Q1: Sumatriptan (Tosymra) type

Size: px
Start display at page:

Download "Q1: Sumatriptan (Tosymra) type"

Transcription

1 Q1: Sumatriptan (Tosymra) type MM = 295 g/mol Corresponds to < 30 nonhydrogen atoms (C,N,O,..) AnBbody or protein contains > 50 amino acids, and each amino acid contains > 3 heavy atoms PepBde or Small molecule? 12 residue pepbde contains at least 4 heavy atoms Bmes 12 = 48 heavy atoms. 48 > 30 hence a small molecule

2 Q14: Kd calcula:on Problem: Drug is being added to 4 μm solubon of its target protein unbl 3:5 molar rabo (total drug:total protein) is achieved. Given that 2.33 μm of 1:1 complexes formed upon equilibrabon, find the dissociabon constant Kd. Solu:on: The molar rabo of 3:5 means that [L tot ] = 2.4 μm Since 2.33 μm of complexes was formed, unbound concentrabons are: [P] = [P tot ] [PL]= 4 μm 2.33 μm = 1.67 μm [L] = [L tot ] [PL]= 2.4 μm 2.33 μm = 0.07 μm K d = [P][L] / [PL] = / μm = 50 nm

3 Q18: K d to ΔG, ΔG = ΔH - TΔS Problem: When performed at 300K, an endothermic 1:1 drug/ target binding reacbon with Kd = 58 nm absorbs the molar heat of 1.4 kcal/mol. What is the molar entropy of this reacbon, ΔS? Solu:on: Find molar ΔG bind : ΔG = RT ln Kd = 0.6 kcal/mol ln ( ) = -10 kcal/ mol Molar ΔH bind of 1.4 kcal/mol is given ΔG = ΔH - TΔS; therefore, ΔS = (ΔH - ΔG) / T = ( kcal/mol) / 300 K = cal/mol / 300 K = 38 cal/(mol K) In this problem, entropy must be posi:ve! Given that ΔH is posibve, this is the only way to achieve negabve ΔG.

4 Week 5 problem solving + equa-ons, + applica-ons Colliga:ve proper:es, Nuclear Medicine

5 Van t Hoff Factor Problem: When the pharmaceubcal formulabon of drug X, [X] 2 Ca 2+ is dissolved in water, 30% of the molecules dissociated into three ions, 30% into two ions, and 40% did not dissociate. Calculate the van t Hoff factor for the solubon. A. 0.3 B. 0.4 C. 1 D. 1.9 E. 2 Solu:on: = = 1.9 OR: Every 100 molecules will produce = 190 parbcles. Answer: the van t Hoff factor is 1.9 (to be used for calculabon of all colligabve properbes)

6 Raoul s Law Problem: The pure water vapor pressure at 47 C is 0.1 bar. EsBmate the vapor pressure when 32 g of NaCl (MW = 58 g/mol) is added to 1 L of water. Assume that the salt is not volable, but it dissociates completely. A bar B bar C bar D bar Solu:on: 32 g = 32/58 ~ 0.55 mol of salt Dissolved AND DISSOCIATED in 1L = 55 mol of water; van t Hoff factor of 2 Molar fracbon of the solute x / 55 = Raoult's Law, ΔP w = x solute P w * = 0.02 * 0.1 = bar P w = P w * ΔP w = = bar Answer: The new vapor pressure is ~ bar.

7 Osmo:c pressure ΔP ~ ΔM 25 [atm L/mol] Problem: The blood glucose level of a diabebc pabent is approximately g/dl (dl = 0.1L). Given that glucose MW = g/mol, calculate the osmobc pressure created by glucose. A. 0.9 mmhg B. 19 mmhg C. 109 mmhg D. 209 mmhg Solu:on: no dissociabon occurs: van t Hoff factor = g/dl = 1.98 g/l ~ 11 mm = osmolarity ΔP osm = 11 mosm/l 25 L atm/mol = atm = 209 mmhg Answer: 209 mmhg Note that glucose does permeate membranes; the actual ΔP osm due to glucose between plasma and intersbbum is lower

8 Week 5 problem solving + equa-ons, + applica-ons EM radia:on, fluorescence, radioac:vity

9 EM bands & photon energies λ = m, ν = Hz h ev s h J s (Planck constant) 1 ev = J Energy vs Frequency relabon: Photon E = hν ν λ = c c m/s (speed of light)

10 Range λ ν Photon E Radio 1 m-10 5 km 3 Hz-300 MHz 12.4 fev-1.24 µev Microwa ve 1 mm-1 m GHz 1.24 µev-1.24 mev Far IR µm THz mev IR µm THz mev Near IR nm THz ev VIS nm THz ev Near UV nm PHz ev UV nm PHz ev Far UV nm PHz ev X-ray nm 30 PHz-30 EHz kev Gamma <10 pm >30 EHz >124 kev

11 Radia:on: wavelength to frequency T is Tera (12) P is Peta (15)

12 EM radia:on: frequency to photon energy The longest wavelength of EM radiabon that is needed to break a C=C bond is 200 nm Calculate the frequency of this radiabon in Hz Calculate the energy of a single photon in ev A. 47 mev B. 6.2 ev C. D. 3.1 kev 9.3 MeV Solu-on: Have just found that frequency ν = 1.5 PHz E photon = hν = ( ev s) ( Hz) = 6.2 ev Answer: 6.2 ev

13 Ac:vity of radiopharmaceu:cals CounBng the rate of radionuclei disintegra?on 1 Bq (Becquerel) = 1 event per second = 1 s -1 1 Ci (Curie) = 37 GBq Energy released depends on the specific nuclei and disintegrabon mode an average value may be associated with each radionuclide and decay mode AcBvity goes down as the radionuclide decays provided values are at?me of calibra?on Radiopharmaceu:cals are prescribed as ac-vity in Bq Source: FDA

14 Dosimetry-related quan::es Exposure: a measure of ionizabon v Electric charge freed by radiabon per kg of air v 1 R (roentgen) = C/kg (Coulomb per kg) Absorbed dose (energy/body mass): v 1 Gy (gray) = 1 J/kg v 1 rad = 0.01 Gy v Depends on the type of ma{er that absorbs the radiabon, e.g. for an exposure of 1 roentgen by 1 MeV γ-rays: the dose in air = rad the dose in water = rad the dose in averaged human Bssue = rad Dose equivalent: v Different radiabon types have different biological effects for the same deposited energy v W R is a correcbve radia?on weigh?ng factor: dependent on radiabon type converts the absorbed dose into an esbmate of Bssue damage v 1 Sv (Sievert) = W R Gy = W R (J/kg) v 1 rem (roentgen equivalent man) = 0.01 Sv Ionizing radia:on is prescribed as absorbed dose in Gy

15 Ac:vity of radiopharmaceu:cals Problem: 131 I decay releases energy in the form of β- (~90%) and γ- (~10%) radiabon. The average energy release per nucleus is 192 kev for β and 364 kev for γ. Given a sample of 131 I with total acbvity of 5 mci, how much energy does it emit per second in the form of β-radiabon? Give your answer in J/s. A. 57 kj/s B J/s C mj/s D µj/s Solu:on: 1 Bq = 1 nucleus per second = 1 s -1 ; 1 Ci = 37 GBq 5 mci = GBq = 185 MBq ( nuclei disintegrate per second) : converbng Curie units to Bq units. For β: ( ev) ( Bq) ( J/eV) = J/s

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1

Unit 08 Nuclear Structure. Unit 08 Nuclear Structure Slide 1 Unit 08 Nuclear Structure Unit 08 Nuclear Structure Slide 1 The Plan Nuclear Structure Nuclear Decays Measuring Radiation Nuclear Power Plants Major Nuclear Power Accidents New Possibilities for Nuclear

More information

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5)

INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) INTRODUCTION TO IONIZING RADIATION (Attix Chapter 1 p. 1-5) Ionizing radiation: Particle or electromagnetic radiation that is capable of ionizing matter. IR interacts through different types of collision

More information

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da] 1 Part 5: Nuclear Physics 5.1. The Nucleus = atomic number = number of protons N = neutron number = number of neutrons = mass number = + N Representations: X or X- where X is chemical symbol of element

More information

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity

11/23/2014 RADIATION AND DOSE MEASUREMENTS. Units of Radioactivity CHAPTER 4 RADIATION UNITS RADIATION AND DOSE MEASUREMENTS 1 Units of Radioactivity 2 1 Radiation Units There are specific units for the amount of radiation you receive in a given time and for the total

More information

BASIC OF RADIATION; ORIGIN AND UNITS

BASIC OF RADIATION; ORIGIN AND UNITS INAYA MEDICAL COLLEGE (IMC) RAD 243 - LECTURE 2 BASIC OF RADIATION; ORIGIN AND UNITS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

11 Gamma Ray Energy and Absorption

11 Gamma Ray Energy and Absorption 11 Gamma Ray Energy and Absorption Before starting this laboratory, we must review the physiological effects and the proper use of the radioactive samples you will be using during the experiment. Physiological

More information

Module 1. An Introduction to Radiation

Module 1. An Introduction to Radiation Module 1 An Introduction to Radiation General Definition of Radiation Ionizing radiation, for example, X-rays, gamma-rays, α particles Ionizing radiation is capable of removing an electron from the atom

More information

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides Chapter : Nuclear Chemistry. Radioactivity nucleons neutron and proton all atoms of a given element have the same number of protons, atomic number isotopes atoms with the same atomic number but different

More information

Radioactive nuclei. From Last Time. Biological effects of radiation. Radioactive decay. A random process. Radioactive tracers. e r t.

Radioactive nuclei. From Last Time. Biological effects of radiation. Radioactive decay. A random process. Radioactive tracers. e r t. From Last Time Nuclear structure and isotopes Binding energy of nuclei Radioactive nuclei Final Exam is Mon Dec 21, 5:05 pm - 7:05 pm 2103 Chamberlin 3 equation sheets allowed About 30% on new material

More information

Radiation Safety Basic Terms

Radiation Safety Basic Terms Radiation Safety Basic Terms Radiation Radiation is energy in transit in the form of high speed particles and electromagnetic waves. We encounter electromagnetic waves every day. They make up our visible

More information

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations. Absorbed Dose Dose is a measure of the amount of energy from an ionizing radiation deposited in a mass of some material. SI unit used to measure absorbed dose is the gray (Gy). 1J 1 Gy kg Gy can be used

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Interaction of Ionizing Radiation with Matter Interaction of neutrons with matter Neutral particles, no repulsion with the positively charged nucleus: important projectile Origin of the neutrons: Nuclear

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Radiation Protection & Radiation Therapy

Radiation Protection & Radiation Therapy Radiation Protection & Radiation Therapy For Medical Students Professor of Medical Physics Radiation Units Activity Number disintegrations per second (Curie, Becquerel) Exposure (Roentgen, C/kg) Absorbed

More information

Units and Definition

Units and Definition RADIATION SOURCES Units and Definition Activity (Radioactivity) Definition Activity: Rate of decay (transformation or disintegration) is described by its activity Activity = number of atoms that decay

More information

Dosimetry. Sanja Dolanski Babić May, 2018.

Dosimetry. Sanja Dolanski Babić May, 2018. Dosimetry Sanja Dolanski Babić May, 2018. What s the difference between radiation and radioactivity? Radiation - the process of emitting energy as waves or particles, and the radiated energy Radioactivity

More information

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics Radiological Preparedness & Emergency Response Session II Basic Radiation Physics Objectives Discuss the difference between ionizing and non-ionizing radiation. Describe radioactive decay. Discuss the

More information

Classroom notes for: Radiation and Life Lecture Thomas M. Regan Pinanski 207 ext 3283

Classroom notes for: Radiation and Life Lecture Thomas M. Regan Pinanski 207 ext 3283 Classroom notes for: Radiation and Life Lecture 11 98.101.201 Thomas M. Regan Pinanski 207 ext 3283 1 Radioactive Decay Series ( Chains ) A radioactive isotope (radioisotope) can decay and transform into

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity PS-21 First Spring Institute say 2012-2013: Teaching Physical Science Radioactivity What Is Radioactivity? Radioactivity is the release of tiny, highenergy particles or gamma rays from the nucleus of an

More information

Radioactivity. Lecture 7 Dosimetry and Exposure Limits

Radioactivity. Lecture 7 Dosimetry and Exposure Limits Radioactivity Lecture 7 Dosimetry and Exposure Limits Radiation Exposure - Radiology The radiation impact on biological and genetic materials requires some protective measures! Units for scaling the decay

More information

Radiation Quantities and Units

Radiation Quantities and Units Radiation Quantities and Units George Starkschall, Ph.D. Lecture Objectives Define and identify units for the following: Exposure Kerma Absorbed dose Dose equivalent Relative biological effectiveness Activity

More information

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series John W. Moore Conrad L. Stanitsi Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 9 Nuclear Chemistry Stephen C. Foster Mississippi State University The Nature of Radioactivity Henri Becquerel

More information

Lecture PowerPoint. Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Physics of Radiography

Physics of Radiography EL-GY 6813 / BE-GY 6203 / G16.4426 Medical Imaging Physics of Radiography Jonathan Mamou and Yao Wang Polytechnic School of Engineering New York University, Brooklyn, NY 11201 Based on Prince and Links,

More information

APPENDIX A RADIATION OVERVIEW

APPENDIX A RADIATION OVERVIEW Former NAVWPNSTA Concord, Inland Area APPENDIX A RADIATION OVERVIEW Draft ECSD-3211-0005-0004 08/2009 This page intentionally left blank. Draft ECSD-3211-0005-0004 08/2009 APPENDIX A RADIATION OVERVIEW

More information

Problem solving steps

Problem solving steps Problem solving steps Determine the reaction Write the (balanced) equation ΔG K v Write the equilibrium constant v Find the equilibrium constant using v If necessary, solve for components K K = [ p ] ν

More information

Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 31 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

Final Exam. Physics 208 Exit survey. Radioactive nuclei. Radioactive decay. Biological effects of radiation. Radioactive tracers

Final Exam. Physics 208 Exit survey. Radioactive nuclei. Radioactive decay. Biological effects of radiation. Radioactive tracers Final Exam Mon, Dec 15, at 10:05am-12:05 pm, 2103 Chamberlin 3 equation sheets allowed About 30% on new material Rest on topics of exam1, exam2, exam3. Study Tips: Download blank exams and take them. Download

More information

Chapter 2. Atomic Structure and Nuclear Chemistry. Atomic Structure & Nuclear Chemistry page 1

Chapter 2. Atomic Structure and Nuclear Chemistry. Atomic Structure & Nuclear Chemistry page 1 Chapter 2 Atomic Structure and Nuclear Chemistry Atomic Structure & Nuclear Chemistry page 1 Atoms & Elements Part 0: Atomic Structure An Introduction Electrostatics an underlying force throughout chemistry

More information

University of Sydney Chemistry 1A (CHEM1101)

University of Sydney Chemistry 1A (CHEM1101) University of Sydney Chemistry 1A (CHEM1101) Topic 1 Nuclear & Radiation Chemistry 1 Topic 2 Quantum Theory 10 Topic 3 Trends & Atomic Spectroscopy 16 Topic 4 Molecular Orbitals & Bonding 21 Topic 5 Structure

More information

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1

Outline. Radiation Interactions. Spurs, Blobs and Short Tracks. Introduction. Radiation Interactions 1 Outline Radiation Interactions Introduction Interaction of Heavy Charged Particles Interaction of Fast Electrons Interaction of Gamma Rays Interactions of Neutrons Radiation Exposure & Dose Sources of

More information

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV

05/11/2013. Nuclear Fuel Cycle Ionizing radiation. Typical decay energies. Radiation with energy > 100 ev. Ionize an atom < 15eV Nuclear Fuel Cycle 2013 Lecture 4: Interaction of Ionizing Radiation with Matter Ionizing radiation Radiation with energy > 100 ev Ionize an atom < 15eV Break a bond 1-5 ev Typical decay energies α: 4-9

More information

Radioactivity. Lecture 7 Dosimetry and Exposure Limits

Radioactivity. Lecture 7 Dosimetry and Exposure Limits Radioactivity Lecture 7 Dosimetry and Exposure Limits Radiation Exposure - Radiology The radiation impact on biological and genetic materials requires some protective measures! Units for scaling the decay

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 24 Medical Imaging Effects of Radiation We now know what radiation is But what does it mean for our bodies? Radioactivity is quantified in

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate

LET! (de / dx) 1 Gy= 1 J/kG 1Gy=100 rad. m(kg) dose rate Basics of Radiation Dosimetry for the Physicist http://en.wikipedia.org/wiki/ionizing_radiation I. Ionizing radiation consists of subatomic particles or electromagnetic waves that ionize electrons along

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

2015 Ph.D. Comprehensive Examination III. Radiological Sciences - Medical Physics

2015 Ph.D. Comprehensive Examination III. Radiological Sciences - Medical Physics January 2015 2015 Ph.D. Comprehensive Examination III Radiological Sciences - Medical Physics In this three-hour exam, you are required to answer all of the questions in Part A and any two (2) out of the

More information

HW #11: 11.32, 11.34, 11.36, 11.44, 11.46, 11.48, 11.50, 11.52, 11.56, 11.58, 11.68, 11.76, 11.82, 11.84, 11.86

HW #11: 11.32, 11.34, 11.36, 11.44, 11.46, 11.48, 11.50, 11.52, 11.56, 11.58, 11.68, 11.76, 11.82, 11.84, 11.86 Chemistry 11 Lectures & 3: Radiation; Common Decay Pathways; Radioactive Decay Rates; Detection and Quantification of Radiation; Chemical & Biological Effects of Radiation Chapter 11 in McMurry, Ballantine,

More information

Chapter 42. Nuclear Physics

Chapter 42. Nuclear Physics Chapter 42 Nuclear Physics In the previous chapters we have looked at the quantum behavior of electrons in various potentials (quantum wells, atoms, etc) but have neglected what happens at the center of

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information

Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine

Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine Radioactivity Karolina H. Czarnecka, PhD Department of Molecular Bases of Medicine karolina.czarnecka@umed.lodz.pl The periodic table is a tabular arrangement of the chemical elements, ordered by their

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics Dr. Dan Protopopescu Kelvin Building, room 524 Dan.Protopopescu@glasgow.ac.uk 1 Topics covered in this course I. Radia'on II. Atomic nuclei III. Radioac'vity and radioac've

More information

Question. 1. Which natural source of background radiation do you consider as dominant?

Question. 1. Which natural source of background radiation do you consider as dominant? Question 1. Which natural source of background radiation do you consider as dominant? 2. Is the radiation background constant or does it change with time and location? 3. What is the level of anthropogenic

More information

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331 Lecture 25-1 Physics 219 Help Session Date: Wed 12/07, 2016. Time: 6:00-8:00 pm Location: Physics 331 Lecture 25-2 Final Exam Dec. 14. 2016. 1:00-3:00pm in Phys. 112 Bring your ID card, your calculator

More information

Chapter. Nuclear Chemistry

Chapter. Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Reactions 01 Chapter 22 Slide 2 Chapter 22 Slide 3 Alpha Decay: Loss of an α-particle (a helium nucleus) 4 2 He 238 92 U 234 4 U He 90 + 2 Chapter 22 Slide 4 Beta Decay:

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chapter 21 Nuclear Chemistry: the study of nuclear reactions

Chapter 21 Nuclear Chemistry: the study of nuclear reactions Chapter 2 Nuclear Chemistry: the study of nuclear reactions Learning goals and key skills: Write balanced nuclear equations Know the difference between fission and fusion Predict nuclear stability in terms

More information

Radiation Protection Fundamentals and Biological Effects: Session 1

Radiation Protection Fundamentals and Biological Effects: Session 1 Radiation Protection Fundamentals and Biological Effects: Session 1 Reading assignment: LLE Radiological Controls Manual (LLEINST 6610): Part 1 UR Radiation Safety Training Manual and Resource Book: Parts

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chem 204. K ow and the Rule of Five. with an extended interlude of how to measure concentra3ons of molecules in fluid solu3on

Chem 204. K ow and the Rule of Five. with an extended interlude of how to measure concentra3ons of molecules in fluid solu3on Chem 204 K ow and the Rule of Five with an extended interlude of how to measure concentra3ons of molecules in fluid solu3on octanol (CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 OH) water Now add molecule octanol

More information

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

Quantifying Radiation. Applications

Quantifying Radiation. Applications Today Quantifying Radiation Applications We need to try to quantify amount of radiation How much ionizing radiation is coming from a source? How much ionizing radiation has interacted with you? How much

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Final Exam. Evaluations. From last time: Alpha radiation. Beta decay. Decay sequence of 238 U

Final Exam. Evaluations. From last time: Alpha radiation. Beta decay. Decay sequence of 238 U Evaluations Please fill out evaluation and turn it in. Written comments are very helpful! Lecture will start 12:15 Today, evaluate Prof. Rzchowski If you weren t here Tuesday, also evaluate Prof. Montaruli

More information

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom Forces act in opposing directions Electrostatic repulsion: pushes protons apart Strong nuclear force: pulls protons

More information

Atomic and Nuclear Radii

Atomic and Nuclear Radii Atomic and Nuclear Radii By first approx. the nucleus can be considered a sphere with radius given by R 1.25 x A (1/3) {fm} A atomic mass number, fm 10-15 m Since the volume of a sphere is proportional

More information

LECTURE 26 RADIATION AND RADIOACTIVITY. Instructor: Kazumi Tolich

LECTURE 26 RADIATION AND RADIOACTIVITY. Instructor: Kazumi Tolich LECTURE 26 RADIATION AND RADIOACTIVITY Instructor: Kazumi Tolich Lecture 26 2 30.4 Radiation and radioactivity Alpha decay Beta decay Gamma decay Decay series Nuclear radiation is a form of ionizing radiation

More information

Atomic Nucleus and Radioac1vity

Atomic Nucleus and Radioac1vity Atomic Nucleus and Radioac1vity Chin- Sung Lin Atomic Nucleus and Radioac1vity X- Rays and Radioac1vity In 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his lab and discovered

More information

Working Correctly & Safely with Radiation. Talia Tzahor Radiation safety officer Tel:

Working Correctly & Safely with Radiation. Talia Tzahor Radiation safety officer Tel: Working Correctly & Safely with Radiation Talia Tzahor Radiation safety officer Tel: 5196 Email: talia.tzahor@weizmann.ac.il Environmental Exposure The typical human body contains: Potassium-40 ( 40 K)

More information

PHY138Y Nuclear and Radiation

PHY138Y Nuclear and Radiation PHY138Y Nuclear and Radiation Professor Tony Key MP401 key@physics.utoronto.ca Announcements Next and last Representative Assembly, Friday of next week (23 rd ) MP713 me 12:10 FRIDAY 23 rd FREE COOKIES

More information

Structure of the course

Structure of the course Structure of the course 1) Introduc1on 2) Interac1on of par1cles with ma9er } principles / tools 3) Therapy with proton and ion beams 4) Sources for nuclear medicine 5) X- ray sources sources 6) Image

More information

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal NORM and TENORM: Occurrence, Characterizing, Handling and Disposal Ionizing Radiation and Hazard Potential John R. Frazier, Ph.D. Certified Health Physicist May 12, 2014 Radiation Radiation is a word that

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

Chapter 45 Solutions

Chapter 45 Solutions Chapter 45 Solutions *45.1 m (m n + M U ) (M Zr + M Te + 3m n ) m (1.008 665 u + 35.043 94 u) (97.91 0 u + 134.908 7 u + 3(1.008 665 u)) m 0.05 89 u 3.418 10 8 kg so Q mc 3.076 10 11 J 19 MeV 45. Three

More information

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation 1.1 Natural radiation 3 1 What happens when we are exposed to radiation? 1.1 Natural radiation For as long as humans have walked the earth, we have continually been exposed to naturally-occurring radiation.

More information

Ch. 18 Problems, Selected solutions. Sections 18.1

Ch. 18 Problems, Selected solutions. Sections 18.1 Sections 8. 8. (I) How many ion pairs are created in a Geiger counter by a 5.4-MeV alpha particle if 80% of its energy goes to create ion pairs and 30 ev (average in gases) is required per ion pair? Notice

More information

CH 222 Chapter Twenty-one Concept Guide

CH 222 Chapter Twenty-one Concept Guide CH 222 Chapter Twenty-one Concept Guide 1. Terminology Alpha Radiation (α): Beta Radiation (β): Gamma Radiation (γ): Nuclear Reaction: Nucleons: Radioactive Decay Series: Positrons: Nuclear Binding Energy:

More information

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg:

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg: Chapter 44 Solutions *44. An iron nucleus (in hemoglobin) has a few more neutrons than protons, but in a typical water molecule there are eight neutrons and ten protons. So protons and neutrons are nearly

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm 1 Lightning

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lightning Review Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Thermodynamics & kinetics

Thermodynamics & kinetics Zepelin Hindenburg 1937 Thermodynamics & kinetics H 2 + ½ O 2 H 2 O H = - 241 KJ/mol both spontaneous! R P but rates? R P 2Fe + O 2 + 2H 2 O 2 Fe (OH) 2 H = - 272 KJ/mol Reaction coordinate Thermodynamics

More information

Physics of Radiography

Physics of Radiography Physics of Radiography Yao Wang Polytechnic Institute of NYU Brooklyn, NY 11201 Based on J L Prince and J M Links Medical Imaging Signals and Based on J. L. Prince and J. M. Links, Medical Imaging Signals

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

5) Measurement of Nuclear Radiation (1)

5) Measurement of Nuclear Radiation (1) 5) Measurement of Nuclear Radiation (1) Registration of interactions between nuclear radiation and matter Universal principle: Measurement of the ionisation Measurement of the ionisation measurement of

More information

Problem Set 5 Solutions Prepared by Lisa Neef & Tony Key (last revision: 15 May 2007)

Problem Set 5 Solutions Prepared by Lisa Neef & Tony Key (last revision: 15 May 2007) Problem Set 5 Solutions Prepared by Lisa Neef & Tony Key (last revision: 15 May 2007) 1. ISOTOPIC DILUTION. A) Mass of Exchangeable Calcium. Model. Here are all the things we are given in this problem:

More information

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides)

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides) Nothing in life is to be feared. It is only to be understood. -Marie Curie Segre Chart (Table of Nuclides) Z N 1 Segre Chart (Table of Nuclides) Radioac8ve Decay Antoine Henri Becquerel Marie Curie, née

More information

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018 Radiation Safety Talk UC Santa Cruz Physics 133 Winter 2018 Outline Types of radiation Sources of radiation Dose limits and risks ALARA principle Safety procedures Types of radiation Radiation is energy

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

The following examination contains 38 questions valued at 3 points/question. Name

The following examination contains 38 questions valued at 3 points/question. Name Chem 11 Final Exam Practice Winter 018 The following examination contains 38 questions valued at 3 points/question. Name T f = -(1.86 o C/mole)(moles) T b = (0.5 o C/mole)(moles) 1.86/.5 = MW/x % w/v =

More information

Radiation Response and Removals: Getting Down to the Nitty Gritty. 15 th Annual OSC Readiness Training Program

Radiation Response and Removals: Getting Down to the Nitty Gritty. 15 th Annual OSC Readiness Training Program Radiation Response and Removals: Getting Down to the Nitty Gritty 15 th Annual OSC Readiness Training Program www.oscreadiness.org 0 Radiation Fundamentals Tony Honnellio Health Physicist U.S. EPA, Region

More information

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation.

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation. RADIOACTIVITY - SPONTANEOUS NUCLEAR PROCESSES OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. For~, p and 7 decays a) Write a typical equation for the production of each type

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry S H 2 = S H 2 R ln P H2 P NH

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry  S H 2 = S H 2 R ln P H2 P NH N (g) + 3 H (g) NH 3 (g) S N = S H = S NH 3 = S N R ln P N S H R ln P H S NH 3 R ln P NH3 ΔS rxn = (S Rln P NH 3 NH3 ) (S N Rln P N ) 3 (S H Rln P H ) ΔS rxn = S S NH 3 N 3S H + Rln P P 3 N H ΔS rxn =

More information

Lab #13: MEASUREMENT OF RADIATION DOSES

Lab #13: MEASUREMENT OF RADIATION DOSES Lab #13: MEASUREMENT OF RADIATION DOSES THEORETICAL BACKGROUND In order to estimate the radiation exposure it is essential to determine the quantity of radiation. If we identify the dose of radiation to

More information

Electromagnetic waves (only wavelength varies) Infrared ( m); Visual ( nm) Accelerators. Travel like waves

Electromagnetic waves (only wavelength varies) Infrared ( m); Visual ( nm) Accelerators. Travel like waves Lecture 03: Alpha, Beta, and Gamma Radiation: Radiation and Radioactive Material TWO DEMOS: slide 8 slide 32 (2-3 min) 1 Did you know? Highly radioactive material decays quickly? The term radiation may

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

What do all of these things have in Common?

What do all of these things have in Common? What do all of these things have in Common? What do all of these things have in Common? They all produce some form of radiation From E-Bay Nov. 29 th 2010 FITRITE RADIUM OUTFIT NOTE!!!!!NOTE!!!!! This

More information

Radiation and the Atom

Radiation and the Atom Radiation and the Atom PHYS Lecture Departamento de Física Instituto Superior de Engenharia do Porto cav@isep.ipp.pt Overview SI Units and Prefixes Radiation Electromagnetic Radiation Electromagnetic Spectrum

More information

University of Sydney Chemistry 1A (CHEM1101)

University of Sydney Chemistry 1A (CHEM1101) University of Sydney Chemistry 1A (CHEM1101) Topic 1 Nuclear & Radiation Chemistry 1 Topic 2 Quantum Theory 12 Topic 3 Trends & Atomic Spectroscopy 22 Topic 4 Molecular Orbitals & Bonding 28 Topic 5 Structure,

More information