADAGG. QUESTION: Cn G rwn s on imnsionl trmp? Suppos tht u is no in lyr L k. W will giv th nssry n suiint onitions tht th nstor sunos o u must stisy in orr to l to rw I u s n intrvl. With th trm nstor sunos w mn th sunos rhl rom no u i th irtion o th gs is rvrs. Lt P u,i not th st o nstor sunos o no u L k in lyr i {k +1,...,h}. Thorm 1 (Nssry onitions). Suppos tht in on imnsionl trmp rwing o grph G =(V,E) nou L k n rwn s n intrvl I u. Thn th union o th rwings o th nstor sunos o u in lyr i, Pu,i I, is n intrvl or vry lyr i {k +1,...,h}. Proo. By inution on th lyrs L k+j, j =0,...,h k. For j =0,I u is n intrvl y th hypothsis. Now, suppos tht or j = 0,...,i < h k, thr is n orring o th sunos in vry on o th lyrs k + j,...h, suh tht Pu,k+j I to n intrvl, ut Pu,k+j+1 I nnot n intrvl. Thn thr is t lst on no v L k+j+1, v / P u,k+j+1, whih is twn two nos α, β P u,k+j+1.thn th intrvl Pu,k+j I intrsts th intrvls I α n I β ut not th intrvl I v, ontrition. lyr k+j+1 I I v I lyr k+j I Pu, k j

8 384 V. Tsirs, S. Trintilou, n I.G. Tollis Thorm 2 (Suiint onition). I thr is n orring o th sunos in L k+1 suh tht th prnt sunos P u,k+1,onou L k, k<hr onsutiv in this orring thn u n rwn s n intrvl. Proo. Sin P u,k+1 r onsutiv Pu,k+1 I is n intrvl. Thn simply rw I u in this intrvl. Algorithm From th ov thorms vry non-sour no u L k ins onstrints on th missil suno prmuttions in h on o th lyrs L i, i {k,...,h}. Thror th ision prolm is trnsorm to h 1 onsutiv ons ision prolms [4,9]. On onsutiv ons prolm or h lyr L i, i {2,...,h}. Thr is on list list i o onstrints or h lyr L i, i {2,...,h}. Initilly th lists r mpty. Thn w th onstrints s ollows. or i =2toh o or v L i o to th list i th onstrint tht th sunos o v r onsutiv. or i =1toh 1o or v L i o or j = i +1toh o to th list j th onstrint tht th sunos P v,j r onsutiv. Complxity nlysis Without loss o gnrlity w ssum tht thr r no l nos in lyrs 2,...,h. Suppos tht n i = L i, i {1,...,h} n tht m i gs go rom lyr i to lyr i 1, i {2,...,h}. For i {2,...,h} th list list i hs t most n i trivil onstrints n t most n j onstrints u to nos t lyr L j, j < i. In totl it hs n i n 1 onstrints. Eh ostrint hs siz t most m i. Thror th totl tim is: h h O(m i (n i n 1 )) = O(m i n) =O(m n) i=2 whih is polynomil on th input siz m = L i=1 m i n n = L i=1 n i 4 Th Gnrl Cs 4.1 Th Rognition Prolm Tking th nos o lyr L k isolt rom th rst o th DAG, th prolm is similr to loorpln prolm whr th isply r is isst into n k = L k i=2

9 Trmps or Dirt Ayli Grphs 385 sot rtngls, i.., rtngls whos r is ix ut thir imnsions my vry. Th numr o possil isstions (th solutions sp) is oun low y Ω(n k!2 3n /n 4 k )novyo(n k!2 5n /n 4.5 k )[10]. Consiring two onsutiv lyrs L k+1 n L k o DAG, th lyouts o th two lyrs r onstrin y th gs mong th two lyrs, oring to th rwing ruls. Th omin solution sp my mpty or ontin numr o solutions. W will show tht iing whthr th solution sp is mpty or not is NP-omplt. Dinition 5 (TREEMAP FOR DAG). Th rognition prolm INSTANCE: ADAGG. QUESTION: Cn G rwn s trmp? Thorm 3. Th TREEMAP FOR DAG ision prolm is NP-omplt vn i w rstrit it to two lyr wkly onnt DAGs. Proo. Givn isstion o th isply r (srn) into L k rtngls or h lyr L k, k {1,...,h} o DAG G, w n hk in polynomil tim i ths isstions orrspon to trmp rwing o G. Thror th prolm longs to NP. Nxt w will show tht th prolm TREEMAP FOR DAG is NP-hr. Th proo will on y ruing th 3-PARTITION prolm to rstrit vrsion o th TREEMAP FOR DAG prolm. Nmly, s input w onsir only two lyr DAGs. For simpliity o th proo w will llow n input DAG to ompos o svrl wkly onnt omponnts. Dinition 6 (3-PARTITION). INSTANCE: AmultistA o 3m positiv intgrs A = {α 1,α 2,...,α 3m } whr th α i s r oun ov y polynomil in m n Σ 4 < α i < Σ 2,whr Σ = 1 m (α 1 + α α 3m ). QUESTION: Cn A prtition into m tripls A 1,A 2,..., A m suh tht h tripl hs th sm sum. Spiilly h tripl must sum to Σ. Th onition Σ 4 <α i < Σ 2 ors vry st o α i s summing to Σ, tohv siz xtly 3. Th 3-PARTITION is strongly NP-omplt sin it rmins NPomplt vn whn rprsnting th numrs in th input instn in unry [6]. Th rution is on y lol rplmnt n using n norr. Enorr: Th DAG us s norr hs 2m+2 nos t th son lyr. Th nos β n 1, 2,...,2m + 1. At th irst lyr thr r (m +1)Σ +6m +4 nos. Eh o th nos 1, 2,...,(2m +1) hs two prnts. On is no β n th othr is th orrsponing numr no in th irst lyr. Th β-no rtngl is rwn in on si o th norr n prlus ny othr rtngl to rwn long this si. Also th β-no togthr with th γ-no or th nos 1, 2,...,2m + 1 to rwn s onsutiv rtngls. For vry pir o (j, j + 1) o son lyr nos thr xists irst lyr no whih hs thm s prnts n onstrins thm to onsutiv. Th son no whih hs s prnts th nos j n j + 1 is us or omplting th rwing (grg

10 386 V. Tsirs, S. Trintilou, n I.G. Tollis us th othr si & lignmnt norr m 2m m 2m+1 2m+1 nos lignmnt norr grg olltion jny norr & grg olltion Fig. 8. Th norr us in th proo nos sum norr Lyr 2 nos m 2m+1 Lyr 1 nos m 2m+1 Fig. 9. On possil rwing o th norr. Th rtngls 1, 2,...,2m + 1 r or y th rtngl γ to hv th sm with. olltion). Also or grg olltion on no is onnt to no 1 n on no to no 2m +1. Finlly, vry o numr no o th son lyr hs Σ hilrn nos. Lol rplmnt: For h α i A w onsir two lyr DAG whih hs on no t lyr two (prnt no) n α i nos t lyr on (hilrn nos). lyr 2 i lyr 2 lyr 1 i nos Th rwing o no i is rtngl with r α i, ut without ny onstrint on th spt rtio o its sis. In orr or th inl rwing to rtngl th 3m rtngls shoul ill th hols o th norr. Th rution rom th 3-PARTITION to TREEMAP FOR DAG uss polynomil numr o rsours sin th numrs involv in 3-PARTITION r oun y polynomil in m. Th 3-PARTITION instn hs solution i n only th TREEMAP FOR DAG instn hs solution sin in vry hol n it xtly thr rtngls.

11 4.2 Minimiztion o No Duplition Trmps or Dirt Ayli Grphs 387 Dinition 7 (MINIMUM DUPLICATION OF NODES). INSTANCE: ADAGG 1 n n intgr K. QUESTION: Cn G 1 trnsormintodagg 2 tht mits trmp rwing y upliting t most K nos. Commnt: Th prolm MINIMUM DUPLICATION OF NODES is NPomplt sin its rstrition or K = 0 is th prolm TREEMAP FOR DAG, whih is NP-omplt. 5 Disussion In this ppr w introu th prolm o rwing DAG s trmp. W in th rognition n minimiztion prolms n w show tht in th gnrl s thy r NP-omplt n NP-hr rsptivly. W lso onsir two spil ss y rstriting th orm o th DAG n o th trmp rsptivly. W r urrntly invstigting rwing huristis s on rlxtions o th rwing onstrints n\or rstritions on th orm o DAGs. Th rsults o this rsrh will pulish in susqunt ppr onrning th pplition o ths thniqus to hirrhilly orgniz ontologis. Rrns 1. Bhrk, E., Dng, N., Bri, K., Shnirmn, B.: Visuliztion n nlysis o mirorry n gn ontology t with trmps. BMC Bioinormtis 5(84) (2004) 2. Di Bttist, G., Es, P., Tmssi, R., Tollis, I.G.: Grph Drwing: Algorithms or th Visuliztion o grphs. Prnti - Hll, Nw Jrsy, U.S.A. (1998) 3. Brson, B., Shnirmn, B., Wttnrg, M.: Orr n quntum trmps: Mking tiv us o 2D sp to isply hirrhis. ACM Trnstions on Grphis 21(4), 833 (2002) 4. Booth, S., Lukr, S.: Tsting or th onsutiv ons proprty, intrvl grphs, n grph plnrity using PQ-tr lgorithms. Journl o Computr n Systm Sins 13, 335 (1976) 5. Bruls, M., Huizing, K., vn Wijk, J.J.: Squrii trmps. In: Proings o Joint Eurogrphis n IEEE TCVG Symposium on Visuliztion, p. 33. Springr, Hilrg (2000) 6. Gry, M., Johnson, D.: Complxity rsults or multiprossor shuling unr rsour onstrints. SIAM Journl on Computing 4(4), 397 (1975) 7. Holtn, D.: Hirrhil Eg Bunls: Visuliztion o Ajny Rltions in Hirrhil Dt. IEEE Trnstions on Visuliztion n Computr Grphis 12(5), 741 (2006) 8. Hsu, W.-L.: PC-Trs vs. PQ-Trs. In: Wng, J. (.) COCOON LNCS, vol. 2108, p Springr, Hilrg (2001) 9. Minis, J., Porto, O., Tlls, G.: On th onsutiv ons proprty. Disrt Appli Mthmtis 88, 325 (1998)

12 388 V. Tsirs, S. Trintilou, n I.G. Tollis 10. Shn, Z.C., Chu, C.: Bouns on th Numr o Sliing, Mosi, n Gnrl Floorplns. IEEE Trnstions on Computr-Ai Dsign o Intgrt Ciruits n Systms 22(10), 1354 (2003) 11. Shnirmn, B.: Tr visuliztion with tr-mps: 2- sp-illing pproh. ACM Trnstions on Grphis 11(1), 92 (1992) 12. Symoniis, A., Tollis, I., Rzko, M.: Visuliztion o Funtionl Aspts o mirorna Rgultory Ntworks Using th Gn Ontology. In: Mglvrs, N., Chouvr, I., Koutkis, V., Brus, R. (s.) ISBMDA LNCS (LNBI), vol. 4345, pp Springr, Hilrg (2006) 13. Vls, J., Trjn, R., Lwlr, E.L.: Th rognition o Sris Prlll igrphs. SIAM Journl on Computing 11, (1982) 14.

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

EXAMPLE 87.5" APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20

EXAMPLE 87.5 APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20 XMPL XMPL RVISIONS ZON RV. SRIPTION T PPROV 0.00 THIS IS N PPROVL RWING OR YOUR ORR. OR MNUTURING N GIN, THIS RWING MUST SIGN N RTURN TO MOTION INUSTRIS. NY HNGS M TO THIS RWING, TR MNUTURING HS GUN WILL

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information