Macrocyclization of Peptide Side Chains by Ugi Reaction: Achieving Peptide

Size: px
Start display at page:

Download "Macrocyclization of Peptide Side Chains by Ugi Reaction: Achieving Peptide"

Transcription

1 Macrocyclization of Peptide Side Chains by Ugi Reaction: Achieving Peptide Folding and Exocyclic N-Functionalization in One Shot Aldrin V. Vasco,, Carlos S. Pérez, Fidel E. Morales, Hilda E. Garay, ǁ Dimitar Vasilev, José A. Gavín, ǂ Ludger A. Wessjohann,, * and Daniel G. Rivera,, * Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba. Facultad de Ingeniería Química. Instituto Superior Politécnico José Antonio Echeverría, CUJAE, Calle 114 # 11901, 11500, La Habana, Cuba. ǁ Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, La Habana, Cuba. ǂ Instituto Universitario de Bioorgánica Antonio González and Departamento de Química Orgánica, Universidad de La Laguna, La Laguna, Tenerife, Spain. Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D , Halle/Saale, Germany. Corresponding Authors: * s: dgr@fq.uh.cu; wessjohann@ipb-halle.de S1

2 Table of contents NMR Structure determination Molecular Dynamics Simulations Figure 1. HPLC chromatogram of crude peptide 3. Figure 2. ESI-MS of peptide 3. Figure 3. HPLC Chromatogram of crude peptide 5. Figure 4. ESI-MS of peptide 5 Figure 5. HPLC Chromatogram of pure cyclic peptide 2. Figure 6. ESI-MS of cyclic peptide 2. Figure 7. HPLC Chromatogram of pure cyclic peptide 4. Figure 8. Mass spectrum of cyclic peptide 4. Figure 9. HPLC Chromatogram of pure cyclic peptide 6. S3 S4 S5 S5 S6 S6 S7 S7 S8 S8 S9 Figure 10. Mass spectrum of cyclic peptide 6. S9 Figure MHz 1 H-NMR spectrum in DMSO-d6 of cyclic peptide 2. S10 Figure MHz 13 C-NMR spectrum in DMSO-d6 of cyclic peptide 2. S11 Figure 13. TOCSY spectrum in DMSO-d6 of cyclic peptide 2. S12 Figure 14. HSQC spectrum of in DMSO-d6 cyclic peptide 2. S13 Figure 15. HMBC spectrum in DMSO-d6 of cyclic peptide 2. S14 Figure 16. ROESY spectrum in DMSO-d6 of cyclic peptide 2. S15 Figure MHz 1 H-NMR spectrum in DMSO-d6 of cyclic peptide 4. S17 Figure MHz 13 C-NMR spectrum in DMSO-d6 of cyclic peptide 4. S18 Figure 19. TOCSY spectrum in DMSO-d6 of cyclic peptide 4. S19 Figure 20. HSQC spectrum in DMSO-d6 of cyclic peptide 4. S20 S2

3 Figure 21. HMBC spectrum in DMSO-d6 of cyclic peptide 4. S21 Figure 22. ROESY spectrum in DMSO-d6 of cyclic peptide 4. S22 Figure MHz 1 H-NMR spectrum in DMSO-d6 of cyclic peptide 6. S23 Figure MHz 13 C-NMR spectrum in DMSO-d6 of cyclic peptide 6. S24 Figure 25. TOCSY spectrum of in DMSO-d6 cyclic peptide 6. S25 Figure 26. HSQC spectrum in DMSO-d6 of cyclic peptide 6. S26 Figure 27. HMBC spectrum in DMSO-d6 of cyclic peptide 6. S27 Figure 28. ROESY spectrum in DMSO-d6 of cyclic peptide 6. S28 Figure MHz 1 H-NMR spectrum in acetone-d6 of cyclic peptide 8. S29 Figure MHz 13 C-NMR spectrum acetone-d6 of cyclic peptide 8. S30 Figure MHz 1 H-NMR spectrum in CDCl 3 of cyclic peptide 10. S31 Figure MHz 13 C NMR spectrum in CDCl 3 of cyclic peptide 10. S32 References S33 NMR Structure determination NMR structure determination was performed in Xplor-NIH 1,2 through simulated annealing regularization and refinement in torsion angle space, using experimental data as inter-proton distances and dihedral angles restraints. Simulations were based on examples scripts distributed in the /eginput folder within Xplor-NIH package. For cyclic peptide 2, φ angles from the 3 J NHCHα of residues Leu1, Lys2, Phe3, Val4 and Glu5 as well as χ 1 angle from the Phe3 residue were used as dihedral constraints. For cyclic peptide 4, φ angles from the 3 J NHCHα of residues Val1, Ile2, Lys6 and Phe7 as well as χ 1 angle from the Phe7 residue were used as dihedral constraints. For cyclic peptide 6, φ angles from the 3 J NHCHα of residues Phe1 and Lys2 were used as dihedral constraints. For simulated annealing regularization 200 starting structures were randomly generated. Geometric bond, angle and improper energy contributions were scaled to 1.0, 0.4, and 0.1 respectively. Non-bonded Van der Waals contributions were set to and experimental NOE S3

4 and dihedral constraints were scaled to 2 and 10 respectively. An initial 100 steps conjugated gradient Powell minimization was performed. A 100 ps molecular dynamics simulation at 3500 K was performed with a timestep of 3 fs. Before the cooling stage, the energy function due to experimental dihedral restraints was scaled to 200. The system was cooled from 3500 to 25 K, with a temperature step of 12.5 K. At each temperature step, 0.2 ps of molecular dynamics simulation was performed. During this stage the Van der Waals energy term was progressively scaled from to 4, and the experimental NOE potential was climbed to 30. Angle and improper terms were both progressively scaled to 1.0. A 500 steps torsion angle minimization was performed and finally the system was optimized by means of 500 steps conjugated gradient Powell cartesian minimization. The refinement protocol consisted in a slow cooling simulated annealing from the regularized structures. The initial weights of the energy functions was 0.4, 0.1 and 1.0 for the angle, improper, and bond terms; 10 and 2 respectively for the NOE and dihedral experimental restraints; and for the non-bonded Van der Waals term. A 10 ps molecular dynamics simulation at 3000 K was achieved with a time-step of 3 fs, afterwards dihedral restraints contribution was set to 200. The system was cooled with a temperature step of 12.5 K and a simulation time of 0.2 ps at each temperature. During this simulation the Van der Waals energy term was scaled from to 4. During this stage the Van der Waals energy term was progressively scaled from to 4, and the experimental NOE potential was climbed to 30. Angle and improper terms were both progressively scaled to 1.0. A 500 torsion angle minimization was performed afterwards a second 500 steps minimization was achieved in cartesian coordinates. A finally 1000 steps Powell minimization with an energy function nondependent of experimental restraints was executed. Final RMSD were calculated with the plugin RMSD calculator within VMD 1.9.2, 3 excluding N- and C-terminal residues in the calculation. Molecular Dynamics Simulations Solvent boxes were generated with the Solvate plugin within VMD Trajectories analysis of interatomic distances were performed in VEGA ZZ 4 while time distribution of ϕ and ψ angles (Ramachandran Plots) were generated within VMD. 3 The analysis of hydrogen bonds in time was performed within VMD using a cut-off criteria of 20 0 and a donor-acceptor distance criteria lesser than 3Å. S4

5 Figure 1. HPLC chromatogram of crude peptide 3. fidel-1 5 (0.108) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:53) TOF MS ES+ 2.00e % m/z Figure 2. ESI-MS of peptide S5

6 Figure 3. HPLC Chromatogram of crude peptide 5. fidel-2 85 (1.643) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (2:86) % Figure 4. ESI-MS of peptide 5 S6

7 Figure 5. HPLC Chromatogram of pure cyclic peptide 2. Figure 6. ESI-MS of cyclic peptide 2. S7

8 Figure 7. HPLC Chromatogram of pure cyclic peptide 4. favv361-pico2 17 (0.326) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (2:23) A % A Figure 8. Mass spectrum of cyclic peptide 4. S8

9 Figure 9. HPLC Chromatogram of pure cyclic peptide 6. avv (2.100) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (2:119) % Figure 10. Mass spectrum of cyclic peptide 6. S9

10 Figure MHz 1 H-NMR spectrum in DMSO-d6 of cyclic peptide 2. S10

11 Figure MHz 13 C-NMR spectrum in DMSO-d6 of cyclic peptide 2. S11

12 Figure 13. TOCSY spectrum in DMSO-d6 of cyclic peptide 2. S12

13 Figure 14. HSQC spectrum of in DMSO-d6 cyclic peptide 2. S13

14 Figure 15. HMBC spectrum in DMSO-d6 of cyclic peptide 2. S14

15 Figure 16. ROESY spectrum in DMSO-d6 of cyclic peptide 2. S15

16 S16

17 Figure MHz 1 H-NMR spectrum in DMSO-d6 of cyclic peptide 4. S17

18 Figure MHz 13 C-NMR spectrum in DMSO-d6 of cyclic peptide 4. S18

19 Figure 19. TOCSY spectrum in DMSO-d6 of cyclic peptide 4. S19

20 Figure 20. HSQC spectrum in DMSO-d6 of cyclic peptide 4. S20

21 Figure 21. HMBC spectrum in DMSO-d6 of cyclic peptide 4. S21

22 Figure 22. ROESY spectrum in DMSO-d6 of cyclic peptide 4. S22

23 Figure MHz 1 H-NMR spectrum in DMSO-d6 of cyclic peptide 6. S23

24 Figure MHz 13 C-NMR spectrum in DMSO-d6 of cyclic peptide 6. S24

25 Figure 25. TOCSY spectrum of in DMSO-d6 cyclic peptide 6. S25

26 Figure 26. HSQC spectrum in DMSO-d6 of cyclic peptide 6. S26

27 Figure 27. HMBC spectrum in DMSO-d6 of cyclic peptide 6. S27

28 Figure 28. ROESY spectrum in DMSO-d6 of cyclic peptide 6. S28

29 Figure MHz 1 H-NMR spectrum in acetone-d6 of cyclic peptide 8. S29

30 Figure MHz 13 C-NMR spectrum acetone-d6 of cyclic peptide 8. S30

31 Figure MHz 1 H-NMR spectrum in CDCl 3 of cyclic peptide 10. S31

32 Figure MHz 13 C NMR spectrum in CDCl 3 of cyclic peptide 10. S32

33 References (1) Schwieters, C. D.; Kuszewski, J. J.; Clore, G. M. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 48, 47 (2) Schwieters, C. D.; Kuszewski, J. J.; Tjandra, N.; G. M. Clore J. Magn. Reson. 2003, 160, 65. (3) Humphrey, W.; Dalke, A.; Schulten, K. J. Molec. Graphics 1996, 14, 33. (4) Pedretti, A.; Villa, L.; Vistoli, G. J. Mol. Graph. 2002, 21, 47. S33

Structural Basis of Multivalent Binding to Wheat Germ Agglutinin

Structural Basis of Multivalent Binding to Wheat Germ Agglutinin Structural Basis of Multivalent Binding to Wheat Germ Agglutinin David Schwefel, Caroline Maierhofer, Johannes G. Beck, Sonja Seeberger, Kay Diederichs, Heiko M. Möller,*, Wolfram Welte,*, and Valentin

More information

PROTEIN'STRUCTURE'DETERMINATION'

PROTEIN'STRUCTURE'DETERMINATION' PROTEIN'STRUCTURE'DETERMINATION' USING'NMR'RESTRAINTS' BCMB/CHEM'8190' Programs for NMR Based Structure Determination CNS - Brünger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve,

More information

Stereoselectivity of Proline / Cyclobutane Amino Acid-Containing Peptide. Organocatalysts for Asymmetric Aldol Additions: a Rationale

Stereoselectivity of Proline / Cyclobutane Amino Acid-Containing Peptide. Organocatalysts for Asymmetric Aldol Additions: a Rationale Stereoselectivity of Proline / Cyclobutane Amino Acid-Containing Peptide Organocatalysts for Asymmetric Aldol Additions: a Rationale Ona Illa, *, Oriol Porcar-Tost, Carme Robledillo, Carlos Elvira, Pau

More information

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Programs for NMR Based Structure Determination CNS - Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve,

More information

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Programs for NMR Based Structure Determination CNS - Brünger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve,

More information

Supporting Information

Supporting Information Supporting Information Micelle-Triggered b-hairpin to a-helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA HØctor Zamora-Carreras, [a] Beatriz Maestro,

More information

A prevalent intraresidue hydrogen bond stabilizes proteins

A prevalent intraresidue hydrogen bond stabilizes proteins Supplementary Information A prevalent intraresidue hydrogen bond stabilizes proteins Robert W. Newberry 1 & Ronald T. Raines 1,2 * 1 Department of Chemistry and 2 Department of Biochemistry, University

More information

ESI for. A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition. Nicholas G. White & Paul D.

ESI for. A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition. Nicholas G. White & Paul D. ESI for A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition Nicholas G. White & Paul D. Beer* Contents 1 Details of instrumentation 2 NMR Spectra of new

More information

Supporting Information

Supporting Information Supporting Information German Edition: DOI: Sampling of Glycan-Bound Conformers by the Anti-HIV Lectin Oscillatoria agardhii agglutinin in the Absence of Sugar** Marta G. Carneiro, Leonardus M. I. Koharudin,

More information

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Lecture 9 M230 Feigon Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Reading resources v Roberts NMR of Macromolecules, Chap 4 by Christina Redfield

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 5 N 4 8 20 22 24 2 28 4 8 20 22 24 2 28 a b 0 9 8 7 H c (kda) 95 0 57 4 28 2 5.5 Precipitate before NMR expt. Supernatant before NMR expt. Precipitate after hrs NMR expt. Supernatant after hrs NMR expt.

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

Photochemical and Structural Studies on Cyclic Peptide Models

Photochemical and Structural Studies on Cyclic Peptide Models Article Photochemical and Structural Studies on Cyclic Peptide Models Tamás Milán Nagy 1, Krisztina Knapp 2, Eszter Illyés 3, István Timári 1, Gitta Schlosser 4, Gabriella Csík 5, Attila Borics 6, *, Zsuzsa

More information

Supporting Information for

Supporting Information for Supporting Information for Unraveling the Molecular Recognition of Amino Acid Derivatives by a Macrocyclic Pseudopeptidic Receptor: ESI-MS, NMR, Fluorescence and Molecular Modeling Studies. Ignacio Alfonso,

More information

Computational Biology & Computational Medicine

Computational Biology & Computational Medicine Computational Biology & Computational Medicine Homayoun Valafar Outline Why proteins? What are proteins? How do we compute them? How do we use computational approaches? Why Proteins? Molecular basis of

More information

Supplementary Information

Supplementary Information Supplementary Information for The reversible macrocyclization of Tyrocidine A aldehyde: a hemiaminal reminiscent of the tetrahedral intermediate of macrolactamization Sebastian Enck, Florian Kopp, Mohamed

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002 Supporting Information for Angew. Chem. Int. Ed. Z19311 Wiley-VCH 2002 6941 Weinheim, Germany A highly enantioselective receptor for N-protected glutamate and anomalous solvent-dependent binding properties

More information

Solving the three-dimensional solution structures of larger

Solving the three-dimensional solution structures of larger Accurate and rapid docking of protein protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization G. Marius Clore* Laboratory of

More information

Supporting Information (SI) Revealing the Conformational. Preferences of Proteinogenic Glutamic Acid. Derivatives in Solution by 1 H NMR

Supporting Information (SI) Revealing the Conformational. Preferences of Proteinogenic Glutamic Acid. Derivatives in Solution by 1 H NMR Supporting Information (SI) Revealing the Conformational Preferences of Proteinogenic Glutamic Acid Derivatives in Solution by 1 H NMR Spectroscopy and Theoretical Calculations Weslley G. D. P. Silva a,b,

More information

Practical Manual. General outline to use the structural information obtained from molecular alignment

Practical Manual. General outline to use the structural information obtained from molecular alignment Practical Manual General outline to use the structural information obtained from molecular alignment 1. In order to use the information one needs to know the direction and the size of the tensor (susceptibility,

More information

Sustainable oxidations with air mediated by gallic acid: Potential applicability in the reutilization of grape pomace

Sustainable oxidations with air mediated by gallic acid: Potential applicability in the reutilization of grape pomace Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION Sustainable oxidations with air mediated by gallic acid: Potential

More information

Mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin.

Mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin. Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 25 ELECTRONIC SUPPLEMENTARY INFORMATION Mechanism of water/ion exchange at a protein

More information

Computational Protein Design

Computational Protein Design 11 Computational Protein Design This chapter introduces the automated protein design and experimental validation of a novel designed sequence, as described in Dahiyat and Mayo [1]. 11.1 Introduction Given

More information

Residual Dipolar Couplings BCMB/CHEM 8190

Residual Dipolar Couplings BCMB/CHEM 8190 Residual Dipolar Couplings BCMB/CHEM 8190 Recent Reviews Prestegard, A-Hashimi & Tolman, Quart. Reviews Biophys. 33, 371-424 (2000). Bax, Kontaxis & Tjandra, Methods in Enzymology, 339, 127-174 (2001)

More information

Citation for published version (APA): Feenstra, K. A. (2002). Long term dynamics of proteins and peptides. Groningen: s.n.

Citation for published version (APA): Feenstra, K. A. (2002). Long term dynamics of proteins and peptides. Groningen: s.n. University of Groningen Long term dynamics of proteins and peptides Feenstra, Klaas Antoni IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

Supplementary Information. Subtly modulating GSK-3: allosteric inhibitors development. and their potential for the treatment of chronic diseases

Supplementary Information. Subtly modulating GSK-3: allosteric inhibitors development. and their potential for the treatment of chronic diseases Supplementary Information Subtly modulating GSK-3: allosteric inhibitors development and their potential for the treatment of chronic diseases Valle Palomo, a,# Daniel I. Perez, a,# Carlos Roca, a Cara

More information

Useful background reading

Useful background reading Overview of lecture * General comment on peptide bond * Discussion of backbone dihedral angles * Discussion of Ramachandran plots * Description of helix types. * Description of structures * NMR patterns

More information

Tridip Sheet, Raja Banerjee*

Tridip Sheet, Raja Banerjee* Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplementary information The C NN motif: an intrinsic lover of sulfate and phosphate ions

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Dynamics from NMR Show spies Amide Nitrogen Spies Report On Conformational Dynamics Amide Hydrogen Transverse Relaxation Ensemble

More information

Principles of NMR Protein Spectroscopy. 2) Assignment of chemical shifts in a protein ( 1 H, 13 C, 15 N) 3) Three dimensional structure determination

Principles of NMR Protein Spectroscopy. 2) Assignment of chemical shifts in a protein ( 1 H, 13 C, 15 N) 3) Three dimensional structure determination 1) Protein preparation (>50 aa) 2) Assignment of chemical shifts in a protein ( 1 H, 13 C, 15 N) 3) Three dimensional structure determination Protein Expression overexpression in E. coli - BL21(DE3) 1

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination

Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination Supporting Information for: Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination Aurora Rodríguez-Rodríguez, Zakaria Halime, Luís M. P. Lima, Maryline

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 28 Electronic Supplementary Information ph-dependent Cooperativity and Existence of

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Summary of 1D Experiment time domain data Fourier Transform (FT) frequency domain data or Transverse Relaxation Ensemble of Nuclear

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Resonance assignments in proteins. Christina Redfield

Resonance assignments in proteins. Christina Redfield Resonance assignments in proteins Christina Redfield 1. Introduction The assignment of resonances in the complex NMR spectrum of a protein is the first step in any study of protein structure, function

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1299 Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy Ishita Sengupta 1, Philippe S. Nadaud 1, Jonathan J. Helmus 1, Charles D. Schwieters 2

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Metallomics. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for Metal ion mediated transition from random coil to β-sheet

More information

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is The Royal Society of Chemistry 2015 Supporting Information Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine

More information

Evaluation of the Utility of NMR Structures Determined from Minimal NOE-Based Restraints for Structure-Based Drug Design, Using MMP-1 as an Example

Evaluation of the Utility of NMR Structures Determined from Minimal NOE-Based Restraints for Structure-Based Drug Design, Using MMP-1 as an Example Biochemistry 2000, 39, 13365-13375 13365 Evaluation of the Utility of NMR Structures Determined from Minimal NOE-Based Restraints for Structure-Based Drug Design, Using MMP-1 as an Example Xuemei Huang,

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Aromatic Triazole Foldamers Induced by C H X (X = F, Cl) Intramolecular Hydrogen Bonding Jie Shang,, Nolan M. Gallagher, Fusheng Bie,, Qiaolian Li,, Yanke Che, Ying Wang,*,, and

More information

NMR structure determination of a peptide using the ARIA webportal

NMR structure determination of a peptide using the ARIA webportal NMR observables that contain structural information: NMR structure determination of a peptide using the ARIA webportal Atom distances (Nuclear Overhauser Effect) Secondary structure, interaction Chemical

More information

Supplementary Information

Supplementary Information Supplementary Information Resveratrol Serves as a Protein-Substrate Interaction Stabilizer in Human SIRT1 Activation Xuben Hou,, David Rooklin, Hao Fang *,,, Yingkai Zhang Department of Medicinal Chemistry

More information

NMR-Structure determination with the program CNS

NMR-Structure determination with the program CNS NMR-Structure determination with the program CNS Blockkurs 2013 Exercise 11.10.2013, room Mango? 1 NMR-Structure determination - Overview Amino acid sequence Topology file nef_seq.mtf loop cns_mtf_atom.id

More information

Supporting Information

Supporting Information Supporting Information Ellena et al. 10.1073/pnas.0908317106 SI Experimental Procedures Protein Expression and Sample Preparation. Syb(1 96) and Syb(1 116) from Rattus norvegicus were expressed in BL21(DE3)

More information

Structure and Dynamics of Chitin Nanofibrils in Aqueous Environment Revealed by Molecular Dynamics Simulations

Structure and Dynamics of Chitin Nanofibrils in Aqueous Environment Revealed by Molecular Dynamics Simulations Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Structure and Dynamics of Chitin Nanofibrils in Aqueous Environment Revealed by Molecular Dynamics

More information

An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility

An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility An engineered scorpion toxin analogue with improved Kv1.3 selectivity displays reduced conformational flexibility Adam Bartok a,#, Krisztina Fehér b,c,#,, Andrea Bodor d, Kinga Rákosi e, Gábor K. Tóth

More information

Application of automated NOE assignment to three-dimensional structure refinement of a 28 kda single-chain T cell receptor

Application of automated NOE assignment to three-dimensional structure refinement of a 28 kda single-chain T cell receptor Journal of Biomolecular NMR, 5: 0, 999. KLUWER/ESCOM 999 Kluwer Academic Publishers. Printed in the Netherlands. 0 Application of automated NOE assignment to three-dimensional structure refinement of a

More information

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate Stef Vanhaecht, Gregory Absillis, Tatjana N. Parac-Vogt* Department

More information

Protein Structure Prediction

Protein Structure Prediction Protein Structure Prediction Michael Feig MMTSB/CTBP 2006 Summer Workshop From Sequence to Structure SEALGDTIVKNA Ab initio Structure Prediction Protocol Amino Acid Sequence Conformational Sampling to

More information

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Residual Dipolar Couplings (RDC s) Relatively new technique ~ 1996 Nico Tjandra, Ad Bax- NIH, Jim Prestegard, UGA Combination of

More information

Course Notes: Topics in Computational. Structural Biology.

Course Notes: Topics in Computational. Structural Biology. Course Notes: Topics in Computational Structural Biology. Bruce R. Donald June, 2010 Copyright c 2012 Contents 11 Computational Protein Design 1 11.1 Introduction.........................................

More information

Biomolecules: lecture 9

Biomolecules: lecture 9 Biomolecules: lecture 9 - understanding further why amino acids are the building block for proteins - understanding the chemical properties amino acids bring to proteins - realizing that many proteins

More information

Electrostatic properties of the structure of the docking and dimerization domain of protein kinase A IIa

Electrostatic properties of the structure of the docking and dimerization domain of protein kinase A IIa Eur. J. Biochem. 269, 2040 2051 (2002) Ó FEBS 2002 doi:10.1046/j.1432-1033.2002.02852.x Electrostatic properties of the structure of the docking and dimerization domain of protein kinase A IIa Dimitrios

More information

Supplementary Information. Oxidation increases the strength of the methionine-aromatic interaction

Supplementary Information. Oxidation increases the strength of the methionine-aromatic interaction Supplementary Information Oxidation increases the strength of the methionine-aromatic interaction Andrew K. Lewis 1, Katie Dunleavy 2, Tiffany L. Senkow 1, Cheng Her 4, Benjamin T. Horn 2, Mark A. Jersett

More information

A new approach for applying residual dipolar couplings as restraints in structure elucidation

A new approach for applying residual dipolar couplings as restraints in structure elucidation Journal of Biomolecular NMR, 16: 245 252, 2000. KLUWER/ESCOM 2000 Kluwer Academic Publishers. Printed in the Netherlands. 245 A new approach for applying residual dipolar couplings as restraints in structure

More information

Deuteration: Structural Studies of Larger Proteins

Deuteration: Structural Studies of Larger Proteins Deuteration: Structural Studies of Larger Proteins Problems with larger proteins Impact of deuteration on relaxation rates Approaches to structure determination Practical aspects of producing deuterated

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 9, S1-S37, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Chemoenzymatic Resolution of β-azidophenylethanols

More information

Energy Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover

Energy Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover Minimization of Protein Tertiary Structure by Parallel Simulated Annealing using Genetic Crossover Tomoyuki Hiroyasu, Mitsunori Miki, Shinya Ogura, Keiko Aoi, Takeshi Yoshida, Yuko Okamoto Jack Dongarra

More information

Supporting Information (47 pages)

Supporting Information (47 pages) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 08 A Novel Type of Organometallic -R-,-dihydro--,-benzoxazines with R = [M( -C )(CO) ] (M

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, United States

Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, United States Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Analysis of the isomer ratios of polymethylated DOTA complexes and the implications

More information

Universal Repulsive Contribution to the. Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information

Universal Repulsive Contribution to the. Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information Universal Repulsive Contribution to the Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information B. Shadrack Jabes, Dusan Bratko, and Alenka Luzar Department of Chemistry,

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009 Helical Hairpin Structure of a potent Antimicrobial Peptide MSI-594 in Lipopolysaccharide Micelles by NMR Anirban

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 00, No. 00, S1-S24, 2012. Printed in Brazil - 2012 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Sara A. L. Madeiro, a Hellane F. S. de Lucena,

More information

- Basic understandings: - Mapping interactions:

- Basic understandings: - Mapping interactions: NMR-lecture April 6th, 2009, FMP Berlin Outline: Christian Freund - Basic understandings: Relaxation Chemical exchange - Mapping interactions: -Chemical shift mapping (fast exchange) Linewidth analysis

More information

Electronic Supplementary Information for: Effect of 1,3-adamantane bridging units within the surrounding macrocycle of squaraine rotaxanes

Electronic Supplementary Information for: Effect of 1,3-adamantane bridging units within the surrounding macrocycle of squaraine rotaxanes Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014 Electronic Supplementary Information

More information

Hands-on : Model Potential Molecular Dynamics

Hands-on : Model Potential Molecular Dynamics Hands-on : Model Potential Molecular Dynamics OUTLINE 0. DL_POLY code introduction 0.a Input files 1. THF solvent molecule 1.a Geometry optimization 1.b NVE/NVT dynamics 2. Liquid THF 2.a Equilibration

More information

Lec.1 Chemistry Of Water

Lec.1 Chemistry Of Water Lec.1 Chemistry Of Water Biochemistry & Medicine Biochemistry can be defined as the science concerned with the chemical basis of life. Biochemistry can be described as the science concerned with the chemical

More information

Molecular Modeling lecture 2

Molecular Modeling lecture 2 Molecular Modeling 2018 -- lecture 2 Topics 1. Secondary structure 3. Sequence similarity and homology 2. Secondary structure prediction 4. Where do protein structures come from? X-ray crystallography

More information

Supporting Information (SI) for. Conformational sampling of macrocyclic drugs in different environments Can we find the relevant conformations?

Supporting Information (SI) for. Conformational sampling of macrocyclic drugs in different environments Can we find the relevant conformations? Supporting Information (SI) for Conformational sampling of macrocyclic drugs in different environments Can we find the relevant conformations? Vasanthanathan Poongavanam, Emma Danelius, & Stefan Peintner,

More information

NMR Assay of Purity and Folding

NMR Assay of Purity and Folding NMR Assay of Purity and Folding Don t Need Resonance Assignments or Labeling 1D requires only 10-50 µm protein concentration 2D Provides A More Detailed Assay 15 N- 1 H HSQC 1 H COSY 13 C HSQC also! Analyze

More information

Spirotrichilins A and B: Two Rearranged Spirocyclic Limonoids from Trichilia connaroides

Spirotrichilins A and B: Two Rearranged Spirocyclic Limonoids from Trichilia connaroides Spirotrichilins A and B: Two Rearranged Spirocyclic Limonoids from Trichilia connaroides Fa-Liang An, Jun Luo, Rui-Jun Li, Jian-Guang Luo, Xiao-Bing Wang, Ming-Hua Yang, Lei Yang, He-Quan Yao, Hong-Bin

More information

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information: Anion recognition in water by a rotaxane containing a secondary rim

More information

HSQC spectra for three proteins

HSQC spectra for three proteins HSQC spectra for three proteins SH3 domain from Abp1p Kinase domain from EphB2 apo Calmodulin What do the spectra tell you about the three proteins? HSQC spectra for three proteins Small protein Big protein

More information

Structure determination through NMR

Structure determination through NMR Structure determination through NMR Protein Sample NMR data acquisition Sequential resonance assignment Collection of conformational constraints 3D structure calculations Structure refinement and Analysis

More information

Using NMR to study Macromolecular Interactions. John Gross, BP204A UCSF. Nov 27, 2017

Using NMR to study Macromolecular Interactions. John Gross, BP204A UCSF. Nov 27, 2017 Using NMR to study Macromolecular Interactions John Gross, BP204A UCSF Nov 27, 2017 Outline Review of basic NMR experiment Multidimensional NMR Monitoring ligand binding Structure Determination Review:

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code

A Plausible Model Correlates Prebiotic Peptide Synthesis with. Primordial Genetic Code Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 A Plausible Model Correlates Prebiotic Peptide Synthesis with Primordial Genetic Code Jianxi Ying,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 SUPPLEMENTARY INFORMATION Novel hydrogen- and halogen-bonding anion receptors based on 3- iodopyridinium

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Introduction solution NMR

Introduction solution NMR 2 NMR journey Introduction solution NMR Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben EMBO Global Exchange course, IHEP, Beijing April 28 - May 5, 20 3 Topics

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3.

3. Solutions W = N!/(N A!N B!) (3.1) Using Stirling s approximation ln(n!) = NlnN N: ΔS mix = k (N A lnn + N B lnn N A lnn A N B lnn B ) (3. 3. Solutions Many biological processes occur between molecules in aqueous solution. In addition, many protein and nucleic acid molecules adopt three-dimensional structure ( fold ) in aqueous solution.

More information

Computer simulations of protein folding with a small number of distance restraints

Computer simulations of protein folding with a small number of distance restraints Vol. 49 No. 3/2002 683 692 QUARTERLY Computer simulations of protein folding with a small number of distance restraints Andrzej Sikorski 1, Andrzej Kolinski 1,2 and Jeffrey Skolnick 2 1 Department of Chemistry,

More information

SUPPLEMENTARY ONLINE DATA

SUPPLEMENTARY ONLINE DATA SUPPLEMENTARY ONLINE DATA Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interaction with Different Types of Acetylcholine Receptors E.N. Lyukmanova 1,2,*, M.A. Shulepko

More information

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 10, S1-S17, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Structural Analysis and Antitumor Activity

More information

Journal of Pharmacology and Experimental Therapy-JPET#172536

Journal of Pharmacology and Experimental Therapy-JPET#172536 A NEW NON-PEPTIDIC INHIBITOR OF THE 14-3-3 DOCKING SITE INDUCES APOPTOTIC CELL DEATH IN CHRONIC MYELOID LEUKEMIA SENSITIVE OR RESISTANT TO IMATINIB Manuela Mancini, Valentina Corradi, Sara Petta, Enza

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

VMD: Visual Molecular Dynamics. Our Microscope is Made of...

VMD: Visual Molecular Dynamics. Our Microscope is Made of... VMD: Visual Molecular Dynamics Computational Microscope / Tool to Think amino acid tyrosine enzymatic control BPTI VMD tutorial traficking Ubiquitin case study http://www.ks.uiuc.edu/training/casestudies/

More information

250/- 100/- 400/- 1000/- 1500/- D 2 O Exchange 300/- 150/- 400/- 1100/- 2000/- 13 C, DEPT, 19F or

250/- 100/- 400/- 1000/- 1500/- D 2 O Exchange 300/- 150/- 400/- 1100/- 2000/- 13 C, DEPT, 19F or Savitribai Phule Pune 500 MHz NMR Analysis Service (Sample to be prepared by user in required solvent) Govt. institute 1 H (All only for CDCl 3 )* 250/- 100/- 400/- 1000/- 1500/- D 2 O Exchange 300/- 150/-

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Supporting Information for: Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Sílvia Alujas-Burgos, Cristina Oliveras-González, Ángel Álvarez-Larena, Pau

More information

Homework Problem Set 4 Solutions

Homework Problem Set 4 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 4 Solutions 1. A conformation search is carried out on a system and four low energy stable conformers are obtained. Using the MMFF force field,

More information

Multi-scale approaches in description and design of enzymes

Multi-scale approaches in description and design of enzymes Multi-scale approaches in description and design of enzymes Anastassia Alexandrova and Manuel Sparta UCLA & CNSI Catalysis: it is all about the barrier The inside-out protocol: Big Aim: development of

More information

Improved Resolution of Tertiary Structure Elasticity in Muscle Protein

Improved Resolution of Tertiary Structure Elasticity in Muscle Protein Improved Resolution of Tertiary Structure Elasticity in Muscle Protein Jen Hsin and Klaus Schulten* Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois

More information