June 16 th, Charles Monroe, Levi Thompson, Alice Sleightholme, and Aaron Shinkle University of Michigan Department of Chemical Engineering

Size: px
Start display at page:

Download "June 16 th, Charles Monroe, Levi Thompson, Alice Sleightholme, and Aaron Shinkle University of Michigan Department of Chemical Engineering"

Transcription

1 Non Aqueous Vanadium Redox Flow Batteries June 16 th, 2010 Charles Monroe, Levi Thompson, Alice Sleightholme, and Aaron Shinkle University of Michigan Department of Chemical Engineering Christian Doetsch, Sascha Berthold, Birgit Brosowski Fraunhofer Institute UMSICHT Jens Tuebke, Jens Noack Fraunhofer Institute ICT

2 Project Outline 1/2 Framework: Cooperation between University of Michigan (United States) and Fraunhofer Gesellschaft (Germany) established Project Partners: University of Michigan: Department of Chemical Engineering (Prof. Levi Thompson, Prof. Charles Monroe) Fraunhofer Institute UMSICHT and ICT (Dr. Christian Doetsch, Dr. Jens Tuebke) Project Aim: Examination, developing and testing of materials and stack design for a non aqueous redox flow battery

3 Project Outline 2/2 Main advantages of non aqueous systems: Higher Voltage level No Hydrogen/oxygen production Higher energy densitiy Work plan: Redox Chemistry, materials, membranes: University of Michigan Prototype development: Fraunhofer ICT Scale up, test bench: Fraunhofer UMSICHT Time Frame: Start End of 2009 / Duration 24 months

4 Single metal Redox Flow Batteries Aqueous all vanadium redox flow battery (RFB) Performance depends on Half cell potentials (power density) Active species concentration (energy density) Electrolyte reservoir volume (charge capacity)

5 Commercial Redox Flow Battery Chemistry Existing RFBs mostly use aqueous electrolytes: Iron/chromium Bromine/polysulfide Zinc/bromine All vanadium ZBB Energy Corp, 500kWh Zn Br RFB Multi metal chemistries susceptible to crossover Cell potential limited by water electrolysis (E = 1.23 V) Non aqueous electrolytes enable higher cell potentials

6 Non Aqueous Vanadium RFB Electrodes Source Separator Catholyte Tank Anolyte Tank V (IV) e V(III) V(II) V(III) e Vanadium Acetylacetonate Tester et al. The MIT Press ; Single metal RFB mitigates cross contamination Energy density dependent on: Cell potential Electrolyte concentration Electrolyte reservoir volume

7 Equation of the solvent Current density/ma cm V II /V III 1.4V V IV /V V Current density/ma cm V II /V III 2.2V V III /V IV Aqueous Potential/V vs. SHE 0.01 M VOSO 4 (active species) [vanadyl sulfat] 2 M H 2 SO 4 /ultrapure H 2 O (support) Glassy carbon working electrode Non aqueous Potential/V vs.she 0.01 M V(acac) 3 (active species) [vanadium actetylacetonate] 0.1 M TEABF 4 /CH 3 CN (support) [Tetra ethyl ammonium tetrafluoroborate] Glassy carbon working electrode

8 Progress: Redox Chemistry a) Current density/ma cm mv/s 300 K Current density/ma cm mv/s 300 K Potential/V vs. SHE Peak circled in red corresponds to oxidation of V(acac) 3 to VO(acac) 2 produced from active species in presence of air Potential/V vs. Ag/Ag + Presence of Cl ions (from membrane manufacturing) produces extra peak close to VIII/VIV redox couple

9 Linear Sweep Voltammetry (LSV) Current normalized by limiting current Diffusion Coefficient 1 D = 1.8 x 10 5 ± 3.5 x 10 6 cm 2 /s Composition: 0.01M V(III) (acac) M TEABF 4 in CH 3 CN Quasi reversible Model Butler Volmer 1 Small reductant concentration Microelectrode (Steady State) i i f i (1 ) f i o 1 i L, c e 1 e i o (Exchange current density) and φ (Standard Potential) are fit parameters (1) Bard and Faulkner. Electrochemical Methods. 2001

10 Linear Sweep Voltammetry: V(III) / V(IV) Redox Couple Carbon Scan rate: 1 mv/s Gold Scan rate: 0.5 mv/s i o = 3 A/m 2 i o = 170 A/m 2

11 Linear Sweep Voltammetry: V(III) / V(IV) Redox Couple Platinum Scan rate: 0.5 mv/s All i o = 90 A/m 2

12 Progress: Membrane diagnostics Implementation of proposed one dimensional test cell Critical system variables: liquid solutions membranes (or MEA) electrode materials (or endcaps)

13 Progress: Membrane diagnostics Charge/discharge with anion exchange membrane (Neosepta AHA) underway Au electrodes, flow by mode, 0.1 M V(acac) 3 [vanadium actetylacetonate] and 0.5 M TEABF 4 /CH 3 CN [Tetra ethyl ammonium tetrafluoroborate / Acetonitrile] Voltage/V Current/mA Voltage/V Time/hours Time/hours Charge current 0.4 ma, discharge 0.05 ma; Burn in complete after 3 cycles 85% Coulombic efficiency

14 Progress: Prototype development task Redox Flow Test Cell First Results 10 cm² active area Graphite felt (COS1006) Bipolar plate (Schunk GmbH, Germany) Microporous membrane (Scimat) 0.1 M V(Acac) M TEABF 4 Acetonitrile Impedance spectroscopy R ct = 1590 C = 1.02 mf R s = 5

15 Progress: Prototype development task Redox Flow Test Cell Charge / Discharge 0,03 0, ,5 2,0 0,02 0,05 0,04 40 Voltage [V] 1,5 1,0 0,5 0,01 0,00-0,01 Current [A] Power [W] 0,03 0,02 0,01 0, Charge [Ah] 0,0 Voltage Current Time [h] -0,02-0, Time [h] 0 20 ma (2 ma/cm²) galvanostatic charge up to 2 V, 2.2 V, 2.4 V, 2.6 V 5 min OCV Measurement 5 ma (0.5 ma/cm²) galvanostatic discharge down to 0.3 V Voltage [V] Pout [mw/cm²] CE 80 % 66 % 64 % EE 24 % 23 % 22 %

16 Progress: Scale up Cell / Stack Design cell data (for a liquid, aqueous system) number of cells 2 membrane area 1600 cm² Voltage (charge) 3,3 V (2 x 1.65 V) Current A Currently testing materials, sealings, glue for non aqueous system

17 Scale up and test bench Design and erecting a first test facility as a mobile test bench 15 kw power Electrolyte tank: 2 x 40 l 2kWh Stack size up to 1 x 0.8 x 0.3 m 200 kg Charge 0 40 V A Discharge < 40 V A Flow rate l/min

Allen J. Bard, Netzahualcóyotl Arroyo-Currás (Netz Arroyo), Jinho Chang, Brent Bennett. Department of Chemistry and Center for Electrochemistry

Allen J. Bard, Netzahualcóyotl Arroyo-Currás (Netz Arroyo), Jinho Chang, Brent Bennett. Department of Chemistry and Center for Electrochemistry REDOX Allen J. Bard, Netzahualcóyotl Arroyo-Currás (Netz Arroyo), Jinho Chang, Brent Bennett Department of Chemistry and Center for Electrochemistry The University of Texas at Austin 1 What is a redox

More information

Evaluation of electrolytes for redox flow battery applications

Evaluation of electrolytes for redox flow battery applications Electrochimica Acta 52 (2007) 2189 2195 Evaluation of electrolytes for redox flow battery applications M.H. Chakrabarti a, R.A.W. Dryfe b, E.P.L. Roberts a, a School of Chemical Engineering and Analytical

More information

Supporting Information

Supporting Information Supporting Information Multielectron Cycling of a Low Potential Anolyte in Alkali Metal Electrolytes for Non-Aqueous Redox Flow Batteries Koen H. Hendriks, ab Christo S. Sevov, ab Monique E. Cook, ab and

More information

Electrochemical Cells

Electrochemical Cells CH302 LaBrake and Vanden Bout Electrochemical Cells Experimental Observations of Electrochemical Cells 1. Consider the voltaic cell that contains standard Co 2+ /Co and Au 3+ /Au electrodes. The following

More information

Supporting Information

Supporting Information Supporting Information A Low-Potential Pyridinium Anolyte for Aqueous Redox Flow Batteries Christo S. Sevov, a,b Koen. endriks, a,b and Melanie S. Sanford* a,b a. Department of Chemistry, University of

More information

Towards selective test protocols for accelerated in situ degradation of PEM electrolysis cell components

Towards selective test protocols for accelerated in situ degradation of PEM electrolysis cell components Towards selective test protocols for accelerated in situ degradation of PEM electrolysis cell components 1 st International Conference on Electrolysis - Copenhagen Thomas Lickert, Claudia Schwarz, Patricia

More information

Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes

Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes Begüm Bozkaya 1, Jochen Settelein 1, Henning Lorrmann 1, Gerhard Sextl 1, 2 1 Fraunhofer Institute for Silicate

More information

Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries

Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries Korean Chem. Eng. Res., 53(5), 638-645 (2015) http://dx.doi.org/10.9713/kcer.2015.53.5.638 PISSN 0304-128X, EISSN 2233-9558 Porous Electrodes with Lower Impedance for Vanadium Redox Flow Batteries Su Mi

More information

Half-Cell, Steady-State Flow-Battery Experiments. Robert M. Darling and Mike L. Perry

Half-Cell, Steady-State Flow-Battery Experiments. Robert M. Darling and Mike L. Perry Half-Cell, Steady-State Flow-Battery Experiments Robert M. Darling and Mike L. Perry United Technologies Research Center, East Hartford, Connecticut, 06108, USA An experimental approach designed to separately

More information

Room Temperature Ionic Liquid Electrolytes for Redox Flow Batteries

Room Temperature Ionic Liquid Electrolytes for Redox Flow Batteries Room Temperature Ionic Liquid Electrolytes for Redox Flow Batteries Andinet Ejigu, Peter Greatorex-Davies and Darren A. Walsh* School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK

More information

Performance and mechanism of Prussian blue (PB) modified carbon felt electrode

Performance and mechanism of Prussian blue (PB) modified carbon felt electrode Performance and mechanism of Prussian blue (PB) modified carbon felt electrode XUE Fang-qin (), ZHANG Hong-tao(), WU Chun-xu(), NING Tao( ), XU Xuan( ) Department of Environmental Science and Engineering,

More information

Evaluation of design options for tubular redox flow batteries

Evaluation of design options for tubular redox flow batteries Dept. Mechanical Engineering and Production Heinrich-Blasius-Institute for Physical Technologies Evaluation of design options for tubular redox flow batteries Thorsten Struckmann, Max Nix, Simon Ressel

More information

Metal-free and all-organic redox flow battery with polythiophene as the electroactive species

Metal-free and all-organic redox flow battery with polythiophene as the electroactive species Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supplementary Information Metal-free and all-organic redox flow battery

More information

Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage

Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage Michael R. Gerhardt 1, Kaixiang Lin 2, Qing Chen 1, Michael P. Marshak 1,3, Liuchuan Tong 2, Roy

More information

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00650 DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Jungmyoung

More information

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Supplementary Material (ESI) for Chemical Communications Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Sung Dae Cho, a Jin Kyu Im, b Han-Ki Kim, c Hoon Sik

More information

Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery

Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery ACTA PHYSICO-CHIMICA SINICA Volume 22, Issue 4, April 2006 Online English edition of the Chinese language journal Cite this article as: Acta Phys. -Chim. Sin., 2006, 22(4), 403 408. RESEARCH PAPER Investigations

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

239 Lecture #4 of 18

239 Lecture #4 of 18 Lecture #4 of 18 239 240 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations Publisher s Foreword Glossary of Symbols and Abbreviations v xiii 1 Equilibrium Electrochemistry and the Nernst Equation 1 1.1 Cell Thermodynamics....................... 1 1.2 The Nernst Equation........................

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

lect 26:Electrolytic Cells

lect 26:Electrolytic Cells lect 26:Electrolytic Cells Voltaic cells are driven by a spontaneous chemical reaction that produces an electric current through an outside circuit. These cells are important because they are the basis

More information

Bachelorarbeit. In situ state of charge measurement in vanadium redox flow batteries. Niklas Janshen

Bachelorarbeit. In situ state of charge measurement in vanadium redox flow batteries. Niklas Janshen Error! No text of specified style in document. 1 Bachelorarbeit Niklas Janshen In situ state of charge measurement in vanadium redox flow batteries Fakultät Technik und Informatik Department Maschinenbau

More information

Lesson on Electrolysis

Lesson on Electrolysis Lesson on Electrolysis This lesson package includes a lesson plan, a worksheet for students, and teachers notes on the worksheet. Activity Lesson 1 (50 min-2 Period lesson) Teacher explains (page 1 to

More information

Estimating the State-of-Charge of all-vanadium Redox Flow Battery using a Divided, Opencircuit Potentiometric Cell

Estimating the State-of-Charge of all-vanadium Redox Flow Battery using a Divided, Opencircuit Potentiometric Cell http://dx.doi.org/10.5755/j01.eee.19.3.1623 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 3, 2013 Estimating the State-of-Charge of all-vanadium Redox Flow Battery using a Divided, Opencircuit

More information

Unusual Stability of Acetonitrile-Based Superconcentrated. Electrolytes for Fast-Charging Lithium-Ion Batteries

Unusual Stability of Acetonitrile-Based Superconcentrated. Electrolytes for Fast-Charging Lithium-Ion Batteries Supporting Information for Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries Yuki Yamada,, Keizo Furukawa, Keitaro Sodeyama,, Keisuke Kikuchi,

More information

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Electrochemistry - Application note n 2 Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Available instruments for the

More information

1. Electrochemical measurements employed in the present work. Measurements conducted in a three-electrode system using 6 mol L 1 KOH

1. Electrochemical measurements employed in the present work. Measurements conducted in a three-electrode system using 6 mol L 1 KOH This journal is The Royal Society of Chemistry 213 Page 22 of 28 Supporting Information: 1. Electrochemical measurements employed in the present work. Measurements conducted in a three-electrode system

More information

Electrolysis and Faraday's laws of Electrolysis

Electrolysis and Faraday's laws of Electrolysis Electrolysis and Faraday's laws of Electrolysis Electrolysis is defined as the passage of an electric current through an electrolyte with subsequent migration of positively and negatively charged ions

More information

Supplemental Information for. A Sulfonate Functionalized Viologen Enabling Neutral Cation Exchange

Supplemental Information for. A Sulfonate Functionalized Viologen Enabling Neutral Cation Exchange Supplemental Information for A Sulfonate Functionalized Viologen Enabling Neutral Cation Exchange Aqueous Organic Redox Flow Batteries towards Renewable Energy Storage Camden DeBruler, Bo Hu, Jared Moss,

More information

Evaluation of membranes for the novel vanadium bromine redox flow cell

Evaluation of membranes for the novel vanadium bromine redox flow cell Journal of Membrane Science 279 (26) 394 42 Evaluation of membranes for the novel vanadium bromine redox flow cell Helen Vafiadis, Maria Skyllas-Kazacos Centre for Electrochemistry and Mineral Processing,

More information

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) 3 rd LAMNET Workshop Brazil -4 December 00 3 rd LAMNET Workshop Brazil 00 Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) Prof. Dr. Wolf Vielstich University of

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery

Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O 2 battery Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information Dual redox catalysts for oxygen reduction and evolution reactions:

More information

Supporting Information

Supporting Information Supporting Information 1 The influence of alkali metal cations upon AQ redox system Figure 1 depicts the anthraquinone-2-sulfonate (AQ) redox signals in aqueous solutions supported with various alkali

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for A zinc-iron redox-flow battery under

More information

Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of. reaction distributions with simultaneous mixing in tanks

Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of. reaction distributions with simultaneous mixing in tanks Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of reaction distributions with simultaneous mixing in tanks V. Pavan Nemani a,d and Kyle C. Smith a,b,c,d * a Department

More information

Today s Objectives: and an electrolytic cell. standard cell potentials. Section 14.3 (pp )

Today s Objectives: and an electrolytic cell. standard cell potentials. Section 14.3 (pp ) Today s Objectives: 1. Identify the similarities and differences between a voltaic cell and an electrolytic cell 2. Predict the spontaneity of REDOX reactions based on standard cell potentials. 3. Recognize

More information

Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte

Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte Indian Journal of Pure & Applied Physics Vol. 51, May 2013, pp. 315-319 Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte

More information

Supporting Information

Supporting Information Supporting Information Characterizing Emulsions by Observation of Single Droplet Collisions Attoliter Electrochemical Reactors Byung-Kwon Kim, Aliaksei Boika, Jiyeon Kim, Jeffrey E. Dick, and Allen J.

More information

Quantitative analysis of GITT measurements of Li-S batteries

Quantitative analysis of GITT measurements of Li-S batteries Quantitative analysis of GITT measurements of Li-S batteries James Dibden, Nina Meddings, Nuria Garcia-Araez, and John R. Owen Acknowledgements to Oxis and EPSRC for EP/M5066X/1 - CASE studentship, EP/P019099/1-

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite electrode; (b) pyrolytic graphite electrode with 100 µl 0.5 mm

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods G. Schiller, E. Gülzow, M. Schulze, N. Wagner, K.A. Friedrich German Aerospace Center (DLR), Institute of Technical

More information

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery

Supporting Information. Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery Supporting Information Electrocatalytic polysulfide-traps for controlling redox shuttle process of Li-S battery Hesham Al Salem, Ganguli Babu, Chitturi V. Rao and Leela Mohana Reddy Arava * Department

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

Electrochemical Cells

Electrochemical Cells Electrochemistry Electrochemical Cells The Voltaic Cell Electrochemical Cell = device that generates electricity through redox rxns 1 Voltaic (Galvanic) Cell An electrochemical cell that produces an electrical

More information

(i) Voltameter consist of a vessel, two electrodes and electrolytic solution.

(i) Voltameter consist of a vessel, two electrodes and electrolytic solution. Electrochemistry is the branch of physical chemistry which deals with the relationship between electrical energy and chemical changes taking place in redox reactions i.e., how chemical energy produced

More information

Membrane Electrodes. Several types

Membrane Electrodes. Several types Membrane Electrodes Electrical connection Several types - Glass membrane electrode - Liquid membrane electrode - Solid State membrane electrode - Permeable membrane electrode seal 0.1 M HCl Filling solution

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell Electrochemistry Electrochemical Process The conversion of chemical energy into electrical energy and the conversion of electrical energy into chemical energy are electrochemical process. Recall that an

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

Voltammetry. Voltammetry. An Introduction in Theory. Metrohm Ltd. CH-9100 Herisau Switzerland

Voltammetry. Voltammetry. An Introduction in Theory. Metrohm Ltd. CH-9100 Herisau Switzerland An Introduction in Theory Metrohm Ltd. CH-9100 Herisau Switzerland Overview What is? Electrode Types Voltammetric Techniques Measurement Modes Calibration Techniques Advantages of Summary = Volt-Am(pero)-Metry

More information

Special Lecture Series Biosensors and Instrumentation

Special Lecture Series Biosensors and Instrumentation !1 Special Lecture Series Biosensors and Instrumentation Lecture 2: Introduction to Electrochemistry Electrochemistry Basics Electrochemistry is the study of electron transfer processes that normally occur

More information

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website:

General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: General Chemistry 1412 Spring 2008 Instructor: Dr. Shawn Amorde Website: www.austincc.edu/samorde Email: samorde@austincc.edu Lecture Notes Chapter 21 (21.1-21.25) Suggested Problems () Outline 1. Introduction

More information

Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL)

Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL) Electrochemistry - Application note n 1 Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL) Available instruments for the GCPL protocol

More information

Homework 11. Electrochemical Potential, Free Energy, and Applications

Homework 11. Electrochemical Potential, Free Energy, and Applications HW11 Electrochemical Poten!al, Free Energy, and Applica!ons Homework 11 Electrochemical Potential, Free Energy, and Applications Question 1 What is the E for Zn(s) Zn (aq) Ce (aq) Ce (aq) + cell + 4+ 3+

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supplementary Information The electrochemical discrimination of pinene enantiomers by

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

Contents. 2. Fluids. 1. Introduction

Contents. 2. Fluids. 1. Introduction Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Effect of Electro-Oxidation Current Density on Performance of Graphite Felt Electrode for Vanadium Redox Flow Battery

Effect of Electro-Oxidation Current Density on Performance of Graphite Felt Electrode for Vanadium Redox Flow Battery Int. J. Electrochem. Sci., 8 (2013) 4700-4711 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Effect of Electro-Oxidation Current Density on Performance of Graphite Felt Electrode

More information

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts What do I need to know about electrochemistry? Electrochemistry Learning Outcomes: Candidates should be able to: a) Describe

More information

Redox reactions Revision galvanic cells and fuel cells Lesson 7 Revise fuel cells by visiting the link below. www.dynamicscience.com.au/tester/solutions1/chemistry/redox/fuelcl.html 1) A fuel cell uses

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information An All-Aqueous Redox Flow Battery with Unprecedented

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Supplementary Information Electron transfer reactions at the plasma-liquid interface Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Chung-Chiun Liu, and R. Mohan Sankaran*,

More information

Standard reduction potentials are established by comparison to the potential of which half reaction?

Standard reduction potentials are established by comparison to the potential of which half reaction? HW10 Electrochemical Poten al, Free Energy, and Applica ons This is a preview of the draft version of the quiz Started: Nov 8 at 5:51pm Quiz Instruc ons Question 1 What is the E for cell + 4+ 3+ Zn(s)

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Polymer graphite composite anodes for Li-ion batteries

Polymer graphite composite anodes for Li-ion batteries Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia, SC 29208 Plamen Atanassov University of New

More information

Electrochemical reaction

Electrochemical reaction Electrochemical reaction electrochemistry electrochem. reaction mechanism electrode potential Faradays law electrode reaction kinetics 1 Electrochemistry in industry Chlor-Alkali galvano industry production

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

Electrical Conduction. Electrical conduction is the flow of electric charge produced by the movement of electrons in a conductor. I = Q/t.

Electrical Conduction. Electrical conduction is the flow of electric charge produced by the movement of electrons in a conductor. I = Q/t. Electrical Conduction e- in wire e- out Electrical conduction is the flow of electric charge produced by the movement of electrons in a conductor. The rate of electron flow (called the current, I, in amperes)

More information

Membrane Preparation and Characterization

Membrane Preparation and Characterization Membrane Preparation and Characterization Prepare New Polymeric Membranes for Energy Applications A membrane can be considered as a selective barrier that allows transport of some compounds while rejecting

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Supporting Information The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy The Hydrogen Evolution Reaction for

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode

High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode Supplementary Information High Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode Yu Zhao, Lina Wang, and Hye Ryung Byon* Byon Initiative Research

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 5 - Electricity and Chemistry Electrolysis You need to know that electrolysis is: - The breakdown of ionic substances into their constituent elements

More information

206 Lecture #4 of 17

206 Lecture #4 of 17 Lecture #4 of 17 206 207 Q: What s in this set of lectures? A: B&F Chapters 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section 1.2: Charging interfaces

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Supporting Information

Supporting Information Supporting Information What do Laser Induced Transient Techniques Reveal for Batteries? Na- and K-Intercalation from Aqueous Electrolytes as an Example Daniel Scieszka a,b,(1), Jeongsik Yun a,b,(1), Aliaksandr

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Oxidation/Reduction Reactions Transfer of electrons in solution from one reactant to another. Ce +4 + Fe +2 Ce +3 + Fe +3 Ce +4 and Fe 3+ Fe 2+ and Ce 3+

More information

Chapter 7 Electrochemistry

Chapter 7 Electrochemistry Chapter 7 Electrochemistry Outside class reading Levine: pp. 417 14.4 Galvanic cells: pp. 423 14.5 types of reversible electrodes 7.6.1 Basic concepts of electrochemical apparatus (1) Electrochemical apparatus

More information

Electrochemistry in Nonaqueous Solutions

Electrochemistry in Nonaqueous Solutions К. Izutsu Electrochemistry in Nonaqueous Solutions WILEY-VCH Contents Preface V Part I Fundamentals of Chemistry in Non-Aqueous Solutions: Electrochemical Aspects 1 Properties of Solvents and Solvent Classification

More information

Electrochemical Measurements

Electrochemical Measurements 1 Electrochemical Measurements 1. Performance metrics vs. performance- and life-limiting mechanisms 2. General approach a. Reference electrodes b. Types of cells c. Inert electrodes 3. AC impedance 1.

More information

Research & Reviews In. Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery

Research & Reviews In. Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery ISSN : 0974-7540 Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery Liu Xudong*, Bi Xiaoguo, Tang Jian, Guan Xin, Niu Wei Shenyang Institute of Engineering, 110136,

More information

Enhanced performance of a Bi-modified graphite felt as the positive. Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R.

Enhanced performance of a Bi-modified graphite felt as the positive. Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría Instituto Nacional

More information

LlkJ-/ rpdf Pollution Prevention - Source Reduction with Electrodialytic Processes

LlkJ-/ rpdf Pollution Prevention - Source Reduction with Electrodialytic Processes w- LlkJ-/ rpdf Pollution Prevention - Source Reduction with Electrodialytic Processes by Daniel J. Vaughan This paper is focused on how not to make waste or how to prevent pollution at the source. I know

More information

Basic Concepts in Electrochemistry

Basic Concepts in Electrochemistry Basic Concepts in Electrochemistry 1 Electrochemical Cell Electrons Current + - Voltage Source ANODE Current CATHODE 2 Fuel Cell Electrons (2 e) Current - + Electrical Load ANODE Current CATHODE H 2 2H

More information

Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells Supplementary Information Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells Ok-Hee Kim 1, Yong-Hun Cho 2, Dong Young Chung 3,4, Minjeong Kim 3,4, Ji

More information

Electronic Supplementary Information. Surfactant-assisted ammonium vanadium oxide as superior cathode for calcium ion batteries

Electronic Supplementary Information. Surfactant-assisted ammonium vanadium oxide as superior cathode for calcium ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Surfactant-assisted ammonium vanadium

More information

All-Soluble All-Iron Aqueous Redox-Flow Battery

All-Soluble All-Iron Aqueous Redox-Flow Battery Supporting Information All-Solule All-Iron Aqueous Redox-Flow Battery Ke Gong [a], Fei Xu [a], Jonathan B. Grunewald [a], Xiaoya Ma [a], Yun Zhao [a], Shuang Gu* [], and Yushan Yan* [a] [a] Department

More information

Supporting Information for

Supporting Information for Supporting Information for Self-assembled Graphene Hydrogel via a One-Step Hydrothermal Process Yuxi Xu, Kaixuan Sheng, Chun Li, and Gaoquan Shi * Department of Chemistry, Tsinghua University, Beijing

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary Figure 1 Scanning electron microscopy image of a lithium dendrite. Dendrite formation in lithium ion batteries pose significant safety issues

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information