Study of the Phase Composition of Fe 2 O 3 Nanoparticles

Size: px
Start display at page:

Download "Study of the Phase Composition of Fe 2 O 3 Nanoparticles"

Transcription

1 WDS'9 Proceedings of Contributed Papers, Part III, , 29. ISBN MATFYZPRESS Study of the Phase Composition of Fe 2 O 3 Nanoparticles V. Valeš, J. Poltierová-Vejpravová, A. Mantlíková, and V. Holý Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Prague, Czech Republic. P. Brázda Charles University, Faculty of Science, Department of Inorganic Chemistry, Prague, Czech Republic. Abstract. The changes of the phase composition of iron oxide samples prepared by solgel method using single precursor both for nanoparticles and the matrix were studied by x-ray diffraction. Obtained were analyzed by an approach using the Debye formula which is suitable for the size of particles up to about 1 nm. The phase composition of the nanoparticles was described by a core-shell model corresponding to the assumed inward movement of the phase interface between two phases. First results of the phase composition of Fe 2 O 3 nanoparticles have already been obtained. Introduction Important physical properties of nanoparticles are determined mainly by their atomic structure, especially by their phase composition and the presence of structure defects. X-ray diffraction is a good tool for studying the structure of the nanoparticles, its application for very small particles is however limited by very small intensity of the scattered wave. For this reason special experimental setups, like e.g. diffraction with small incidence angle, are used and many experiments have to be done at synchrotrons. Standard methods of the measured analysis based on the description of the diffraction using instrumental functions and functions of physical broadening of the lines fail in the case of very small particles. An ab-initio calculation method (based on the Debye formula [Cervellino et al., 24; Cervellino et al., 23]) has to be used instead. In this work the Debye formula is used for the description of the diffraction of iron oxide samples measured at ANKA synchrotron in Karlsruhe. Using this approach we determine basic parameters of the particles such as lattice parameters and the size of the particles, as well as the presence of different phases. During annealing, subsequent phase transitions from γ-fe 2 O 3 to ε-fe 2 O 3 and to α-fe 2 O 3 take place. New phases nucleate probably at the surface of the nanoparticles and the phase transformation proceeds towards the particle center ([Woo et al., 28; Gich et al., 26]), so that the structure of the nanoparticles can be described by a core-shell model; this model was used in the Debye-formula based simulation. From the analysis of the experimental we determined the kinetic parameters of the phase transitions and their dependence on the nanoparticle sizes. Measured samples The great interest in Fe 2 O 3 nanoparticles is caused mainly by magnetic properties of these particles, namely extremely high room temperature coercivity of epsilon phase of these iron oxide nanoparticles. The samples were prepared by ex-situ annealing of organic precursors and then measured at ANKA synchrotron in Karlsruhe with incidence angle 5º and the wavelength of.97 Å. The primary beam was monochromatized by a 2x111Si monochromator, the diffracted radiation was measured by a point detector equipped with a narrow entrance slit and a filter suppressing the Fefluorescence. The series of samples was prepared with the final annealing temperature from 9 ºC to 115 ºC with the step of 5 ºC. To the temperature of 9 ºC all the samples were heated at the speed 1 ºC per minute and stayed at this temperature for 4 hours. As for the sample with the final temperature 9 ºC this was the whole procedure. The other samples were then with the same speed heated to their final annealing temperature with the 4-hour waiting each 5 ºC up to their final heating This procedure causes the creation of Fe 2 O 3 nanoparticles in the amorphous SiO 2 matrix. From the literature [Brázda et al., 29] it is known that the particles created at the lowest final temperature should be in the form of maghemite and with increasing final temperature the phase of Fe 2 O 3 particles should change to ε and hematite. 28

2 Theoretical description Debye formula in Eq. (1), which has been used for the x-ray analysis describes the intensity distribution of the samples consisting of the same randomly oriented particles, knowing the positions of the atoms in one such a particle. sin( Qr ) * ij I ( Q) = fi f j, (1) i, j Qrij where the double sum goes over all atoms in the particle, Q is the length of the scattering vector, f i is the atom form factor of the i-th atom and r ij is the distance between i-th and j-th atom. The formula is valid for any arrangement of atoms in any particle; no lattice is needed; only exact positions of atoms in the particle are important. The only technical limit of using of this equation is the number of terms in the double sum. For instance, a particle of Fe 2 O 3 of diameter of 13 nm contains about 1 5 atoms, which means that there are 1 1 interatomic distances that have to be taken into account for every Q. For this reason, the distribution function of atomic pairs was calculated and a histogram of all interatomic distances was created; an example of such histogram is shown in Fig. 1 corresponding to a spherical particle with the radius of 4 Å, the histogram has been constructed using the step width of.1 Å. Since we introduced the histogram of interatomic distances, we can rewrite the Eq. (1) using calculated from the histogram, i.e. we know the multiplicity of each of interval of distances. The rewritten form of Debye formula in equation (2) enables us to perform calculations for much larger samples. For the intensity we can write 2 ( ) sin( Qri ) I Q = mi f, (2) i Qri where m i is the multiplicity factor for the i-th interval of distances. The expression in Eq. (2) is valid only for one type of atoms in the particle, which is not our case (because of different atom form factors). This fact requires only some technical changes, which do not affect the fundamental meaning of Eq. (2). The phase transition from one phase to the other is supposed to take place from the particle surface to its center. For this reason the core-shell model of the particle (particle consisting of two different phases) has been introduced to the Debye formula program. In order to have a brief look in to the behavior of the simulated calculated by our model, diffraction curves for different phases m 3,x1 5 2,5x1 5 2,x1 5 1,5x1 5 1,x maghemite R maghemite =4nm ε-fe 2 O 3 5,x1 4, r[a] Figure 1. Calculated histogram of interatomic distances in a spherical Fe 2 O 3 particle of radius of 4 Å. The histogram step is.1 Å Figure 2. Calculation of diffraction curves for different phases of Fe 2 O 3. The full line corresponds to the pure maghemite particle of radius of 5 Å; the dotted one to the pure ε-fe 2 O 3 particle of the same radius; and the dashed line represents the diffraction from the particles of radius 5 Å, which consist of the core (radius 4 Å) of maghemite and the shell of ε-fe 2 O 3. 29

3 were calculated (Fig. 2). From this picture the difference between the maghemite and ε phases of Fe 2 O 3 can be seen as well as the effect of the core-shell structure of these two phases, which causes some mixture of the diffraction pattern of both phases. Data analysis Several samples from the series described above were analysed by the Debye-formula approach using the core-shell model, assuming that the interface of the two phases moves from the surface to the center of the particle. The from the Figs. 3 5 (samples A C) were ted by hand and the results are summarized in Table 1; the errors were estimated from this too. The background was approximated ad-hoc by a polynomial of the third power. The broad peak around 13º is caused by the amorphous SiO 2 matrix and for our ting is not important. The s describe the measured well and the parameters of the core-shell model were obtained. The sample D (Fig. 6) could not have been ted because of a too large size of the particles that made the simulation extremely time-consuming θ (deg) Figure 3. Sample A. Measured and of the sample annealed at the 9 ºC as the highest Figure 5. Sample C. Measured and of the sample annealed at the 1 ºC as the highest Figure 4. Sample B. Measured and of the sample annealed at the 95 ºC as the highest Figure 6. Sample D. Measured of the sample annealed at the 11 ºC as the highest Table 1. Results obtained from the measured ting. The errors of the rate of both phases are roughly estimated. The error of the total radius is not mentioned; the value of the total radius means the lower estimate of the real radius. Sample Total radius (Å) Maghemite (%) ε-fe 2 O 3 (%) A 4 34 ± 6 66 ± 6 B 5 26 ± 4 74 ± 4 C 58 ± 8 1 ± 8 21

4 Discussion As we showed in the previous section, the calculated describes well the measured. However, the question of the uniqueness of the model is still open. For instance, we assumed that the new phase is being created at the surface of the particle; i.e., that the shell is represented by the new phase while the old one is in the core, as we have assumed in our model. If this assumption is not valid we have to change the phase of the core to the phase of the shell and vice versa. This possibility has to be taken into account as well as the situation when there is no core-shell structure and for example some particles consist of one phase and the others of the second one. The difference between the interchange of core and shell in sample A is shown in the Fig. 7. In this case there are slight differences which could be observable, but the question is if by the hand ting we can get better agreement. In the Fig. 8, where the difference between core-shell particle model and the mixture of particles consisting of single phase is shown, one can see that the difference between both cases is much smaller and it is impossible to distinguish between them. Both calculations have been made using the same ratio of present phases. Since the peak corresponding to certain phase is created only by the atoms in the particle belonging to this phase, the total size of the whole particle has to be larger for the core-shell model then for the model consisting of single phase particles. This can be seen from the Fig. 8, where the widths of diffraction peaks for both models are approximately the same and for the calculation using mixture model, particles were about 3 % smaller then particles used for core-shell model calculation. It could be possible to determine the size of the particles using other methods (TEM) and decide which model this size corresponds to. From the work [Bráza et al., 29] it follows that the average radius of the particles annealed up to 1 ºC is 6 Å, what is just in between both model cases (mixture model, core-shell model; Fig. 8) so it has to be investigated more R tot =4 A 28 A of maghemite in ε 3 A of ε in maghemite Figure 7. Analysis of sample A. The difference of the diffraction pattern when exchanging the phase composition in the core and in the shell. The total radius of the particle is 4 Å mixture of separate phases, radius 5 A core-shell, ε around maghemite, radius 44.8/7 A Figure 8. Analysis of sample B. The difference of the diffraction pattern between the core-shell structure model (maghemite in the core, radius 7 Å) and the mixture of one-phase particles (radius 5 Å) mixed in the same ratio that corresponds to the ratio in the core-shell model. Conclusion From the ting of the measured we obtained the total size of analyzed samples (A C) and the fraction of the maghemite and ε phase assuming the core-shell model with maghemite as a core. It can be seen that the size of the particles increase with increasing annealing temperature and that the fraction of maghemite decreases and it completely vanishes at the temperature of 1 ºC. This corresponds to the assumption presented above. As for the sample D, which has not been analysed, the hematite diffraction peaks appear. Both he core-shell model of the nanoparticles and the Debye formula are suitable tools for the analysis of our samples. In the future we have to investigate, whether it is possible to distinguish between the core and the shell, i.e., whether we can determine which phase is in the core and which

5 one is in the shell. A method, which would enable us to analyze larger particles, has to be implemented as well. References A. Cervellino, C. Giannini, A. Guagliardi and D. Zanchet, Eur. Phys. J. B 41, 485, 24. A. Cervellino, C. Giannini and A. Guagliardi, J. Appl. Cryst. 36, 1148, 23. Chang-Woo Lee, Sung-Soo Jung and Jai-Sung Lee, Materials Letters 62, 561, 28. M. Gich, C. Frontera, A. Roig et al, Chemistry of Materials 18, 3889, 26. P. Brázda, D. Nižňanský, J.-L. Rehspringer, J. Poltierová Vejpravová, J. Sol-Gel Sci. Technol., 51, 78-83,

Magnetic Properties of Doped CeO 2 Nanoparticles and CeO 2 -Fe 2 O 3 Mixed Oxides

Magnetic Properties of Doped CeO 2 Nanoparticles and CeO 2 -Fe 2 O 3 Mixed Oxides WDS'12 Proceedings of Contributed Papers, Part III, 12 17, 2012. ISBN 978-80-7378-226-9 MATFYZPRESS Magnetic Properties of Doped CeO 2 Nanoparticles and CeO 2 -Fe 2 O 3 Mixed Oxides A. Mantlikova, 1,2

More information

J. López-Sánchez*,, A. Serrano,Ø, A. Del Campo Ø, M. Abuín,, O. Rodríguez de la Fuente,, N. Carmona, Macroscopic aspect of the samples

J. López-Sánchez*,, A. Serrano,Ø, A. Del Campo Ø, M. Abuín,, O. Rodríguez de la Fuente,, N. Carmona, Macroscopic aspect of the samples J. López-Sánchez*,, A. Serrano,Ø, A. Del Campo Ø, M. Abuín,, O. Rodríguez de la Fuente,, N. Carmona, Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid Unidad Asociada

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

Introduction to the charge flipping for powder diffraction

Introduction to the charge flipping for powder diffraction Introduction to the charge flipping for powder diffraction Jan Rohlíček Institute of Physics, Department of Structure Analysis, Academy of Science of the Czech Republic We are here Approx. 800 km from

More information

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Supplementary Information Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Sang Jun Kim, a Yeob Lee, a Dong Ki Lee, a Jung Woo Lee a and Jeung Ku Kang* a,b

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Electrochemical Deposition of Iron Nanoparticles on PPY and H terminated Si substrates. Karan Sukhija Co-op Term # 1 April 28 th, 2005

Electrochemical Deposition of Iron Nanoparticles on PPY and H terminated Si substrates. Karan Sukhija Co-op Term # 1 April 28 th, 2005 Electrochemical Deposition of Iron Nanoparticles on PPY and H terminated Si substrates Karan Sukhija Co-op Term # 1 April 28 th, 2005 Future Suggested Experiments Acknowledgments Presentation Outline Background

More information

Characterization. of solid catalysts. 7. X-ray Absorption. XANES and EXAFS. Prof dr J W (Hans) Niemantsverdriet.

Characterization. of solid catalysts. 7. X-ray Absorption. XANES and EXAFS. Prof dr J W (Hans) Niemantsverdriet. www.catalysiscourse.com Characterization of solid catalysts 7. X-ray Absorption XANES and EXAFS Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis J.W. Niemantsverdriet, TU/e, Eindhoven,

More information

Synthesis of magnetic nanoparticles via the sol-gel technique

Synthesis of magnetic nanoparticles via the sol-gel technique Materials Science-Poland, Vol. 23, No. 1, 2005 Synthesis of magnetic nanoparticles via the sol-gel technique RÓŻA KORNAK 1, DANIEL NIŽŇANSKỲ 2, KRYSTYNA HAIMANN 1 WŁODZIMIERZ TYLUS 3, KRZYSZTOF MARUSZEWSKI

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

X-Ray Emission and Absorption

X-Ray Emission and Absorption X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

More information

Data Acquisition. What choices need to be made?

Data Acquisition. What choices need to be made? 1 Specimen type and preparation Radiation source Wavelength Instrument geometry Detector type Instrument setup Scan parameters 2 Specimen type and preparation Slide mount Front loading cavity Back loading

More information

3.012 Structure An Introduction to X-ray Diffraction

3.012 Structure An Introduction to X-ray Diffraction 3.012 Structure An Introduction to X-ray Diffraction This handout summarizes some topics that are important for understanding x-ray diffraction. The following references provide a thorough explanation

More information

Homework 1. Property LASER Incandescent Bulb

Homework 1. Property LASER Incandescent Bulb Homework 1 Solution: a) LASER light is spectrally pure, single wavelength, and they are coherent, i.e. all the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information DNA-Programmable Nanoparticle Crystallization Sung Yong Park,* 1 Abigail K. R. Lytton-Jean,* 1 Byeongdu Lee 2, Steven Weigand 3, George C. Schatz 1 and Chad A. Mirkin 1 1 Department

More information

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1 Q1. Two points on a progressive wave are one-eighth of a wavelength apart. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave? 0.2

More information

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald*

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Supporting Information for: Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Department of Chemistry and Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University,

More information

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1 Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1.1 What is EXAFS? X-ray absorption fine structure (EXAFS, XAFS) is an oscillatory modulation in the X-ray absorption coefficient on the high-energy

More information

Supplementary Information. Optimizing the Binding Energy of the Surfactant to. Iron-Oxide Yields Truly Monodisperse

Supplementary Information. Optimizing the Binding Energy of the Surfactant to. Iron-Oxide Yields Truly Monodisperse Supplementary Information Optimizing the Binding Energy of the Surfactant to Iron-Oxide Yields Truly Monodisperse Nanoparticles Hamed Sharifi Dehsari 1, Richard Anthony Harris 2, Anielen Halda Ribeiro

More information

SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE

SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE Sophie Desmoulins-Krawiec, Sandy Moisan, Cyril Aymonier, Anne Loppinet-Serani, François Weill, Jean Etourneau,

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED ZINC SULPHIDE NANOPARTICLES A thesis submitted to the University of Pune FOR THE DEGREE OF DOCTOR of PHILOSOPHY IN PHYSICS by PRAMOD H. BORSE DEPARTMENT OF PHYSICS

More information

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). S1 Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). The combined SAXS/XANES measurements were carried out at the µspot beamline at BESSY II (Berlin, Germany). The beamline

More information

Speciation of Actinides Using XAFS

Speciation of Actinides Using XAFS Speciation of Actinides Using XAFS Part I Tobias Reich Johannes Gutenberg-Universität Mainz Institut für Kernchemie Ringvorlesung des GRK Elementspeziation im SS 2006 Mainz, 4.9.2006 Outline Introduction

More information

Spherical neutron polarimetry (SNP) as a powerful method for precise magnetic structure determination

Spherical neutron polarimetry (SNP) as a powerful method for precise magnetic structure determination Spherical neutron polarimetry (SNP) as a powerful method for precise magnetic structure determination V. Hutanu Institut für Kristallographie RWTH Aachen University, JCNS outstation at MLZ, TU München,

More information

The Liquid State ~~& R-E-S-O-N-A-N-C-E-I--Ju-n-e The Arrangement of Atoms.

The Liquid State ~~& R-E-S-O-N-A-N-C-E-I--Ju-n-e The Arrangement of Atoms. The Liquid State 1. The Arrangement of Atoms K R Rao The liquid state of matter is of great practical importance. The arrangement of atoms in a liquid is more disordered than in a crystal, and can be studied

More information

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids Physics of low Dimensions, FFF042 Josefin Voigt & Stefano Scaramuzza 10.12.2013, Lund University 1 Introduction In this project truncated

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

Interaction mechanism for energy transfer from Ce to Tb ions in silica

Interaction mechanism for energy transfer from Ce to Tb ions in silica Interaction mechanism for energy transfer from Ce to Tb ions in silica HAA Seed Ahmed 1,2, W-S Chae 3, OM Ntwaeaborwa 1 and RE Kroon 1 1 Department of Physics, University of the Free State, South Africa

More information

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 261 RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES G. Kimmel

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

Wave function and Quantum Physics

Wave function and Quantum Physics Wave function and Quantum Physics Properties of matter Consists of discreet particles Atoms, Molecules etc. Matter has momentum (mass) A well defined trajectory Does not diffract or interfere 1 particle

More information

STRUCTURE AND MAGNETIC PROPERTIES OF SiO 2 COATED Fe 2 NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS

STRUCTURE AND MAGNETIC PROPERTIES OF SiO 2 COATED Fe 2 NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS Rev.Adv.Mater.Sci. Structure and magnetic 4 (2003) properties 55-59 of coated 55 STRUCTURE AND MAGNETIC PROPERTIES OF COATED NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS Ji-Hun Yu,

More information

X-ray practical: Crystallography

X-ray practical: Crystallography X-ray practical: Crystallography Aim: To familiarise oneself with the operation of Tex-X-Ometer spectrometer and to use it to determine the lattice spacing in NaCl and LiF single crystals. Background:

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265

Superparamagnetic nanoparticle arrays for magnetically tunable photonics. Josh Kurzman Materials 265 Superparamagnetic nanoparticle arrays for magnetically tunable photonics Josh Kurzman Materials 265 Superparamagnetism In SPM regime, thermal energy sufficient to overcome spin reversal barrier T B Below

More information

In Situ Synchrotron X-ray Diffraction Studies of Single-walled Carbon Nanotubes for Electric Double-layer Capacitors

In Situ Synchrotron X-ray Diffraction Studies of Single-walled Carbon Nanotubes for Electric Double-layer Capacitors J. Chem. Chem. Eng. 9 (2015) 509-513 doi: 10.17265/1934-7375/2015.08.005 D DAVID PUBLISHING In Situ Synchrotron X-ray Diffraction Studies of Single-walled Carbon Nanotubes for Electric Double-layer Capacitors

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate.

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate. 5. Nomenclature of overlayer structures Thus far, we have been discussing an ideal surface, which is in effect the structure of the topmost substrate layer. The surface (selvedge) layers of the solid however

More information

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Structure Analysis by Small-Angle X-Ray and Neutron Scattering Structure Analysis by Small-Angle X-Ray and Neutron Scattering L. A. Feigin and D. I. Svergun Institute of Crystallography Academy of Sciences of the USSR Moscow, USSR Edited by George W. Taylor Princeton

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements Reinhard B. Neder Institut für Physik der kondensierten Materie Lehrstuhl für Kristallographie und Strukturphysik Universität

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

1.4 The Compton Effect

1.4 The Compton Effect 1.4 The Compton Effect The Nobel Prize in Physics, 1927: jointly-awarded to Arthur Holly Compton (figure 9), for his discovery of the effect named after him. Figure 9: Arthur Holly Compton (1892 1962):

More information

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION 173 ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION N. A. Raftery, L. K. Bekessy, and J. Bowpitt Faculty of Science, Queensland University of Technology, GPO Box 2434,

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

Supplementary Information for Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of nm

Supplementary Information for Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of nm Supplementary Information for Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200-1770 nm Mehmet C. Onbasli 1,a), Lukáš Beran 2,a), Martin Zahradník 2, Miroslav

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Size-Dependent Fault-Driven Relaxation and Faceting in Zincblende CdSe Colloidal Quantum Dots

Size-Dependent Fault-Driven Relaxation and Faceting in Zincblende CdSe Colloidal Quantum Dots Supporting Information Size-Dependent Fault-Driven Relaxation and Faceting in Zincblende CdSe Colloidal Quantum Dots Daniele Moscheni, Federica Bertolotti, Laura Piveteau, Loredana Protesescu, Dmitry N.

More information

Initial Results on the Feasibility of Hybrid X-Ray Microscopy

Initial Results on the Feasibility of Hybrid X-Ray Microscopy CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 5 OCTOBER 2005 Initial Results on the Feasibility of Hybrid X-Ray Microscopy P. K. Tseng, 1 W. F. Pong, 1 C. L. Chang, 1 C. P. Hsu, 1 F. Y. Lin, 2 C. S. Hwang, 2

More information

arxiv: v3 [nucl-ex] 18 May 2018

arxiv: v3 [nucl-ex] 18 May 2018 Observation of Pendellösung Fringes by Using Pulsed Neutrons Shigeyasu Itoh, Masaya Nakaji, Yuya Uchida, Masaaki Kitaguchi, and Hirohiko M. Shimizu Department of Physics, Nagoya University Furo-cho, Chikusa-ku,

More information

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples ver. 2015/09/18 T. Ina, K. Kato, T. Uruga (JASRI), P. Fons (AIST/JASRI) 1. Introduction The bending magnet beamline, BL01B1,

More information

PHOTOELECTRON SPECTROSCOPY (PES)

PHOTOELECTRON SPECTROSCOPY (PES) PHOTOELECTRON SPECTROSCOPY (PES) NTRODUCTON Law of Photoelectric effect Albert Einstein, Nobel Prize 1921 Kaiser-Wilhelm-nstitut (now Max-Planck- nstitut) für Physik Berlin, Germany High-resolution electron

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Supporting Information

Supporting Information Supporting Information Yb 3 O(OH) 6 Cl.2H 2 O An anion exchangeable hydroxide with a cationic inorganic framework structure Helen V. Goulding, a Sarah E. Hulse, a William Clegg, b Ross W. Harrington, b

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts Zhiqiang Niu 1, Nigel Becknell 1, Yi Yu 1,2, Dohyung Kim 3, Chen Chen 1,4, Nikolay Kornienko 1, Gabor A.

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry Pavol Mikula, Nuclear Physics Institute ASCR 25 68 Řež near Prague, Czech Republic NMI3-Meeting, Barcelona, 21 Motivation Backscattering

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Nucleation of FAU and LTA Zeolites from Heterogeneous Aluminosilicate Precursors Matthew D. Oleksiak 1, Jennifer A. Soltis 2,4, Marlon T. Conato, 1,3 R. Lee Penn 2, Jeffrey D. Rimer 1* 1 University of

More information

Electron Diffraction

Electron Diffraction Electron iffraction o moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis de

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

HOMEWORK - Chapter 4 Spectroscopy

HOMEWORK - Chapter 4 Spectroscopy Astronomy 10 HOMEWORK - Chapter 4 Spectroscopy Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate

More information

Basics of XRD part III

Basics of XRD part III Basics of XRD part III Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 10/31/17 KIT The Research University of the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu

More information

Refinement of X-ray Fluorescence Holography for Determination of Local Atomic Environment

Refinement of X-ray Fluorescence Holography for Determination of Local Atomic Environment Materials Transactions, Vol. 43, No. 7 (2002) pp. 1464 to 1468 Special Issue on Grain Boundaries, Interfaces, Defects and Localized Quantum Structure in Ceramics c 2002 The Japan Institute of Metals Refinement

More information

Hydrogen Titanium Oxide Hydrate: Excellent Performance. on Degradation of Methyl Blue in Aqueous Solutions

Hydrogen Titanium Oxide Hydrate: Excellent Performance. on Degradation of Methyl Blue in Aqueous Solutions Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supplementary information Hydrogen Titanium Oxide Hydrate: Excellent Performance on Degradation

More information

Characterization of semiconductor hetero- and nanostructures scattering

Characterization of semiconductor hetero- and nanostructures scattering Characterization of semiconductor hetero- and nanostructures by x-ray x scattering Václav Holý, Department of Physics of Electronic Structures, Charles University, 121 16 Prague, Czech Republic holy@mff.cuni.cz

More information

Byong Yong Yu, and Seung-Yeop Kwak *

Byong Yong Yu, and Seung-Yeop Kwak * Supplementary Information Assembly of Magnetite Nanoparticles into Spherical Mesoporous Aggregates with a 3-D Wormhole-Like Porous Structure Byong Yong Yu, and Seung-Yeop Kwak * Department of Materials

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Structural Biology Shape Dynamic Light Scattering Electron Microscopy Small Angle X-ray Scattering Cryo-Electron Microscopy Wide Angle X- ray

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Supporting Information

Supporting Information Supporting Information Self-assembly of smallest magnetic particles Sara Mehdizadeh Taheri 1, Maria Michaelis 1, Thomas Friedrich 2, Beate Förster 3, Markus Drechsler 1, Florian M. Römer 4, Peter Bösecke

More information

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a

Final on December Physics 106 R. Schad. 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a Final on December11. 2007 - Physics 106 R. Schad YOUR NAME STUDENT NUMBER 3e 4e 5c 6d 7c 8d 9b 10e 11d 12e 13d 14d 15b 16d 17b 18b 19c 20a 1. 2. 3. 4. This is to identify the exam version you have IMPORTANT

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

Quantum Mechanics Tutorial

Quantum Mechanics Tutorial Quantum Mechanics Tutorial The Wave Nature of Matter Wave-particle duality and de Broglie s hypothesis. de Broglie matter waves The Davisson-Germer experiment Matter wave packets Heisenberg uncertainty

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

On the reversible photo-darkening in amorphous Ge 5 As 41 S 15 Se 39 film

On the reversible photo-darkening in amorphous Ge 5 As 41 S 15 Se 39 film JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 2, April 26, p. 78-784 On the reversible photo-darkening in amorphous Ge 5 As 41 S 15 Se 39 film M. KINCL, K. PETKOV a, L. TICHY * Joint Laboratory

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

PHITS calculation of the radiation field in HIMAC BIO

PHITS calculation of the radiation field in HIMAC BIO PHITS calculation of the radiation field in HIMAC BIO Ondřej Ploc, Yukio Uchihori, Hisashi Kitamura, Lembit Sihver National Institute of Radiological Sciences, Chiba, Japan Nuclear Physics Institute, Prague,

More information

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear propagation. Once a tear is identified at low magnification,

More information

ICTP School on Synchrotron Radiation and Applications 2008 Surface Science, Photoemission and Related Techniques Fadley, Goldoni

ICTP School on Synchrotron Radiation and Applications 2008 Surface Science, Photoemission and Related Techniques Fadley, Goldoni ICTP School on Synchrotron Radiation and Applications 2008 Surface Science, Photoemission and Related Techniques Fadley, Goldoni No. 1 Student background questions and study questions from the lectures.

More information

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between

Supplementary Figure 1. Schematics of light transmission and reflection from a slab confined between Supplementary Figures: Supplementary Figure. Schematics of light transmission and reflection from a slab confined between two infinite media. Supplementary Figure. Reflectivity of a magneto-electric slab

More information

Minimization of Matched Formulas

Minimization of Matched Formulas WDS'11 Proceedings of Contributed Papers, Part I, 101 105, 2011. ISBN 978-80-7378-184-2 MATFYZPRESS Minimization of Matched Formulas Š. Gurský Charles University, Faculty of Mathematics and Physics, Prague,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary figure S1: Characterisation of the electron beam intensity profile. (a) A 3D plot of beam intensity (grey value) with position, (b) the beam

More information

Supporting Information. High Selectivity of Supported Ru Catalysts in the Selective. CO Methanation - Water Makes the Difference

Supporting Information. High Selectivity of Supported Ru Catalysts in the Selective. CO Methanation - Water Makes the Difference S1 Supporting Information High Selectivity of Supported Ru Catalysts in the Selective CO Methanation - Water Makes the Difference Ali M. Abdel-Mageed,, Stephan Eckle, and R. Ju rgen Behm *, Institute of

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

Effects of -Ray Irradiation on Colour and Fluorescence of Pearls

Effects of -Ray Irradiation on Colour and Fluorescence of Pearls Japanese Journal of Applied Physics, 27 (2) (1988) 235-239 Effects of -Ray Irradiation on Colour and Fluorescence of Pearls Yasunori Matsuda and Tadaki Miyoshi 1 Pearl Research Laboratory, K. MIKIMOTO

More information

Thermal properties of Engineering Materials

Thermal properties of Engineering Materials Thermal properties of Engineering Materials Engineering materials are important in everyday life because of their versatile structural properties. Other than these properties, they do play an important

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics Final Exam Monday, December 17, 2012 / 14:00 17:00 / CCIS 4-285 Student s Name: Instructions There are 24 questions. You should attempt all of them. Mark your response

More information