COPYRIGHTED MATERIAL INTRODUCTION

Size: px
Start display at page:

Download "COPYRIGHTED MATERIAL INTRODUCTION"

Transcription

1 1 INTRODUCTION Nuclear magnetic resonance spectroscopy is one of the most common methods used to determine optical purity and assign the absolute configuration of chiral compounds. The strategy that has been most exploited, as first recognized by Raban and Mislow in 1965, 1 is to use an optically pure chiral reagent to distinguish a pair of enantiomers through the formation of nonequivalent diastereomeric complexes. The optically pure probe molecule functions as either a derivatizing or solvating agent. Furthermore, the association of an optically pure compound with a prochiral molecule with nuclei that are enantiotopic by internal comparison (e.g., the methyl groups of 2-propanol) renders these nuclei nonequivalent such that distinct resonances are often observed in the NMR spectrum. Classifying chiral metal compounds as derivatizing or solvating agents is sometimes difficult. What is important is whether the substrate molecule undergoes fast or slow exchange with the metal center. Strategies based on different packing orders for a pair of enantiomers, such as those that occur in liquid crystals or solid-state systems, have also been used for chiral analysis in NMR spectroscopy. COPYRIGHTED MATERIAL 1.1. CHIRAL DERIVATIZING AGENTS Chiral derivatizing agents form a covalent bond with a reactive moiety of the substrate. Many chiral derivatizing agents are available for the analysis of carboxylic acids, alcohols, and amines, although strategies for preparing derivatives of many other functional groups will be described as well throughout the text. There are two Discrimination of Chiral Compounds Using NMR Spectroscopy, by Thomas J. Wenzel Copyright # 2007 John Wiley & Sons, Inc. 1

2 2 INTRODUCTION potential concerns with the application of chiral derivatizing agents. One is the possibility of kinetic resolution. Kinetic resolution refers to a situation in which one enantiomer reacts faster than the other with the chiral derivatizing agent. If the reagents are not allowed to react for a long enough time, the proportion of the two diastereomers will not be equivalent to the proportion of the two enantiomers in the original mixture. Kinetic resolution is significant when determining optical purity, but is not significant if the chiral derivatizing agent is being used to assign the absolute configuration of an optically pure substrate such as a natural product. A second concern with chiral derivatizing agents is that no racemization occurs during the derivatization reaction. This can be significant whether it happens to the substrate or the chiral derivatizing agent. With some chiral derivatizing agents for which unacceptable levels of racemization did occur, further study was undertaken to develop reaction conditions that minimize or eliminate racemization. When pertinent, these studies are described in the text. A general understanding is that chiral derivatizing agents should be optically pure. A method for using chiral derivatizing agents that are less than 100% optically pure has been described. 2 The purity of the reagent must first be accurately measured using an appropriate method. A set of equations was provided in the report to determine the optical purity of an unknown from the known purity of the chiral reagent. Many chiral derivatizing agents incorporate moieties that produce specific and predictable shifts in the resonances of the substrate. In such cases, the shifts in the spectrum of an optically pure substrate in the derivatives with the (R)- and (S)- enantiomers of the chiral derivatizing agent can be used to assign the absolute configuration. In other situations, moieties on the substrate may cause specific and predictable shifts in resonances of the chiral derivatizing agent. If so, these can be used to assign absolute configurations as well. Another procedure that is often used with chiral derivatizing or solvating agents is to look for the presence of specific trends in the shifts that correlate with the absolute configuration of the substrate. The assumption is that, if the trends are consistent among a series of compounds with known configurations, then they will be consistent for an unknown compound with a similar structure. Empirical trends such as these have been observed in many situations and are described where appropriate throughout the text. An alternative, although much less used, derivatizing strategy involves a selfcoupling reaction of a chiral molecule. The self-coupling of two chiral molecules leads to the formation of a mixture of meso (R,S) and threo [(S,S)/(R,R)] derivatives. 3 Assuming that these species exhibit distinct resonances in the NMR spectrum, the size of the different resonances depends on the optical purity of the compound. The utility of the method was demonstrated for several examples CHIRAL SOLVATING AGENTS Chiral solvating agents associate with the substrate through noncovalent interactions. These can involve a mix of dipole dipole, ion-pairing, and p p interactions. Because

3 CHIRAL SOLVATING AGENTS 3 of this, the choice of solvent is often an important parameter when using a particular chiral solvating agent. Organic-soluble chiral solvating agents are often more effective in nonpolar solvents that cannot effectively solvate the polar groups of the chiral solvating agent and substrate. Water-soluble chiral solvating agents, which are often organic host compounds, usually rely on hydrophobic effects to promote the interaction of a hydrophobic portion of the substrate within the hydrophobic cavity of the solvating agent. Steric effects are also important in the recognition properties of many chiral solvating agents. Chiral solvating agents generally undergo fast exchange with substrates. With fast exchange, the NMR spectrum is a weighted average of the proportion of bound and unbound substrate. Resonances of the substrate double with the presence of chiral recognition. If slow exchange and enantiomeric discrimination occur, and not all of the substrate is bound to the solvating agent, three resonances are observed for a particular nucleus in the NMR spectrum. One is for the unbound substrate. The other two are for the bound forms of the (R)- and (S)-isomers of the substrate. Sometimes the resonances of the substrate or chiral solvating agent are broadened, which occurs if the system has an intermediate rate of exchange. In such cases, it may be possible to speed up the exchange to acceptable levels by warming the sample. Most chiral solvating agents are used to determine optical purities. There are instances, though, in which the interaction is understood with enough specificity to be able to assign the absolute configuration based on the relative magnitudes of the shifts in the spectrum, much like observed with certain chiral derivatizing agents. Unlike chiral derivatizing agents, when measuring optical purities with a chiral solvating agent, it is not necessary to have 100% optical purity for the chiral reagent. What is needed is sufficient recognition to cause nonequivalence in the spectra of the enantiomers so that the peaks can be accurately integrated. Chiral recognition with a chiral solvating agent can occur from two mechanisms. One is that the chiral solvating agent substrate complexes are diastereomers and may have different chemical shifts. The other is that the two enantiomers often have different association constants with the chiral solvating agent, such that the timeaveraged solvation environments are different. In many cases, both mechanisms likely contribute to some extent to the nonequivalence that is observed in the NMR spectrum. Enantiomeric discrimination with chiral solvating agents is often concentration and temperature dependent. Higher concentrations of the chiral solvating agent generally favor formation of the distinct diastereomeric complexes and enhance the discrimination. Lowering the temperature of the solution usually raises the association constant of the chiral solvating agent substrate complex, thereby enhancing the enantiomeric discrimination. A diverse variety of chiral derivatizing and solvating agents have been developed as described in the ensuing chapters. Also, published review articles have described different aspects of chiral NMR solvating agents, 4,5 chiral derivatizing agents, 6 the use of NMR spectroscopy to assign absolute configurations, 7 the use of chiral fluorine-containing reagents for the determination of optical purity, 8 and the use of NMR spectroscopy for chiral analysis. 9 11

4 4 INTRODUCTION 1.3. OVERVIEW OF CHIRAL REAGENTS AND METHODOLOGIES An important family of reagents that are described in Chapter 2 is aryl-containing carboxylic acids, the most well known of which is a-methoxy-a-trifluoromethylphenylacetic acid (MTPA). These are mostly used as chiral derivatizing agents for the assignment of absolute configurations of substrates such as alcohols and amines. Shielding by the aromatic ring of the derivatizing agent in the resulting diastereomeric complexes is used to make the assignment. Although MTPA is the most well known and commonly applied of these reagents, as will be discussed in Chapter 2, there are other reagents that are recommended for the analysis of certain classes of compounds. Chapter 3 describes other carboxylic acids that have been used as either chiral derivatizing or solvating agents. Certain of these reagents such as camphanic acid have proven useful for distinguishing the pro-(r) and pro-(s) positions of a-deuterated primary alcohols. Several reagents based on axially chiral systems are also discussed. Hydroxy-containing compounds, as described in Chapter 4, have been widely exploited for chiral analysis in NMR spectroscopy. This includes the application of 2-(9-anthryl)-2,2,2-trifluoroethanol, one of the most versatile chiral solvating agents ever developed. Shielding by the anthryl group of this reagent can also be used to assign the absolute configuration of certain classes of substrates. Alcohol reagents are also used as chiral derivatizing agents, especially in the analysis of carboxylic acids. Certain diols and glycosides have been used as effective chiral derivatizing agents for ketones and secondary alcohols, respectively. Axially chiral compounds such as 2,2 0 - dihydroxy-1,1-binaphthalene have been used as effective chiral derivatizing or solvating agents with suitable substrates. Primary, secondary, and tertiary amines have been used as chiral derivatizing and solvating agents as described in Chapter 5. 1-Phenylethylamine, the first compound ever used as a chiral NMR solvating agent, and 1-(1-naphthyl)ethylamine are especially important chiral amines that have been used extensively to analyze carboxylic acids and other compounds as well. Phenylglycine methyl ester hydrochloride is another important reagent for assigning the absolute configuration of carboxylic acids. Quinine, a tertiary amine, has a variety of functional groups that influence its association with and chiral discrimination properties toward a number of compound classes. Some amine reagents have been exploited as effective chiral derivatizing agents for the analysis of aldehydes and ketones. Certain diamine reagents have proven to be useful reagents for chiral analysis by NMR spectroscopy. As described in Chapter 5, chemical shift data measured with the chiral solvating agents N,a-dimethylbenzylamine and bis-1,3-methylbenzylamine-2-methylpropane have been used to construct 13 C and 1 H NMR databases for all of the configurations of particular structural motifs. The pattern of the shift data for the known configurations that best matches that of an unknown can be used to determine the stereochemistry. The method is especially well suited to the assignment of structural motifs within complex natural products.

5 OVERVIEW OF CHIRAL REAGENTS AND METHODOLOGIES 5 Chapter 6 describes a collection of chiral reagents that encompass a variety of compound classes. These include reagents with amide, lactam, aldehyde, ketone, isocyanate, and heterocyclic ring functionalities. Many of these reagents have been studied on a limited basis and apply to specific types of substrates, although some of the amide compounds represent soluble analogs of widely applicable chiral liquid chromatographic phases and are effective with a variety of compound classes. Certain of the reagents described in Chapter 6 are used as chiral solvating agents and associate through combinations of dipole dipole and p p interactions. Others such as the ketones, aldehydes, and isocyanates are utilized as chiral derivatizing agents for particular classes of substrates. Reagents specifically designed to incorporate phosphorus, selenium, boron, and silicon atoms are described in Chapter 7. Many of the phosphorus and selenium reagents specifically use 31 P and 77 Se NMR spectroscopy to facilitate the analysis of optical purity. The majority of the systems are used as chiral derivatizing agents. In the case of the phosphorus-, boron-, and silicon-containing reagents, the reactions usually involve addition of the substrate at the heteroatom to form the diastereomeric complexes. The primary selenium-containing reagent that has been studied incorporates the selenium atom as a spectroscopic probe rather than a reactive center. An important set of chiral cationic and anionic phosphorus-based reagents that form ion pairs with ionic substrates is also described in this chapter. The anionic reagents are especially useful in the analysis of cationic metal complexes, although organic cations can be analyzed as well. Another versatile strategy for effective chiral recognition, as described in Chapter 8, is through the use of host guest complexation. Cyclodextrins have been the most widely studied family of host compounds for chiral NMR applications. Cyclodextrins can be derivatized either selectively or indiscriminately at the different hydroxyl groups, providing a range of host compounds of varying solubility and chiral recognition properties. In the aggregate, these cyclodextrin derivatives have the potential to function as chiral discriminating agents for a broad array of substrates. Crown ethers are another common group of host compounds that function rather selectively for primary amines, although recent work has shown how the only commercially available chiral crown ether for NMR studies is also an effective chiral solvating agent for secondary amines. Calixarenes and calixresorcarenes are less studied in NMR applications, but offer interesting potential for future development and applications. There are also many specialized receptor compounds that have been described that exhibit chiral recognition toward a specific compound or class of compounds. The use of metal complexes as chiral discriminating agents in NMR spectroscopy is an area that has received considerable attention. The importance of paramagnetic lanthanide shift reagents within the entire field of chiral NMR analysis cannot be underemphasized. Although the use of chiral lanthanide shift reagents is mostly described in Chapter 9, the utilization of lanthanide species as a means of enhancing the chiral discrimination of other NMR reagents shows up throughout the text. The utilization of lanthanide shift reagents has diminished as more investigators have obtained access to high-field NMR spectrometers. One reason is that the enhanced

6 6 INTRODUCTION dispersion caused by the addition of a paramagnetic lanthanide is often no longer necessary. The other is that the line broadening caused by the paramagnetic ions is more pronounced at higher field strengths. Chiral reagents based on diamagnetic metal complexes of palladium, platinum, rhodium, and silver have significant applications as well. These metals are especially effective at bonding to soft Lewis bases, thereby broadening the scope of compound classes amenable to chiral analysis by NMR spectroscopy. The exceptionally large shielding of substrate nuclei caused by the porphyrin rings of metal complexes of cobalt, zinc, and ruthenium has been exploited in the development of chiral discriminating agents. In addition, a number of more specialized reagents involving other metal systems have been described in the literature. One of the more intriguing developments in recent years, which is described in Chapter 10, involves the use of liquid crystals for chiral NMR discrimination. Liquid crystals become ordered in an applied magnetic field. Pairs of enantiomeric compounds often adopt a different packing order relative to the magnetic field when dissolved in a chiral, ordered liquid crystal. The different packing order can lead to different dipolar coupling or quadrupolar splitting for the enantiomers, which causes distinct resonances. As no specific interactions need to occur between the liquid crystal and the substrate, this method is potentially amenable to any chiral substrate including aliphatic hydrocarbons. Solid-state NMR studies potentially offer some of the same potential as liquid crystals, but have been used to far less extent. Studies of micelles and ionic liquids are more limited in scope. Organic-soluble polymers have been used for chiral NMR discrimination, but often these studies have been aimed at understanding specific geometrical aspects of the association between the polymer and the substrate. Relatively recent work has begun to explore the ability of specially designed achiral compounds to aggregate in solution into assemblies with chiral pockets FUTURE PROSPECTS Although it might be tempting to consider the area of chiral discrimination by NMR spectroscopy a mature field, a number of new developments in this area over the past 5 years show that it is an area of continued discovery and growth. As will become apparent from the ensuing chapters, we currently have an extensive range of reagents that make it possible to determine the optical purity and assign the absolute configuration of many classes of compounds. But that has not deterred investigators from developing new and more effective reagents or further refining and expanding the applications of existing ones. Further development of database approaches based on existing or newly collected NMR data is likely to occur. The desire to better understand fundamental aspects of noncovalent interactions, which is at the core of how chiral solvating agents function, and to design more selective chiral recognition systems means that we will continue to see new reagents for chiral analysis by NMR spectroscopy.

7 FUTURE PROSPECTS 7 Finally, further improvements in instrumental design may ultimately have profound implications for the analysis of chiral compounds using NMR spectroscopy. A way to study chiral systems via NMR spectroscopy without the need of chiral reagents has been described. 12 A nuclear magnetic moment in the x-direction combined with a strong magnetic field induces, through odd-parity coupling in a freely tumbling molecule, an electric dipole moment in the y-direction. The electronic magnetic moment in the x-direction is of opposite signs for D- and L-enantiomers. A p/2 pulse causes a coherent precession of nuclear spins, and in favorable cases the rotating electric polarization at the NMR frequency can be detected. The method would involve a simultaneous observation of rotating magnetization and electric polarization at some angular frequency following the p/2 pulse. The peaks obtained can, in theory, be assigned to particular chiral centers. The magnitude of the precessing electron polarization is quite small, so actually performing this experiment will prove challenging. However, if it was possible to perform the measurement in dilute solutions, it would provide a new way to study chiral systems by NMR spectroscopy.

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Midterm Exam 1 ctober 31, 2008 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This exam contains 8 pages Time: 1h 30 min 1. / 15 2. / 16 3. /

More information

Handling Products. Sumitomo Chemical Co., Ltd. SUMICHIRAL ~192

Handling Products. Sumitomo Chemical Co., Ltd. SUMICHIRAL ~192 15 Sumitomo Chemical Co., Ltd. SUMICHIRAL ------------------------------ 188~192 YMC_GC_Vol12_15_CS4.indd 187 15/09/24 9:49 15 Chiral columns for enantiomer separation by HPLC [SUMICHIRAL OA] *SUMICHIRAL

More information

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry Topic 4.1 Kinetics a) Define the terms: rate of a reaction, rate constant, order of reaction and overall order of reaction b) Deduce the orders of reaction

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion hapter 11: Nucleophilic Substitution and Elimination Walden Inversion (S)-(-) Malic acid [a] D = -2.3 Ag 2, 2 Pl 5 l Ag 2, 2 ()-2-hlorosuccinic acid l (-)-2-hlorosuccinic acid Pl 5 ()-() Malic acid [a]

More information

CH 3 C 2 H 5. Tetrahedral Stereochemistry

CH 3 C 2 H 5. Tetrahedral Stereochemistry Ch 5 Tetrahedral Stereochemistry Enantiomers - Two non-superimposable mirror image molecules - They are stereoisomers with the same atoms and bonds, but different spatial geometries. - The two molecules

More information

2FAMILIES OF CARBON COMPOUNDS:

2FAMILIES OF CARBON COMPOUNDS: P1: PBU/VY P2: PBU/VY Q: PBU/VY T1: PBU Printer: Bind Rite JWL338-02 JWL338-Solomons-v1 April 23, 2010 21:49 2AMILIES ARB MPUDS: UTIAL GRUPS, ITERMLEULAR RES, AD IRARED (IR) SPETRSPY SLUTIS T PRBLEMS 2.1

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

Chiral Columns for enantiomer separation by HPLC

Chiral Columns for enantiomer separation by HPLC Chiral Columns for enantiomer separation by HPLC SUMICHIRAL OA columns are high-performance chiral columns for enantiomer separation by HPLC. On SUMICHIRAL OA columns direct separation of various enantiomers

More information

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations 11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Based on McMurry s Organic Chemistry, 6 th edition 2003 Ronald Kluger Department of Chemistry University of Toronto Alkyl Halides

More information

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Subject Chemistry Paper No and Title Paper 1: ORGANIC - I (Nature of Bonding Module No and Title Module Tag CHE_P1_M10 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Non-Covalent Interactions

More information

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography Lecture 11 IR Theory Next Class: Lecture Problem 4 due Thin-Layer Chromatography This Week In Lab: Ch 6: Procedures 2 & 3 Procedure 4 (outside of lab) Next Week in Lab: Ch 7: PreLab Due Quiz 4 Ch 5 Final

More information

Fall Organic Chemistry Experiment #6 Fractional Crystallization (Resolution of Enantiomers)

Fall Organic Chemistry Experiment #6 Fractional Crystallization (Resolution of Enantiomers) Suggested Reading: Fall Organic Chemistry Experiment #6 Fractional Crystallization (Resolution of Enantiomers) Jones Section 4.9 Physical Properties of Diastereomers: Optical Resolution pages 176-178 Introduction

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Sigma and Pi Bonds: All single bonds are sigma(σ), that

More information

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1

BSc. II 3 rd Semester. Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 BSc. II 3 rd Semester Submitted By Dr. Sangita Nohria Associate Professor PGGCG-11 Chandigarh 1 Introduction to Alkyl Halides Alkyl halides are organic molecules containing a halogen atom bonded to an

More information

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. COURSE OBJECTIVES / OUTCOMES / COMPETENCIES. By the end of the course, students should be able to do the following: See Test1-4 Objectives/Competencies as listed in the syllabus and on the main course

More information

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition Chapter 24. Amines Based on McMurry s Organic Chemistry, 7 th edition Amines Organic Nitrogen Compounds Organic derivatives of ammonia, NH 3, Nitrogen atom with a lone pair of electrons, making amines

More information

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry

Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry Hyperlearning MCAT Instructor Qualifying Exam Organic Chemistry 30 Questions (5 pages); Time limit = 45 minutes Use of books or notes is not permitted. 1. When analyzed with a polarimeter, which of the

More information

Scalar (contact) vs dipolar (pseudocontact) contributions to isotropic shifts.

Scalar (contact) vs dipolar (pseudocontact) contributions to isotropic shifts. Scalar (contact) vs dipolar (pseudocontact) contributions to isotropic shifts. Types of paramagnetic species: organic radicals, and complexes of transition metals, lanthanides, and actinides. Simplest

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

Chapter 16 Nuclear Magnetic Resonance Spectroscopy

Chapter 16 Nuclear Magnetic Resonance Spectroscopy hapter 16 Nuclear Magnetic Resonance Spectroscopy The Spinning Proton A spinning proton generates a magnetic field, resembling that of a small bar magnet. An odd number of protons in the nucleus creates

More information

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift Dr. Sapna Gupta Introduction NMR is the most powerful tool available for organic structure determination.

More information

Organic Chemistry. 2 nd Stage Pharmacy/ Undergraduate

Organic Chemistry. 2 nd Stage Pharmacy/ Undergraduate Organic Chemistry 2 nd Stage Pharmacy/ Undergraduate Time of Lectures: Saturday; 8:30-11:30 am Instructor: Wrya O. Karim University email: wrya.karim@univsul.edu.iq Personal email: wrya.othman49@gmail.com

More information

NAME: STUDENT NUMBER: Page 1 of 4

NAME: STUDENT NUMBER: Page 1 of 4 NAME: STUDENT NUMBER: Page 1 of 4 Chemistry 2.339 Midterm Test Friday ctober 28, 2005 This test is worth 40 Marks. You must complete all work within the class period. Put all answers in the space provided.

More information

Course Information. Instructor Information

Course Information. Instructor Information Jordan University of Science and Technology Department of Chemistry Course Syllabus Fall 2018/2019 Course Information Course Number: CHEM 108 Course Name: General and Organic Chemistry Credit Hours: 4

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS 1. STRUCTURE AND BONDING a] Atomic structure and bonding b] Hybridization and MO Theory c] Drawing chemical structures 2. POLAR COVALENT BONDS: ACIDS AND BASES

More information

Reactions SN2 and SN1

Reactions SN2 and SN1 Reactions SN2 and SN1 Reactivity: Functional groups can be interconverted using a great variety of reagents. Millions of organic molecules have been synthesized via a series of functional-group interconversions.

More information

1. neopentyl benzene. 4 of 6

1. neopentyl benzene. 4 of 6 I. 1 H NMR spectroscopy A. Theory 1. The protons and neutrons in atomic nuclei spin, as does the nucleus itself 2. The circulation of nuclear charge can generate a nuclear magnetic moment, u, along the

More information

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine ORGANIC CHEMISTRY Fifth Edition Stanley H. Pine Professor of Chemistry California State University, Los Angeles McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London

More information

Chapter 8 Chemical Bonding

Chapter 8 Chemical Bonding Chapter 8 Chemical Bonding Types of Bonds Ionic Bonding Covalent Bonding Shapes of Molecules 8-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 8.1 Two

More information

(a) Name the alcohol and catalyst which would be used to make X. (2)

(a) Name the alcohol and catalyst which would be used to make X. (2) 1 The chemical X is an ester with formula CH 3 COOC(CH 3 ) 3 which occurs in raspberries and pears. It can be prepared in the laboratory by refluxing ethanoic acid with an alcohol in the presence of a

More information

PHARMACEUTICAL CHEMISTRY EXAM #1 Februrary 21, 2008

PHARMACEUTICAL CHEMISTRY EXAM #1 Februrary 21, 2008 PHARMACEUTICAL CHEMISTRY EXAM #1 Februrary 21, 2008 1 Name SECTION B. Answer each question in this section by writing the letter corresponding to the best answer on the line provided (2 points each; 60

More information

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013 What is spectroscopy? NUCLEAR MAGNETIC RESONANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves an interaction between electromagnetic

More information

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1 Chapter 9 Nuclear Magnetic Resonance Ch. 9-1 1. Introduction Classic methods for organic structure determination Boiling point Refractive index Solubility tests Functional group tests Derivative preparation

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

ANSWER KEY PAGE 1 of 11

ANSWER KEY PAGE 1 of 11 ANSWER KEY PAGE 1 of 11 UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY CHEM 3390 STRUCTURAL TRANSFORMATIONS IN ORGANIC CHEMISTRY FINAL EXAMINATION Dr. Phil Hultin Tuesday December 13, 2011 9:00 am. NAME:

More information

Structure of Coordination Compounds

Structure of Coordination Compounds Chapter 22 COORDINATION CHEMISTRY (Part II) Dr. Al Saadi 1 Structure of Coordination Compounds The geometry of coordination compounds plays a significant role in determining their properties. The structure

More information

Chem1102 Summer School Sample Tutorial Quiz 1

Chem1102 Summer School Sample Tutorial Quiz 1 hem1102 Summer School Sample Tutorial Quiz 1 1. What is the molecular formula of the following compound? a) 9 18 b) 9 19 c) 10 18 d) 10 19 e) 10 20 2. Which of the following functional groups is incorrectly

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

BMB/Bi/Ch 173 Winter 2018

BMB/Bi/Ch 173 Winter 2018 BMB/Bi/Ch 173 Winter 2018 Homework Set 8.1 (100 Points) Assigned 2-27-18, due 3-6-18 by 10:30 a.m. TA: Rachael Kuintzle. Office hours: SFL 220, Friday 3/2 4:00-5:00pm and SFL 229, Monday 3/5 4:00-5:30pm.

More information

Page 1 of 9. Sessional Examination (November 2017) Max Marks: 20 Date: Time: One Hour. Model Answers

Page 1 of 9. Sessional Examination (November 2017) Max Marks: 20 Date: Time: One Hour. Model Answers Page 1 of 9 Sessional Examination (November 2017) Class: B. Pharm-II yr (III sem) Subject: Pharma Org. Chem-II Max Marks: 20 Date: 14.11.2017 Time: One Hour Model Answers Q. 1. Solve the following (ANY

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

UNIT 3 CHEMISTRY. Fundamental Principles in Chemistry

UNIT 3 CHEMISTRY. Fundamental Principles in Chemistry UNIT 3 CHEMISTRY NOTE: This list has been compiled based on the topics covered in the 2016 Master Class program. Once all of the 2017 Chemistry program materials have been finalised, this summary will

More information

Classes of Organic Compounds

Classes of Organic Compounds Unit 1 Functional Groups Depicting Structures of rganic ompounds Lewis Structures ondensed structural formulas Line angle drawings 3-dimensional structures Resonance Structures Acid-Base Reactions urved

More information

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Purpose: This is an exercise to introduce the use of nuclear magnetic resonance spectroscopy, in conjunction with infrared spectroscopy, to determine

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

Glendale Community College, AZ

Glendale Community College, AZ Glendale Community College, AZ Mrs. Sandy Gruin n BS in chemistry from Bowling Green State University n MS in Biochemistry from Montana State University n NIH research grant University of Pennsylvania

More information

Module 13: Chemical Shift and Its Measurement

Module 13: Chemical Shift and Its Measurement Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M13_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Shielding and deshielding

More information

CHEMISTRY 263 HOME WORK

CHEMISTRY 263 HOME WORK Lecture Topics: CHEMISTRY 263 HOME WORK Module7: Hydrogenation of Alkenes Hydrogenation - syn and anti- addition - hydrogenation of alkynes - synthesis of cis-alkenes -synthesis of trans-alkenes Text sections:

More information

Organic Chemistry. Introduction to Organic Molecules and Functional Groups

Organic Chemistry. Introduction to Organic Molecules and Functional Groups For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Introduction to Organic Molecules and Functional Groups by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

ACETONE. PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg

ACETONE.   PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg ACETONE www.pawarchemicals.com PRODUCT IDENTIFICATION CAS NO 67-64-1 EINECS NO. 200-662-2 FORMULA (CH3)2C=O MOL WT. 58.08 H.S. CODE 2914.11 TOXICITY SYNONYMS Oral rat LD50: 5800 mg/kg Dimethyl ketone;

More information

UNIT 1 CHEMISTRY. How Can the Diversity of Materials Be Explained?

UNIT 1 CHEMISTRY. How Can the Diversity of Materials Be Explained? UNIT 1 CHEMISTRY How Can the Diversity of Materials Be Explained? AoS 1: How Can the Knowledge of Elements Explain the Properties of Matter? AoS 2: How Can the Versatility of Non-Metals be Explained? AoS

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

Chapter 2: An Introduction to Organic Compounds

Chapter 2: An Introduction to Organic Compounds Chapter : An Introduction to Organic Compounds I. FUNCTIONAL GROUPS: Functional groups with similar structure/reactivity may be "grouped" together. A. Functional Groups With Carbon-Carbon Multiple Bonds.

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: CO 2, N 2, H 2 0, CH 4 O C 2.58Ǻ

More information

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1 Name: Student Number: University of Manitoba - Department of Chemistry CEM 2220 - Introductory Organic Chemistry II - Term Test 1 Thursday, February 13, 2014; 7-9 PM This is a 2-hour test, marked out of

More information

Physical Organic Chemistry (15 h)

Physical Organic Chemistry (15 h) Course code : CEM 43244 Course title : Advanced rganic Chemistry I Physical rganic Chemistry (15 h) Dr. Dinesh Pandithavidana E-mail: dinesh@kln.ac.lk Mobile: 0777-745-720 ffice: B1 222/3 Stereochemical

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

More information

Experiment : Reduction of Ethyl Acetoacetate

Experiment : Reduction of Ethyl Acetoacetate Experiment 7-2007: eduction of Ethyl Acetoacetate EXPEIMENT 7: eduction of Carbonyl Compounds: Achiral and Chiral eduction elevant sections in the text: Fox & Whitesell, 3 rd Ed. Chapter 12, pg.572-584.

More information

BIOLOGY 101. CHAPTER 4: Carbon and the Molecular Diversity of Life: Carbon: the Backbone of Life

BIOLOGY 101. CHAPTER 4: Carbon and the Molecular Diversity of Life: Carbon: the Backbone of Life BIOLOGY 101 CHAPTER 4: Carbon and the Molecular Diversity of Life: CONCEPTS: 4.1 Organic chemistry is the study of carbon compounds 4.2 Carbon atoms can form diverse molecules by bonding to four other

More information

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY Structure 7.1 Introduction Objectives 7.2 Principle 7.3 Requirements 7.4 Strategy for the Interpretation of IR Spectra 7.5 Practice Problems

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center)

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

Organic Chemistry I Exam 3 Fall 2001 November 30, Which of the following compounds corresponds to the spectral data given below?

Organic Chemistry I Exam 3 Fall 2001 November 30, Which of the following compounds corresponds to the spectral data given below? . Which of the following compounds corresponds to the spectral data given below? one of these. The reaction energy diagram given below corresponds to which of the following reactions? TS TS TS Br + R RI

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

Worksheet Chapter 10: Organic chemistry glossary

Worksheet Chapter 10: Organic chemistry glossary Worksheet 10.1 Chapter 10: Organic chemistry glossary Addition elimination reaction A reaction in which two molecules combine with the release of a small molecule, often water. This type of reaction is

More information

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1 Name: Student Number: University of Manitoba - Department of Chemistry CHEM 2220 - Introductory Organic Chemistry II - Term Test 1 Thursday, February 11, 2016; 7-9 PM This is a 2-hour test, marked out

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

Lecturenotes Chem 781 Part 3: Chemical Shift

Lecturenotes Chem 781 Part 3: Chemical Shift Lecturenotes hem 781 Part 3: hemical Shift F. olger Försterling, September 25, 2012 1 General 1.1 istory and origin of chemical shift Early NMR spectra were all taken of solids. Due to very small T 2 in

More information

Tuesday, January 13, NMR Spectroscopy

Tuesday, January 13, NMR Spectroscopy NMR Spectroscopy NMR Phenomenon Nuclear Magnetic Resonance µ A spinning charged particle generates a magnetic field. A nucleus with a spin angular momentum will generate a magnetic moment (μ). If these

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Organolithium Compounds *

Organolithium Compounds * OpenStax-CNX module: m32444 1 Organolithium Compounds * Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 One of the major uses of lithium

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Spin-Spin Coupling. H b1 H 3 C C Br. Review: 1 H- 1 H Coupling

Spin-Spin Coupling. H b1 H 3 C C Br. Review: 1 H- 1 H Coupling Review: 1-1 Coupling b1 3 C C Br b2 multiplicity: n + 1 rule can determine peak intensities by considering nuclear spin probabilities on adjacent hydrogens or use Pascal's triangle Coupling Constants (J)

More information

Aromatic Hydrocarbons

Aromatic Hydrocarbons Aromatic Hydrocarbons Aromatic hydrocarbons contain six-membered rings of carbon atoms with alternating single and double carbon-carbon bonds. The ring is sometimes shown with a circle in the center instead

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

Project I. Heterocyclic and medicinal chemistry

Project I. Heterocyclic and medicinal chemistry Thesis projecten 2018-2019 onderzoeksgroep LOSA professor Wim Dehaen Project I. Heterocyclic and medicinal chemistry - Novel products with interesting biological properties In this line of research, novel

More information

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy M 223 Organic hemistry I Prof. had Landrie Lecture 10: September 20, 2018 h. 12: Spectroscopy mass spectrometry infrared spectroscopy i>licker Question onsider a solution that contains 65g R enantiomer

More information

22 and Applications of 13 C NMR

22 and Applications of 13 C NMR Subject Chemistry Paper No and Title Module No and Title Module Tag 12 and rganic Spectroscopy 22 and Applications of 13 C NMR CHE_P12_M22 TABLE F CNTENTS 1. Learning utcomes 2. Introduction 3. Structural

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

12.1 The Nature of Organic molecules

12.1 The Nature of Organic molecules 12.1 The Nature of Organic molecules Organic chemistry: : The chemistry of carbon compounds. Carbon is tetravalent; it always form four bonds. Prentice Hall 2003 Chapter One 2 Organic molecules have covalent

More information

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid 1) Which type of compound does not contain a carbonyl group? ketone aldehyde amine ester carboxylic acid 2) Which functional group contains a carbonyl group and a hydroxyl group bonded to the same carbon

More information

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only I. Addition Reactions of Alkenes Introduction Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem 2310 An addition reaction always involves changing a double bond to a single bond and adding a new bond

More information

Assign (R) or (S) configurations to the chiral carbons in the following molecules: enantiomers

Assign (R) or (S) configurations to the chiral carbons in the following molecules: enantiomers CAPTER 5: STERECEMISTRY (cont.) Assign (R) or (S) configurations to the chiral carbons in the following molecules: 3 C 3 C N 2 Molecules With Multiple Chiral Atoms. 1-chloro-2-methylcyclohexane has four

More information

Chapter 25 Organic and Biological Chemistry

Chapter 25 Organic and Biological Chemistry Chapter 25 Organic and Biological Chemistry Organic Chemistry The chemistry of carbon compounds. Carbon has the ability to form long chains. Without this property, large biomolecules such as proteins,

More information

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules hapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the s and s of a molecules Nuclei are positively charged and spin on an axis; they create a tiny magnetic field + + Not all

More information

L35 REVIEW OUTLINE. 1. Reactions. 2. Spectroscopy and Stereochemistry. 3. Preview of Final. CHEM2312: Spring 2008

L35 REVIEW OUTLINE. 1. Reactions. 2. Spectroscopy and Stereochemistry. 3. Preview of Final. CHEM2312: Spring 2008 L35 REVIEW UTLINE 1. Reactions 2. Spectroscopy and Stereochemistry 3. Preview of Final EM2312: Spring 2008 REVIEW F REATINS While the following schemes group reactions by type of functional group, recognize

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

Measuring enzyme (enantio)selectivity

Measuring enzyme (enantio)selectivity Measuring enzyme (enantio)selectivity Types of selectivity - review stereoisomers Stereoselective synthesis (create) vs. resolutions (separate) Enantioselectivity & enantiomeric purity Ways to measure

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

Structure Determination: Nuclear Magnetic Resonance Spectroscopy Structure Determination: Nuclear Magnetic Resonance Spectroscopy Why This Chapter? NMR is the most valuable spectroscopic technique used for structure determination More advanced NMR techniques are used

More information

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2 Preface Table of Contents Introduction i A1.1 (a) Shell number and number of subshells 1 A1.1 (b) Orbitals 2 A1.1 (c ) Orbital shapes (s, p & d) 2 A1.1 (d) Relative energies of s,p,d,f sub-shells 4 A 1.1

More information