ELECTROCHEMISTRY OXIDATION-REDUCTION

Size: px
Start display at page:

Download "ELECTROCHEMISTRY OXIDATION-REDUCTION"

Transcription

1 ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these. Examples: voltaic cells, batteries. NON-SPONTANEOUS REACTIONS Must put in electrical energy to make them go. Examples: electrolysis, electrolytic cells. QUANTITATE REACTIONS OXIDATION-REDUCTION Oxidation = loss of electrons. Occurs at ANODE An oxidizing agent is a substance that causes oxidation (and is itself reduced). Reduction = gain of electrons. At CATHODE A reducing agent is a substance that causes reduction (and is itself oxidized). LEO goes GER LEO: Loss of Electrons = Oxidation GER: Gain of Electrons = Reduction

2 Rules for determining Oxidation States For pure elements, oxidation state = 0 (examples: S 8, P 4, O 3, F 2, K, Be) In compounds, some elements have common oxidation numbers: Alkali metals (Na +, K +..) +1 Alkaline earths (Mg 2+, Ba 2+ ) +2 F = -1, O = -2 (but -1 in peroxides) Cl, Br, I = -1 (except if bonded to O or halogen) H = +1 or -1 (depends what it is bonded to) Assign others by difference (using charge on ion) BALANCING REDOX REACTIONS 1. Write incomplete half-reactions. 2. Balance each half-reaction separately. a. Balance atoms undergoing redox. b. Balance remaining atoms i. Add H 2 O to balance oxygens. ii. Add H + to balance hydrogens. 3. Balance charges by adding electrons. 4. Multiply half-reactions to cancel electrons. 5. Add the half-reactions. 6. In basic solutions, add OH to neutralize H +

3 Half Reactions The half-reactions for Sn 2+ (aq) + 2Fe 3+ (aq) Sn 4+ (aq) + 2Fe 2+ (aq) Sn 2+ (aq) Sn 4+ (aq) +2e - 2Fe 3+ (aq) + 2e - 2Fe 2+ (aq) Oxidation: electrons are products. Reduction: electrons are reagents. In Acid solution.: Balancing Redox Reactions C + HNO 3 NO 2 + CO 2 + H 2 O Basic solution.: PbO 2 + Cl + OH Pb(OH) 3 + ClO

4 VOLTAIC CELL The energy released in a spontaneous redox reaction is used to perform electrical work. Voltaic or galvanic cells are devices in which electron transfer occurs via an external circuit. Voltaic cells are spontaneous. If a strip of Zn is placed in a solution of CuSO 4, Cu is deposited on the Zn and the Zn dissolves by forming Zn 2+. Zn 0 (s) + Cu 2+ (aq) Zn 2+ (aq) + Cu 0 (s) E 0 cell = 1.10 V

5 Voltaic cells consist of Anode: Zn(s) Zn 2+ (aq) + 2e - Cathode: Cu 2+ (aq) + 2e - Cu(s) The two solid metals are the electrodes (cathode and anode). Salt bridge: (used to complete the electrical circuit): Anions and cations move to compensate excess charge. Zn is oxidized to Zn 2+ and 2e. The electrons flow to the anode where they are used in the reduction reaction. We expect the Zn electrode to lose mass and the Cu electrode to gain mass. Rules of voltaic cells: 1. At the anode electrons are products. Oxidation occurs at the anode. 2. At the cathode electrons are reagents. Reduction occurs at the cathode 3. Electrons cannot swim!

6 VOLTAIC CELLS Cell voltage (EMF or E cell ) is the measure of rxn spontaneity E cell : Intensive property, energy per electron Cell voltage depends on: the individual species undergoing oxidation and reduction and their concentrations The more spontaneous a reaction, the higher the voltage (more positive) the higher the K eq the more negative the ΔG 0 STANDARD POTENTIAL FOR AN ELECTROCHEMICAL CELL The standard potential for an electrochemical cell is the potential (voltage) generated when reactants and products of a redox reaction are in their standard states. Standard States: T = 25 C. Gases, P = 1 atm. [Solutes] = 1M Solids, liquids = pure

7 HALF-CELL POTENTIAL The potential associated with the half-reaction. Rules for half-cell potentials: 1. The sum of two half-cells potentials in a cell equals the overall cell potential: E cell = E 1/2 (oxid) + E 1/2 (reduc) 2. For any half-reaction: E 1/2 (oxid) = E 1/2 (reduc) 3. Standard half-cell is a hydrogen electrode: H 2 (g,1atm) = 2H + (aq, 1M) + 2e E 1/2 (oxid) = E 1/2 (reduc) = 0 V E 0 cell = 0.76 V

8 E 0 cell = 1.10 V E 0 1/2 (Zn Zn2+ ) =? E 0 1/2 (Cu2+ Cu) =?

9 Oxidizing and Reducing Agents The more positive E red the stronger the oxidizing agent on the left. The more negative E red the stronger the reducing agent on the right. A species that is higher and to the left will spontaneously oxidize one that is lower and to the right in the table. Example: F 2 will oxidize H 2 or Li; Ni 2+ will oxidize Al(s).

10 Are the following reactions spontaneous? If so, evaluate E 0 cell Cu(s) + Cl 2 (g) Cu 2+ (aq) + 2Cl (aq) 2Cu 2+ (aq) + 2H 2 O Cu(s) + O 2 (g) + 4H + (aq)

11 RELATIONSHIP BETWEEN ΔG AND E ΔG = nfe At Standard State: ΔG = nfe n = number of electrons transferred in a balanced redox reaction F = Faraday = 96,500 coulomb/mole e - 1 coulomb = 1 Amp-sec 1 J = 1 Amp-sec-V = 1 coulomb-v 1 F = 96,500 J/V-mole e Example: Is this reaction spontaneous? Cd(s) + 2H + Cd 2+ + H 2 (g) Cd e Cd(s) E o red = 0.403V 2H + + 2e H 2 E o red = 0 Reaction goes as written (reduction) for more positive redox couple. H + cathode: 2H + + 2e H 2 Cd anode: Cd Cd e E o cell = E o red (cathode) + Eo oxid (anode) E o cell = = ΔG o = nfe o = 2 x 96,500 J/V-mol x 0.403V = 8.3 x 10 4 = 83 kj/mol Yes: the reaction is spontaneous!

12 For electrochemical cell at equilibrium: ΔG = 0 ΔG = RT log K eq ΔG = nfe E = RT log K eq nf R = J/K-mole F = 96,500 J/V-mole e At 25 C = 298K: E = (0.0592) log K eq n Effect of Concentration Standard states: 1M solution, 1 atm gas pressure What if concentrations are different? o # G = # G + RT ln Q and # G = " n! E " n! E = " n! E o + RT ln Q E = E o " RT n! ln Q

13 Effect of Concentration E = E o RT " ln Q n! So for a half reaction: aa + bb + n e cc + dd 0 E 12 = E 12 " RT n# ln C [ ] c [ D] d [ A] a [ B] b o E 12 = E 12 o E 12 = E 12 " RT n# " n log C log C [ ] c [ D] d [ A] a [ B] b [ ] c [ D] d at 298K [ A] a [ B] b Examples 1. What is E cell for a fuel cell running in air (P O2 = 0.2 atm), at ph = 2, with P H2 = 1 atm? O 2 (g) + 4H + (aq) + 4e 2H 2 O(l) E o = V 2H + + 2e H 2 E o = 0 2. What is the half cell potential of the Ag/Ag+ redox couple (E 0 = V) in a 1 M NaCl solution that contains solid AgCl (K sp = 1.1 x )?

14 Lead/Acid Battery Batteries DURING DISCHARGE Anode: Pb(s) + SO 2 4 (aq) PbSO 4 (s) + 2e Cathode: PbO 2 (s) + SO 2 4 (aq) + 4H + + 2e PbSO 4 (s) + 2H 2 O Overall: Pb(s) + PbO 2 (s) + 2H 2 SO 4 2PbSO 4 (s) + 2H 2 O Lead-Acid Battery

15 DRY CELL Batteries Anode: Zn(s) Zn(s) Zn 2+ (aq) + 2e Cathode: NH 4 Cl + MnO 2 + graphite paste 2NH 4+ (aq) + 2MnO 2 (s) + 2e Mn 2 O 3 (s) + 2NH 3 (aq) + H 2 O In ALKALINE CELL, NH 4 Cl is replaced by KOH. Provides up to 50% more energy. Zn is used as a powder mixed with the electrolyte. Dry Cell Alkaline Battery

16 Batteries Rechargeable Nickel-Cadmium Battery Anode: Cd metal Cd(s) + 2OH (aq) Cd(OH) 2 (s) + 2e Cathode: NiO 2 (s) NiO 2 (s) + 2H 2 O + 2e Ni(OH) 2 (s) + 2OH (aq) Overall: Cd(s) + NiO 2 (s) + 2H 2 O Cd(OH) 2 (s) + Ni(OH) 2 (s) Batteries FUEL CELLS H 2 -O 2 Fuel Cell - expensive but light. Used in spacecraft. Anode: 2H 2 (g) + 4OH (aq) 4H 2 O(l) + 4e Cathode: O 2 (g) + 2H 2 O(l) + 4e 4OH (aq) Overall: 2H 2 (g) + O 2 (g) 2H 2 O(l) E 0 cell = 1.23 V

17 Corrosion Differential aeration mechanism Corrosion CATHODIC PROTECTION OF IRON

18 Corrosion CATHODIC PROTECTION OF IRON ELECTROLYSIS Electrolysis: Driving non-spontaneous reactions by applying electrical energy. An electrolysis cell consists of two electrodes in either aqueous solution (of ions) or in a molten salt e.g. molten NaCl. The anode is where oxidation occurs. Anions migrate to the anode and lose electrons. The cathode is where reduction occurs. Cations migrate to the cathode and gain electrons.

19 ELECTROLYSIS OF MOLTEN NaCl Cathode: Cathode: 2Na + + 2e 2Na(l) Na + + e -! Na Anode: 2 Cl Cl 2 (g) + 2e Anode: 2 Cl -! Cl 2 + 2e - 2 Na Cl 2Na(l) + Cl 2 (g) ELECTROLYSIS OF NaCl, cont. Electrolysis of aqueous NaCl: Cathode: H 2 O + 2e H 2 (g) + 2OH Anode: 2 Cl Cl 2 (g) + 2e so 2 H 2 O + 2 Cl H 2 (g) + Cl 2 (g) + 2OH 2 Na OH = 2 NaOH is left behind It is easier to reduce H 2 O than Na + The easiest (least non-spontaneous) reaction happens

20 ELECTROLYSIS - examples What products will form when an aqueous solution of ZnBr 2 is electrolyzed? What products will form when aqueous AgNO 3 is electrolyzed? ELECTROLYSIS OF AQUEOUS Na 2 SO 4 Cathode: 4H 2 O + 4e 2H 2 (g) + 4OH Anode: 2H 2 O O 2 (g) + 4H + + 4e 6H 2 O 2H 2 (g) + O 2 (g) + 4H + + 4OH or 2H 2 O 2H 2 (g) + O 2 (g)

21 COMMERCIAL APPLICATIONS OF ELECTROLYSIS Production of metals Na, Al. Purification of Metals Cu. Electroplating. Purification of Copper PURIFICATION OF COPPER Cathode: thin sheet of pure copper Cu e Cu(s) Anode: impure copper Cu(s) Cu e Cathode, thin sheet of pure copper: As the reaction Cu 2+ + proceeds, 2e -! Cu Cu moves from anode to cathode.

22 ELECTROLYSIS CALCULATIONS 1 mole of e - = 1 Faraday = 96,500 Coulombs = charge on 1 mole of e - 1 Ampere = 1 coulomb/second 1 coulomb = 1 Amp-sec Electromotive Force (EMF) force that cases electrons to flow (voltage) 1 Watt = 1 Amp-Volt 1 Joule = 1 coul-volt = 1 Amp-sec-Volt = 1 Watt-sec 1 kw-hour = (1000 Watt)(3600 sec) = 3.6 x 10 6 Watt-sec = 3.6 x 10 6 Joules ELECTROLYSIS CALCULATION Electrolysis gives 1.00g of Cu from CuSO 4 Reaction is: Cu e Cu How many Faradays (F) of charge are required? How many Coulombs is this?

23 ELECTROLYSIS CALCULATION If 1.00g of Cu is obtained in 1 hour, how many amps are required? If 2 amps were used, how long would it take to produce 1g?

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem.

Oxidation-Reduction Review. Electrochemistry. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions. Sample Problem. 1 Electrochemistry Oxidation-Reduction Review Topics Covered Oxidation-reduction reactions Balancing oxidationreduction equations Voltaic cells Cell EMF Spontaneity of redox reactions Batteries Electrolysis

More information

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis)

Part One: Introduction. a. Chemical reactions produced by electric current. (electrolysis) CHAPTER 19: ELECTROCHEMISTRY Part One: Introduction A. Terminology. 1. Electrochemistry deals with: a. Chemical reactions produced by electric current. (electrolysis) b. Production of electric current

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

ELECTROCHEMISTRY. Oxidation/Reduction

ELECTROCHEMISTRY. Oxidation/Reduction ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Examples: voltaic cells, batteries. NON-SPONTANEOUS

More information

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook

Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook Chapter 20. Electrochemistry Recommendation: Review Sec. 4.4 (oxidation-reduction reactions) in your textbook 20.1 Oxidation-Reduction Reactions Oxidation-reduction reactions = chemical reactions in which

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry 20.1 OxidationReduction Reactions Oxidationreduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Recall:

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Electrochemistry Pulling the Plug on the Power Grid

Electrochemistry Pulling the Plug on the Power Grid Electrochemistry 18.1 Pulling the Plug on the Power Grid 18.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions 18.4 Standard Electrode Potentials 18.7 Batteries:

More information

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 18. Electrochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 18 Electrochemistry Sherril Soman Grand Valley State University Harnessing the Power in Nature The goal of scientific research is to understand nature. Once we understand the

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Section 17.1 Spontaneous Processes and Entropy Section 17.1 http://www.bozemanscience.com/ap-chemistry/ Spontaneous Processes and Entropy Section 17.1 Spontaneous Processes

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Electrochemistry 1 1

Electrochemistry 1 1 Electrochemistry 1 1 Half-Reactions 1. Balancing Oxidation Reduction Reactions in Acidic and Basic Solutions Voltaic Cells 2. Construction of Voltaic Cells 3. Notation for Voltaic Cells 4. Cell Potential

More information

Chapter Nineteen. Electrochemistry

Chapter Nineteen. Electrochemistry Chapter Nineteen Electrochemistry 1 Electrochemistry The study of chemical reactions through electrical circuits. Monitor redox reactions by controlling electron transfer REDOX: Shorthand for REDuction-OXidation

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information

Electrochemical Cells

Electrochemical Cells Electrochemistry Electrochemical Cells The Voltaic Cell Electrochemical Cell = device that generates electricity through redox rxns 1 Voltaic (Galvanic) Cell An electrochemical cell that produces an electrical

More information

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3 CHAPTER 17: ELECTROCHEMISTRY Big Idea 3 Electrochemistry Conversion of chemical to electrical energy (discharge). And its reverse (electrolysis). Both subject to entropic caution: Convert reversibly to

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry

Electrochemistry Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry 2012 Pearson Education, Inc. Mr. Matthew Totaro Legacy High School AP Chemistry Electricity from Chemistry Many chemical reactions involve the transfer of electrons between atoms or ions electron transfer

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox

Electrochemistry. Galvanic Cell. Page 1. Applications of Redox Electrochemistry Applications of Redox Review Oxidation reduction reactions involve a transfer of electrons. OIL- RIG Oxidation Involves Loss Reduction Involves Gain LEO-GER Lose Electrons Oxidation Gain

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Learning goals and key skills: Identify oxidation, reduction, oxidizing agent, and reducing agent in a chemical equation Complete and balance redox equations using the method

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction?

How to Assign Oxidation Numbers. Chapter 18. Principles of Reactivity: Electron Transfer Reactions. What is oxidation? What is reduction? Chapter 18 Principles of Reactivity: Electron Transfer Reactions What is oxidation? When a molecule/ion loses electrons (becomes more positive) Whatever is oxidized is the reducing agent What is reduction?

More information

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO

CHAPTER 5 REVIEW. C. CO 2 D. Fe 2 O 3. A. Fe B. CO CHAPTER 5 REVIEW 1. The following represents the process used to produce iron from iron III oxide: Fe 2 O 3 + 3CO 2Fe + 3CO 2 What is the reducing agent in this process? A. Fe B. CO C. CO 2 D. Fe 2 O 3

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions).

Oxidation-reduction reactions = chemical reactions in which the oxidation state of one or more substance changes (redox reactions). Chapter 20. Electrochemistry Common Student Misconceptions Students should be encouraged to review section 4.4. Students often think that oxidation must necessarily mean adding oxygen. Students often have

More information

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0

Electrochemistry. A. Na B. Ba C. S D. N E. Al. 2. What is the oxidation state of Xe in XeO 4? A +8 B +6 C +4 D +2 E 0 Electrochemistry 1. Element M reacts with oxygen to from an oxide with the formula MO. When MO is dissolved in water, the resulting solution is basic. Element M is most likely: A. Na B. Ba C. S D. N E.

More information

Oxidation-Reduction (Redox)

Oxidation-Reduction (Redox) Oxidation-Reduction (Redox) Electrochemistry involves the study of the conversions between chemical and electrical energy. Voltaic (galvanic) cells use chemical reactions to produce an electric current.

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. chem10b 20.4-3 In a voltaic cell electrons flow from the anode to the cathode. Value 2. chem10b 20.1-35 How many grams

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

25. A typical galvanic cell diagram is:

25. A typical galvanic cell diagram is: Unit VI(6)-III: Electrochemistry Chapter 17 Assigned Problems Answers Exercises Galvanic Cells, Cell Potentials, Standard Reduction Potentials, and Free Energy 25. A typical galvanic cell diagram is: The

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

Chapter 18: Electrochemistry

Chapter 18: Electrochemistry Chapter 18: Electrochemistry Oxidation States An oxidation-reduction reaction, or redox reaction, is one in which electrons are transferred. 2Na + Cl 2 2NaCl Each sodium atom is losing one electron to

More information

Chapter 19: Electrochemistry

Chapter 19: Electrochemistry Chapter 19: Electrochemistry Overview of the Chapter review oxidation-reduction chemistry basics galvanic cells spontaneous chemical reaction generates a voltage set-up of galvanic cell & identification

More information

Electrochem: It s Got Potential!

Electrochem: It s Got Potential! Electrochem: It s Got Potential! Presented by: Denise DeMartino Westlake High School, Eanes ISD Pre-AP, AP, and Advanced Placement are registered trademarks of the College Board, which was not involved

More information

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic

Review. Chapter 17 Electrochemistry. Outline. Voltaic Cells. Electrochemistry. Mnemonic Review William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 17 Electrochemistry Oxidation Loss of electrons Occurs at electrode called the anode Reduction Gain of

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry 20.1 Oxidation States and Oxidation-Reduction Reactions An oxidation occurs when an atom or ion loses electrons. A reduction occurs when an atom or ion gains electrons. One

More information

Chapter 18. Electrochemistry

Chapter 18. Electrochemistry Chapter 18 Electrochemistry Oxidation-Reduction Reactions Review of Terms Oxidation-reduction (redox) reactions always involve a transfer of electrons from one species to another. Oxidation number - the

More information

Chapter 18 problems (with solutions)

Chapter 18 problems (with solutions) Chapter 18 problems (with solutions) 1) Assign oxidation numbers for the following species (for review see section 9.4) a) H2SO3 H = +1 S = +4 O = -2 b) Ca(ClO3)2 Ca = +2 Cl = +5 O = -2 c) C2H4 C = -2

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

Introduction to electrochemistry

Introduction to electrochemistry Introduction to electrochemistry Oxidation reduction reactions involve energy changes. Because these reactions involve electronic transfer, the net release or net absorption of energy can occur in the

More information

Chemistry 112 Name Exam III Form A Section April 2,

Chemistry 112 Name Exam III Form A Section April 2, Chemistry 112 Name Exam III Form A Section April 2, 2013 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Redox and Electrochemistry

Redox and Electrochemistry Redox and Electrochemistry 1 Electrochemistry in Action! 2 Rules for Assigning Oxidation Numbers The oxidation number of any uncombined element is 0. The oxidation number of a monatomic ion equals the

More information

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions

Electrochemistry. Slide 1 / 144. Slide 2 / 144. Slide 3 / 144. Electrochemistry. Electrochemical Reactions Slide 1 / 144 Electrochemistry Electrochemistry Slide 2 / 144 Electrochemistry deals with relationships between reactions and electricity In electrochemical reactions, electrons are transferred from one

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1

Chemistry 1011 TOPIC TEXT REFERENCE. Electrochemistry. Masterton and Hurley Chapter 18. Chemistry 1011 Slot 5 1 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18 Chemistry 1011 Slot 5 1 18.5 Electrolytic Cells YOU ARE EXPECTED TO BE ABLE TO: Construct a labelled diagram to show

More information

Oxidation-reduction (redox) reactions

Oxidation-reduction (redox) reactions Oxidation-reduction (redox) reactions Reactions in which there are changes in oxidation state (oxidation number) between reactants and products 2 MnO 4- + 10 Br - + 16 H + 2 Mn 2+ + 5 Br 2 + 8 H 2 O One

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell

We can use chemistry to generate electricity... this is termed a Voltaic (or sometimes) Galvanic Cell Unit 6 Electrochemistry Chemistry 020, R. R. Martin Electrochemistry Electrochemistry is the study of the interconversion of electrical and chemical energy. We can use chemistry to generate electricity...

More information

17.1 Redox Reactions. Oxidation Numbers. Assigning Oxidation Numbers. Redox Reactions. Ch. 17: Electrochemistry 12/14/2017. Creative Commons License

17.1 Redox Reactions. Oxidation Numbers. Assigning Oxidation Numbers. Redox Reactions. Ch. 17: Electrochemistry 12/14/2017. Creative Commons License Ch. 17: Electrochemistry Electric vehicles contain batteries that can be recharged, thereby using electric energy to bring about a chemical change and vice versa. (credit: modification of work by Robert

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Electrode Potentials and Their Measurement

Electrode Potentials and Their Measurement Electrochemistry Electrode Potentials and Their Measurement Cu(s) + 2Ag + (aq) Cu(s) + Zn 2+ (aq) Cu 2+ (aq) + 2 Ag(s) No reaction Zn(s) + Cu 2+ (aq) Cu(s) + Zn 2+ (aq) In this reaction: Zn (s) g Zn 2+

More information

Electrochemistry. Outline

Electrochemistry. Outline Electrochemistry Outline 1. Oxidation Numbers 2. Voltaic Cells 3. Calculating emf or Standard Cell Potential using Half-Reactions 4. Relationships to Thermo, Equilibrium, and Q 5. Stoichiometry 6. Balancing

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

CHAPTER 12. Practice exercises

CHAPTER 12. Practice exercises CHAPTER 12 Practice exercises 12.1 2Al(s) + 3Cl 2 (g) 2AlCl 3 (aq) Aluminium is oxidised and is therefore the reducing agent. Chlorine is reduced and is therefore the oxidising agent. 12.3 First the oxidation

More information

Dr. Anand Gupta

Dr. Anand Gupta By Dr Anand Gupta Mr. Mahesh Kapil Dr. Anand Gupta 09356511518 09888711209 anandu71@yahoo.com mkapil_foru@yahoo.com Electrochemistry Electrolysis Electric energy Chemical energy Galvanic cell 2 Electrochemistry

More information

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 20. Electrochemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 20 James F. Kirby Quinnipiac University Hamden, CT is the study of the relationships between electricity and chemical reactions. It includes the study of both spontaneous and

More information

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59

Chapter 20. Electrochemistry. Chapter 20 Problems. Electrochemistry 7/3/2012. Problems 15, 17, 19, 23, 27, 29, 33, 39, 59 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 20 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 20 Problems

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells

Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells Electrochemistry (Galvanic and Electrolytic Cells) Exchange of energy in chemical cells Oxidation loss of electrons (oxidation number increases) OIL RIG Reduction gain of electrons (oxidation number decreases)

More information

Oxidation & Reduction (Redox) Notes

Oxidation & Reduction (Redox) Notes Oxidation & Reduction (Redox) Notes Chemical Activity (or Chemical Reactivity) is the measure of the reactivity of elements. If an element has high activity, then it means that the element is willing to

More information

2. Using Half Cell Potentials and Latimer Diagrams. 100 measured half cell potentials generate 10,000 full reactions

2. Using Half Cell Potentials and Latimer Diagrams. 100 measured half cell potentials generate 10,000 full reactions Electrochemistry 1. Balancing Redox Reactions 2. Using Half Cell Potentials and Latimer Diagrams 100 measured half cell potentials generate 10,000 full reactions 3. E as a Thermodynamic state function

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Oxidation Numbers, ox #

Oxidation Numbers, ox # Oxidation Numbers, ox # are or numbers assigned to each or assuming that the are transferred from the electronegative element to the electronegative element. now mimic systems. ox # are written followed

More information

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species.

Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. Introduction Oxidation/reduction reactions involve the exchange of an electron between chemical species. The species that loses the electron is oxidized. The species that gains the electron is reduced.

More information

CHEM J-14 June 2014

CHEM J-14 June 2014 CHEM1101 2014-J-14 June 2014 An electrochemical cell consists of an Fe 2+ /Fe half cell with unknown [Fe 2+ ] and a Sn 2+ /Sn half-cell with [Sn 2+ ] = 1.10 M. The electromotive force (electrical potential)

More information

Name AP CHEM / / Collected Essays Chapter 17

Name AP CHEM / / Collected Essays Chapter 17 Name AP CHEM / / Collected Essays Chapter 17 1980 - #2 M(s) + Cu 2+ (aq) M 2+ (aq) + Cu(s) For the reaction above, E = 0.740 volt at 25 C. (a) Determine the standard electrode potential for the reaction

More information

Redox reactions & electrochemistry

Redox reactions & electrochemistry Redox reactions & electrochemistry Electrochemistry Electrical energy ; Chemical energy oxidation/reduction = redox reactions Electrochemistry Zn + Cu 2+ º Zn 2+ + Cu Oxidation-reduction reactions always

More information

(c) dilute solution of glucose (d) chloroform 12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4

(c) dilute solution of glucose (d) chloroform 12 Which one of the following represents the same net reaction as the electrolysis of aqueous H2SO4 1 Electrolysis is the process in which a chemical reaction takes place at the expense of (a) chemical energy (b) electrical energy (c) heat energy (d) none of these 2 Standard hydrogen electrode has an

More information

Chapter 7. Oxidation-Reduction Reactions

Chapter 7. Oxidation-Reduction Reactions Chapter 7 Oxidation-Reduction Reactions Chapter Map Oxidation Historically oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn 2Zn 2+ + 4e O + 2e O 2 or O 2 + 4e 2O 2 Oxidation

More information

Name: Regents Chemistry Date:

Name: Regents Chemistry Date: Name: Date: 1. The reaction CuO + CO CO 2 + Cu is an example of (A) reduction, only (B) oxidation, only (C) both oxidation and reduction (D) neither oxidation nor reduction 6. In which compound does chlorine

More information

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5

Electrochemistry. (Hebden Unit 5 ) Electrochemistry Hebden Unit 5 (Hebden Unit 5 ) is the study of the interchange of chemical energy and electrical energy. 2 1 We will cover the following topics: Review oxidation states and assigning oxidation numbers Redox Half-reactions

More information

Assigning Oxidation Numbers:

Assigning Oxidation Numbers: Assigning Oxidation Numbers: 1. Oxidation number of a free element or diatomic molecule is zero. Ex: Na(s), Cu(s), H 2 (g), F 2 (g) 2. In most cases the oxidation number of hydrogen is +1, oxygen is -2,

More information

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop

Chapter 9 Oxidation-Reduction Reactions. An Introduction to Chemistry by Mark Bishop Chapter 9 Oxidation-Reduction Reactions An Introduction to Chemistry by Mark Bishop Chapter Map Oxidation Historically, oxidation meant reacting with oxygen. 2Zn(s) + O 2 (g) 2ZnO(s) Zn Zn 2+ + 2e or 2Zn

More information

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry Chapter 18 Electrochemistry Redox Reac)on One or more elements change oxida)on number all single displacement, and combus)on, some synthesis and decomposi)on Always have both oxida)on and reduc)on split

More information

Section Electrochemistry represents the interconversion of chemical energy and electrical energy.

Section Electrochemistry represents the interconversion of chemical energy and electrical energy. Chapter 21 Electrochemistry Section 21.1. Electrochemistry represents the interconversion of chemical energy and electrical energy. Electrochemistry involves redox (reduction-oxidation) reactions because

More information

Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry

Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry Chemistry 1020, Module 17 Name Study Guide for Module 17 Oxidation-Reduction Reactions and Electrochemistry Reading Assignment: Chapter 17 in Chemistry, 6th Edition by Zumdahl. Guide for Your Lecturer:

More information

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy

Chapter 19 - Electrochemistry. the branch of chemistry that examines the transformations between chemical and electrical energy Chapter 19 - Electrochemistry the branch of chemistry that examines the transformations between chemical and electrical energy 19.1 Redox Chemistry Revisited A Spontaneous Redox Reaction Znº(s) + Cu 2+

More information

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY

SHOCK TO THE SYSTEM! ELECTROCHEMISTRY SHOCK TO THE SYSTEM! ELECTROCHEMISTRY REVIEW I. Re: Balancing Redox Reactions. A. Every redox reaction requires a substance to be... 1. oxidized (loses electrons). a.k.a. reducing agent 2. reduced (gains

More information

The Nature of Redox. Both oxidation and reduction processes occur together. Each half of the full redox reaction is a. Oxidizing and Reducing Agents

The Nature of Redox. Both oxidation and reduction processes occur together. Each half of the full redox reaction is a. Oxidizing and Reducing Agents V. ELECTROCHEMISTRY V.1 INTRODUCTION TO OXIDATION AND REDUCTION Key Question: How are electrons gained or lost? ELECTROCHEMISTRY is the study of oxidation and reduction reactions in which chemical species

More information

N Goalby chemrevise.org

N Goalby chemrevise.org Redox Equilibria Electrochemical cells This type of cell can be called a Voltaic cell or Galvanic cell. Voltaic cells convert energy from spontaneous, exothermic chemical processes to electrical energy.

More information

Topic 19 Redox 19.1 Standard Electrode Potentials. IB Chemistry T09D04

Topic 19 Redox 19.1 Standard Electrode Potentials. IB Chemistry T09D04 Topic 19 Redox 19.1 Standard Electrode Potentials IB Chemistry T09D04 19.1 Standard Electrode Potentials 19.1.1 Describe the standard hydrogen electrode. (2) 19.1.2 Define the term standard electrode potential,

More information

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred.

Electrochemistry. Remember from CHM151 G E R L E O 6/24/2014. A redox reaction in one in which electrons are transferred. Electrochemistry Remember from CHM151 A redox reaction in one in which electrons are transferred Reduction Oxidation For example: L E O ose lectrons xidation G E R ain lectrons eduction We can determine

More information

CHM 2046 Test #4 Review: Chapter 17 & Chapter 18

CHM 2046 Test #4 Review: Chapter 17 & Chapter 18 1. Which of the following is true concerning a nonspontaneous reaction? a. It s impossible for the reaction to occur b. The reaction occurs, but very slowly c. It can be made spontaneous by adding a catalyst

More information

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by...

Electrochemistry. 1. For example, the reduction of cerium(iv) by iron(ii): Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ a. The reduction half-reaction is given by... Review: Electrochemistry Reduction: the gaining of electrons Oxidation: the loss of electrons Reducing agent (reductant): species that donates electrons to reduce another reagent. Oxidizing agent (oxidant):

More information

Homework 11. Electrochemical Potential, Free Energy, and Applications

Homework 11. Electrochemical Potential, Free Energy, and Applications HW11 Electrochemical Poten!al, Free Energy, and Applica!ons Homework 11 Electrochemical Potential, Free Energy, and Applications Question 1 What is the E for Zn(s) Zn (aq) Ce (aq) Ce (aq) + cell + 4+ 3+

More information

NCEA Chemistry 3.7 REDOX AS 91393

NCEA Chemistry 3.7 REDOX AS 91393 NCEA Chemistry 3.7 REDOX AS 91393 This achievement standard involves demonstrating understanding of oxidation-reduction processes Demonstrate comprehensive understanding (Excellence) involves: 1. Identify

More information

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number

1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number General Chemistry II Exam 4 Practice Problems 1 1.In which of the following is the oxidation number of the underlined element given incorrectly? oxidation number a. K 2 Cr 2 O 7 +6 b. NaAl(OH) 4 +3 c.

More information

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons

Oxidation (oxidized): the loss of one or more electrons. Reduction (reduced): the gain of one or more electrons 1 of 13 interesting links: Battery Chemistry Tutorial at http://www.powerstream.com/batteryfaq.html Duracell Procell: Battery Chemistry at http://www.duracell.com/procell/chemistries /default.asp I. Oxidation

More information