Ready for mass-markets

Size: px
Start display at page:

Download "Ready for mass-markets"

Transcription

1 Ready for mass-markets - Manufacturing carbon nanotubes on a commercial scale - Harry Swan. Carbon nanotubes offer a range of attractive properties and could enhance many coatings applications. However, the current barriers to mass-market use of these materials include the availability of high-quality materials in commercial quantities. Now a partnership between industry and academia has resulted in a commercial manufacturing process for carbon nanotubes. Hardly a day goes by without someone suggesting a new application for carbon nanotubes. Since their discovery, academics and industrialists have researched or considered their use in brake discs; fuel cells; advanced aerospace composites; co-axial cable; conductive fuel lines; EMI shielding in electronic devices; conductive tyres; conductive inks; and, of course, the hotly disputed space elevator - to name but a few. While some of these applications are clearly closer to reality than others, possibly the most immediate products will be developed in the coatings industry. The launch in April this year of the UK's first commercial manufacturing process for high-purity single-wall carbon nanotubes at Thomas Swan & Co. Ltd., has cleared the way for the development of a wide range of advanced coatings applications. Background basics For those who have not come across them before, carbon nanotubes consist of molecular cylinders of pure, hexagonally-arranged carbon atoms that resemble rolled-up sheets of chicken wire with a diameter measured in a few nanometres (1 nanometre is 1 billionth of a metre) and a length of many microns. They occur in two main types, the single-wall carbon nanotube (SWNT) composed of a single cylinder of carbon (Figure 1), and the multi-wall version (MWNT) (Figure 2) consisting of concentric tubes or cylinders of carbon (effectively straws within straws). The ends of the tubes are usually closed off by a carbon end-cap. Other variations on this theme include the double-wall tube, 'herringbone' and 'bamboo' structures. Since their discovery, and Sumio Iijima's watershed paper in 1991 [1], there has been unprecedented academic and industrial interest in carbon nanotubes and their potential use in a wide range of commercial applications. There is no denying that the basic properties of both single and multi-wall carbon nanotubes are truly remarkable. Recent studies have suggested that single-wall carbon nanotubes have a tensile strength of GPa and a modulus of 1-2 TPa [2]. This places them well ahead of steel in both strength and modulus and all for one sixth the weight. Combine this with their high thermal and electrical conductivity and you begin to understand why so many scientists and commercial organisations have sat up and taken notice. Properties lead to commercial applications The basic properties of the individual carbon nanotube (both single and multi-wall) have been considered in some fascinating potential applications. In essence carbon nanotubes are advanced fillers. Highly conductive (thermally and electrically), extremely strong and light weight. Add to this their apparent ability to absorb electro-magnetic interference and the fascinating photo-acoustic effect (whereby they spontaneously ignite when exposed to an intense light source [3]) and you are left with some intriguing possibilities for advanced coatings. Electrical conductivity The addition of low concentrations of carbon nanotubes to plastic it makes it electrically conductive. This allows electrostatic painting to be used when coating automotive parts, removing the need for costly primers. The high aspect ratio of carbon nanotubes (length divided by diameter) means that they form a percolating matrix across the non-conductive filler at much lower loadings than traditional fillers. Carbon black typically requires 30 or 40 % by volume loading to confer conductivity, at which point the mechanical properties of the composite are often severely degraded [4]. In comparison Cambridge University recently achieved a conductive epoxy using only wt% loading of aligned multi-wall carbon nanotubes [5]. It is also likely that modest loadings of single-wall carbon nanotubes will actually enhance the structural properties of the composite. The anti-static properties of carbon nanotube coatings may also have potential applications in packaging. Anti-static coatings are used in the electronics to prevent damage to sensitive electronic components during shipping and storage. Faster curing of UV-systems thanks good thermal conductivity Carbon nanotubes (in their pure and undamaged form) are possibly the best thermally conductive material ever discovered [6]. As such they are being researched for their heat management potential in a number of applications. As the electronics world strives to fit more and more functionality into less and less space, overheating is becoming a major problem. This is forcing greater pressure on materials and coatings involved in electronics manufacturing to be thermally conductive in an attempt to remove the heat from the device as quickly as possible. Another aspect of thermal management is the demand for rapid curing times of polymeric materials such as ink resins and elastomers. The use of low loadings of carbon nanotubes should increase the speed of thermal dissipation from a coating or resin allowing for a much faster curing time. This would clearly be of interest in automated processes where the speed of curing limits the rate of production. Electro-magnetic interference (EMI) shielding in laptops and mobile phones is becoming increasingly important to preventing interference with and from other portable electronic devices. As an extension to the electrostatic dissipation properties of carbon nanotube coatings, a number of companies are developing coatings that are designed to absorb EMI. Intriguing possibilities for 'spray-on' coatings A significant amount of research is being directed into the use of carbon nanotubes in conductive inks. The ability to spray a conductive ink opens up some intriguing possibilities for 'spray-on' circuits and coatings. A leader in this field is US-based Eikos which was awarded USD 860,000 in May this year from the US Air Force Research Laboratory to develop transparent conductive polymers specifically for military aircraft canopies. While such contracts indicate that the carbon nanotube market is already up and running in some niche applications, there are still some major barriers to overcome. Barriers to market

2 While there are already some products in the market place and a whole range of applications in development, the carbon nanotube market has been constrained by three main issues: - A lack of commercially-available material of consistently high quality. - Cost - until recently single-wall carbon nanotubes were selling for EUR 400/g which is clearly some way from commercial viability as a bulk material. - Successfully expressing the basic properties of the raw material in the end application - the incredibly small scale of the material poses some interesting challenges for advanced material and coatings science. Such teething problems are not new. Carbon fibres took many years to be widely accepted in the materials world from both a cost and performance aspect and have only just made a regular appearance in popular sporting markets such as golf equipment. Despite this, some early applications of carbon nanotubes in products such as conductive fuel lines in the automotive industry have already made a successful appearance on the market. In addition, recent advances in the manufacture of carbon nanotubes on an industrial scale will allow vital commercial research and evaluation to be conducted and this will open the way to a wide range of fully industrialised applications. Production in commercial quantities is now possible The UK's first commercial manufacturing process for high-purity single-wall carbon nanotubes was announced by Thomas Swan & Co in April this year. The plant is the result of four years of collaboration between Thomas Swan and Cambridge University's Department of Material Science and Department of Chemistry. The unique collaboration brought the academic expertise of Cambridge University together with over 77 years of chemical manufacturing experience from Thomas Swan. The goal of the project was to supply high-purity single and multi-wall carbon nanotubes in commercial quantities and to back up this initial offering with the ability to scale up the process to keep up with demand as the industrial market expanded. The problem was that at the start of the programme no-one knew which production method would supply both single and multi-wall tubes and be fully scalable. It was this problem that was presented to Cambridge University. Investigating manufacturing methods Carbon nanotubes can be manufactured using a variety of methods: - Laser ablation uses a high-power laser to vaporise a graphite source loaded with a metal catalyst. The carbon in the graphite reforms as predominantly single-wall nanotubes on the metal catalyst particles. - Arc discharge involves an electrical discharge from a carbon-based electrode in a suitable atmosphere to produce both single and multi-wall tubes of high quality but in low quantities. - Chemical vapour deposition (CVD) is where a hydrocarbon feedstock is reacted with a suitable metal-based catalyst in a hot furnace to 'grow' nanotubes which are subsequently removed from the substrate and catalyst by a simple acid wash. The team at Cambridge developed a novel system based on CVD growth, as it enabled the production of both single and multi-wall nanotubes of reasonably high quality and consistency while offering the greatest potential for scale up. This concept was then taken to design stage (and patented by Cambridge University). Using a team of chemical engineers and an independent consultant, the plant was built at Swan's site in North East England towards the end of 2003 (Figure 3). Over the following months the plant was commissioned and then optimised until the material that was being produced was of consistently high quality. A consistent supply of high-purity material that is also scaleable is a major stepping stone for the developing carbon nanotubes market. It allows companies to conduct meaningful industrial research using commercial quantities of raw material. In addition, this research can now be done with the knowledge that, should an application prove itself, there is a scalable source of the same raw material available to supply any ongoing development. Combine this with lowering prices (Thomas Swan predicts that within a few years the price of single-wall carbon nanotubes with be measured in tens of GBP per kg) and the market should start to take off. Analysing sample purity is not easy but possible A major problem in achieving a saleable product that is on average 100,000 times smaller than a human hair is that it is rather hard to 'see' what you have made. The advent of nanomaterial manufacturing brings to light the necessity for advanced industrial and cost-effective analytical techniques. While Scanning Electron Microscopes (SEM) provide the ability to view the sample in remarkable detail, it only shows a minute fraction of the product (Figure 4). The analogy often used is like looking at a football pitch through a jam jar. The grass beneath you is green and healthy but you have no idea what it is like on the other side of the pitch. This will not be an easy problem to solve and while RAMAN techniques (which involve studying the spectrum profile of a reflected laser from your sample) offer some hope, it will be some time before a standard industry protocol for purity measurement is identified and accepted. Thomas Swan currently bases purity measurement on a combination of SEM, TEM, RAMAN and TGA techniques, combined with an experienced technical eye and have so far received very encouraging feedback from early customers. As the company moves to scale the process up, ongoing customer feedback and collaboration will become increasingly vital. The price will fall as the demand increases Carbon nanotubes are still in the very early stages of industrial development. While they are still expensive compared to a fully commoditised product, such as carbon black, the price will fall as the demand increases. Despite the problems associated with analysis and downstream processing (namely dispersion) the basic properties of the raw material offer a wide range of exciting applications that are beginning to be realised. As the research into these applications moves out of the lab and into industry it is important that the supply of carbon nanotubes is consistent, of high quality and performed under the appropriate regulatory and health and safety protocols. Thomas Swan has taken the first step towards this goal and material is now available to allow meaningful industrial evaluation and development. The next ten years of development should see the creation of a whole new area of material and coatings science and associated commercial applications. References [1] S. Iijima, Nature, 354, (1991) 56, p [2] J. Zhu et al., Nano Letters, 3, (2003) 8, p [3] Ajayan et al., Science, 296, (2002), p [4] Plastics Additives & Compounding Jan/Feb [5] J. Sandler et al., Polymer, 44, (2003), p

3 [6] J. Hone et al., Science, 289, (2000), p Results at a glance - The UK's first commercial manufacturing process for high-purity single-wall carbon nanotubes was announced by Thomas Swan & Co in April 2004 and is the result of four years of collaboration with Cambridge University's Department of Material Science and Department of Chemistry. - The process uses a novel system based on CVD growth, as it enabled the production of both single and multi-wall nanotubes of reasonably high quality and consistency while offering the greatest potential for scale up. - A consistent and scaleable supply of high-purity material is a major stepping stone for the developing carbon nanotubes market. - Purity measurements are based on a combination of SEM, TEM, RAMAN and TGA techniques, combined with an experienced technical eye. The author: -> Harry Swan is the carbon nanomaterials business manager for Thomas Swan & Co. Ltd. of the UK.

4 Figure 1: Graphic depicting a single-wall carbon nanotube.

5 Figure 2: Graphic depicting a multi-wall carbon nanotube.

6 11/2004 Ausgabe/Issue: 18 Seite/Page: Figure 3: The Swan nanotube plant in Consett, Co. Durham.

7 11/2004 Ausgabe/Issue: 18 Seite/Page: Figure 4:Scanning Electron Micrograph (SEM) of Elicarb SW high-purity single-wall carbon nanotubes.

Workshop II Nanomaterials Surfaces and Layers Commercialising Carbon Nanotubes

Workshop II Nanomaterials Surfaces and Layers Commercialising Carbon Nanotubes Workshop II Nanomaterials Surfaces and Layers Commercialising Carbon Nanotubes Harry Swan, Carbon Nanomaterials Business Manager, Thomas Swan & Co. Ltd. Introduction Thomas Swan & Co. Ltd. Carbon Nanotubes

More information

Liberating the Nanotube: From Lab to Large Scale Production

Liberating the Nanotube: From Lab to Large Scale Production Liberating the Nanotube: From Lab to Large Scale Production HVM MNT Expo 2006 - Cambridge 11 December Russell Clarke Carbon Nanomaterials Business Manager Thomas Swan & Co. Ltd. Introduction Thomas Swan

More information

Carbon Nanotubes: New Markets and Developing Applications July 5, 2007

Carbon Nanotubes: New Markets and Developing Applications July 5, 2007 Carbon Nanotubes: New Markets and Developing Applications July 5, 2007 Presented by Andrew Rich Nanocyl S.A. arich@nanocyl.com US Offices Tel : +1 781 261 9778 Fax : +1 781 261 9769 info@us-nanocyl.com

More information

Arkema presents its product range for Nanomaterials

Arkema presents its product range for Nanomaterials Arkema presents its product range for Nanomaterials Graphistrength carbon nanotubes Nanostrength acrylic block copolymers BlocBuilder controlled radical polymerization technology A global chemical player

More information

Commercial Graphene Applications: Current Research and Future Prospects

Commercial Graphene Applications: Current Research and Future Prospects Commercial Graphene Applications: Current Research and Future Prospects Overview History and Overview of Graphene Angstron Materials and Nanotek Instruments Applications of Graphene Thermal Management

More information

IMG: CORE-Materials Graphene tubes can be added into all three battery parts; anode, cathode and electrolyte. It improves different attributes of the device including speed of charging and discharging

More information

Enhancing Composite Materials with Functionalized Graphene & CNTs Haydale Technologies Thailand (HTT) November 9, 2016

Enhancing Composite Materials with Functionalized Graphene & CNTs Haydale Technologies Thailand (HTT) November 9, 2016 Enhancing Composite Materials with Functionalized Graphene & CNTs Haydale Technologies Thailand (HTT) November 9, 2016 Brief Overview of HTT HAYDALE TECHNOLOGIES (THAILAND), is a subsidiary of Haydale

More information

NanoLab, Inc 55 Chapel Street, Newton, MA USA

NanoLab, Inc 55 Chapel Street, Newton, MA USA TM 1221221 122211 NANOLAB NanoLab, Inc 55 Chapel Street, Newton, MA 02458 USA http://www.nano-lab.com info@nano-lab.com sales@nano-lab.com Phone (617) 581 6747 Fax (617) 581 6749 NanoLab, Inc. products

More information

Communicating Research to the General Public

Communicating Research to the General Public Communicating Research to the General Public At the March 5, 2010 UW-Madison Chemistry Department Colloquium, the director of the Wisconsin Initiative for Science Literacy (WISL) encouraged all Ph.D. chemistry

More information

GRAPHENE FLAGSHIP. Funded by the European Union

GRAPHENE FLAGSHIP. Funded by the European Union GRAPHENE FLAGSHIP Funded by the European Union www.graphene-flagship.eu twitter.com/grapheneca facebook.com/grapheneflagship youtube.com/user/grapheneflagship instagram.com/grapheneflagship linkedin.com/company/graphene-flagship

More information

Advanced graphene composites: 3D printing and beyond. Dr. Elena Polyakova, CEO TSX-V:GGG OTCQB: GPHBF TSX-V:GGG OTCQB: GPHBF

Advanced graphene composites: 3D printing and beyond. Dr. Elena Polyakova, CEO TSX-V:GGG OTCQB: GPHBF TSX-V:GGG OTCQB: GPHBF Advanced graphene composites: 3D printing and beyond Dr. Elena Polyakova, CEO Forward Looking Statements Information set forth in this presentation may contain forward-looking statements. Forward-looking

More information

A NEW GENERATION OF CONSTRUCTION MATERIALS: CARBON NANOTUBES INCORPORATED TO CONCRETE AND POLYMERIC MATRIX

A NEW GENERATION OF CONSTRUCTION MATERIALS: CARBON NANOTUBES INCORPORATED TO CONCRETE AND POLYMERIC MATRIX A NEW GENERATION OF CONSTRUCTION MATERIALS: CARBON NANOTUBES INCORPORATED TO CONCRETE AND POLYMERIC MATRIX Javier Grávalos, Juan Manuel Mieres and Santiago González R&D Department, NECSO Entrecanales Cubiertas

More information

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral 7. Carbon Nanotubes 1. Overview: Global status market price 2. Types MWNT / SWNT zig-zag / armchair / chiral 3. Properties electrical others 4. Synthesis arc discharge / laser ablation / CVD 5. Applications

More information

Technical Data Sheet

Technical Data Sheet URGOX TM (REDUCED GRAPHENE OXIDE) Technical Data Sheet PRODUCT AND COMPANY IDENTIFICATION Plot No 12A, KIADB Industrial Area, Survey No 85, Chokkahalli Village, Kasaba Hobli, Hoskote Taluk Bangalore (R)

More information

Graphene Global Outlook: Roadmap for applications and opportunities

Graphene Global Outlook: Roadmap for applications and opportunities Graphene Global Outlook: Roadmap for applications and opportunities Anthony Schiavo Analyst Prepared for: Graphene Malaysia About Lux Research 2 Agenda Graphene landscape 2016 Roadmap for graphene adoption

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES 1 2 ATMOSPHERIC PRESSURE PLASMA PROCESSES AT THE FRAUNHOFER IST Today, atmospheric pressure plasma

More information

CONTINUOUS FLOW CHEMISTRY (PROCESSING) FOR INTERMEDIATES AND APIs

CONTINUOUS FLOW CHEMISTRY (PROCESSING) FOR INTERMEDIATES AND APIs CONTINUOUS FLOW CHEMISTRY (PROCESSING) FOR INTERMEDIATES AND APIs Sripathy Venkatraman, Section Head at AMRI Abstract Many contract manufacturing organizations (CMOs) offer continuous flow chemistry, but

More information

For more information, please contact: or +1 (302)

For more information, please contact: or +1 (302) Introduction Graphene Raman Analyzer: Carbon Nanomaterials Characterization Dawn Yang and Kristen Frano B&W Tek Carbon nanomaterials constitute a variety of carbon allotropes including graphene, graphene

More information

A Complete Solutions Graphene Company. Corporate Presentation January 2017

A Complete Solutions Graphene Company. Corporate Presentation January 2017 A Complete Solutions Graphene Company Corporate Presentation January 2017 Disclaimer This presentation may contain forward-looking statements, being statements which are not historical facts, and discussion

More information

C- Mats and their Applications

C- Mats and their Applications C- Mats and their Applications Materials and Electrochemical Research (MER) Corporation Tucson, Arizona Dr. R. O. LOUTFY MER HISTORY g MER is a private Arizona Corporation started in 1985 by Drs. R.O.Loutfy

More information

Scuola di Ingegneria Aerospaziale

Scuola di Ingegneria Aerospaziale Scuola di Ingegneria Aerospaziale Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica Dottorato di Ricerca in Ingegneria Aerospaziale (XXIV ciclo) BALLISTIC CHARACTERIZATIO OF A OSTRUCTURED

More information

Non-Destructive Evaluation of Composite Thermal Damage with Agilent s New Handheld 4300 FTIR

Non-Destructive Evaluation of Composite Thermal Damage with Agilent s New Handheld 4300 FTIR Non-Destructive Evaluation of Composite Thermal Damage with Agilent s New Handheld 4300 FTIR Application note Materials Author Frank Higgins Agilent Technologies Danbury, CT, USA Introduction Carbon or

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

Haydale and Composite Pressure Vessel Innovations. Dr Mark Lidgett Engineering Manager

Haydale and Composite Pressure Vessel Innovations. Dr Mark Lidgett Engineering Manager Haydale and Composite Pressure Vessel Innovations Dr Mark Lidgett Engineering Manager 13 th March 2018 Contents Company Overview Haydale s History with Composite Pressure Vessels Haydale s Composite Pressure

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products June 17, 2015 October 31, 2014 The webinar will begin at 1pm Eastern Time Perform an audio check by going to Tools > Audio > Audio Setup Wizard Chat Box Chat Box Send

More information

One Park Drive, Suite 10, Westford, MA Tel.: ; Fax:

One Park Drive, Suite 10, Westford, MA Tel.: ; Fax: Fiber Optic Connector Cleaner S. O Riorden, D. Geldart Linden Photonics, Inc., USA Introduction Linden Photonics has developed a novel approach for cleaning a connector endface. We use a newly developed

More information

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING Session V: Graphene Matteo Bruna Graphene: Material in the Flatland Graphite Graphene Properties: Thinnest imaginable material Good(and tunable) electrical conductor Strongest ever measured Stiffest known

More information

Innovation Project Active Force Material. Alexander V. Frolov Russia, 2012

Innovation Project Active Force Material. Alexander V. Frolov Russia, 2012 Innovation Project Active Force Material Alexander V. Frolov Russia, 2012 1 Goal Using modern nanoscience surface engineering, it is planned to create new material providing propulsion active force due

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

A Reliable Supply Pla.orm for Graphene & non- carbon 2D Materials

A Reliable Supply Pla.orm for Graphene & non- carbon 2D Materials A Reliable Supply Pla.orm for Graphene & non- carbon 2D Materials Andy Goodwin Commercial Director Advanced Materials Cambridge Graphene Technology Days 2015 3 rd CIR Graphene Business Conference, 6 November

More information

Carbon nanotubes synthesis. Ing. Eva Košťáková KNT, FT, TUL

Carbon nanotubes synthesis. Ing. Eva Košťáková KNT, FT, TUL Carbon nanotubes synthesis Ing. Eva Košťáková KNT, FT, TUL Basic parameters: -Temperature (500, 1000 C ) -Pressure (normal, vacuum ) -Gas (ambient, inert atmosphere nitrogen, argon ) -Time (duration, time

More information

Nanoparticles for coatings. Why is reality so much less than the promise? Professor Steven Abbott R&T Director MacDermid Autotype Ltd

Nanoparticles for coatings. Why is reality so much less than the promise? Professor Steven Abbott R&T Director MacDermid Autotype Ltd Nanoparticles for coatings. Why is reality so much less than the promise? Professor Steven Abbott R&T Director MacDermid Autotype Ltd Background to the problem MacDermid Autotype make high quality coated

More information

POLYMER COMPOSITE MATERIALS AND APPLICATIONS FOR CHEMICAL PROTECTION EQUIPMENTS. Răzvan PETRE, Nicoleta PETREA, Gabriel EPURE, Teodora ZECHERU

POLYMER COMPOSITE MATERIALS AND APPLICATIONS FOR CHEMICAL PROTECTION EQUIPMENTS. Răzvan PETRE, Nicoleta PETREA, Gabriel EPURE, Teodora ZECHERU International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXI No 3 2015 POLYMER COMPOSITE MATERIALS AND APPLICATIONS FOR CHEMICAL PROTECTION EQUIPMENTS Răzvan PETRE, Nicoleta PETREA, Gabriel EPURE, Teodora

More information

Carbon Nanotubes. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree of Mechanical.

Carbon Nanotubes. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree of Mechanical. A Seminar report On Carbon Nanotubes Submitted in partial fulfillment of the requirement for the award of degree of Mechanical SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface

More information

Methods of Carbon Nanotube Production

Methods of Carbon Nanotube Production Methods of Carbon Nanotube Production Carbon Nanotubes (CNTs) have shown the potential to change the engineering world with their unprecedented strength, stiffness and semiconductive capabilities. However,

More information

High Performance Plastics Company (HPP)

High Performance Plastics Company (HPP) May 2009 Update (HPP) The Prominence of the Differentiating technology that provides high value-added Global operation that meets market needs Information gathering ability and product development technology

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

SILICA CATALYSTS High Performance Polyolefin Catalysts & Supports

SILICA CATALYSTS High Performance Polyolefin Catalysts & Supports SILICA CATALYSTS High Performance Polyolefin Catalysts & Supports High Performance Polyolefin Catalysts & Supports World class catalysts & supports designed to give exceptional performance within the polyolefin

More information

Carbon nanotubes in a nutshell

Carbon nanotubes in a nutshell Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

What is a short circuit?

What is a short circuit? What is a short circuit? A short circuit is an electrical circuit that allows a current to travel along an unintended path, often where essentially no (or a very low) electrical impedance is encountered.

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

A GRAPHENE TECHNOLOGY COMPANY

A GRAPHENE TECHNOLOGY COMPANY I N V E S T O R S A GRAPHENE TECHNOLOGY COMPANY Performance Through Carbon Chemistry Q1 2018 PAGE 2 D I S C L A I M E R Forward-Looking Statements. This presentation contains express or implied forward-looking

More information

Creating New Barriers with Graphene

Creating New Barriers with Graphene Creating New Barriers with Graphene Authors: Richard Akam, Lynn Chikosha & Tim von Werne Introduction Graphene was first isolated in 2004 by Andre Geim and Konstantin Novoselov at Manchester University.

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

MICROSTRUCTURE-BASED PROCESS ENGINEERING AND CATALYSIS

MICROSTRUCTURE-BASED PROCESS ENGINEERING AND CATALYSIS MICROSTRUCTURE-BASED PROCESS ENGINEERING AND CATALYSIS 1 2 APPLICATION PORTFOLIO Fine chemistry We design chemical processes from lab to pilot scale in a safe, efficient and flexible way: using micro-

More information

Shedding New Light on Materials Science with Raman Imaging

Shedding New Light on Materials Science with Raman Imaging Shedding New Light on Materials Science with Raman Imaging Robert Heintz, Ph.D. Senior Applications Specialist 1 The world leader in serving science Raman Imaging Provides More Information Microscope problems

More information

Introduction to Graphene and XG Sciences

Introduction to Graphene and XG Sciences Introduction to Graphene and XG Sciences 1 Forward-looking Statements This presentation contains statements which constitute forward-looking statements within the meaning of Section 27A of the Securities

More information

Resonance Reduction In PCBs Utilising Embedded Capacitance

Resonance Reduction In PCBs Utilising Embedded Capacitance Resonance Reduction In PCBs Utilising Embedded Capacitance The number of applications using embedded capacitor technology on printed wiring boards (PWBs) is on the rise. Two such applications are high-speed

More information

CARBON NANOTUBE-POLYMER COMPOSITES: AN OVERVIEW Brian Grady University of Oklahoma

CARBON NANOTUBE-POLYMER COMPOSITES: AN OVERVIEW Brian Grady University of Oklahoma CARBON NANOTUBE-POLYMER COMPOSITES: AN OVERVIEW Brian Grady University of Oklahoma Abstract Carbon nanotubes are in many ways similar to polymers. Both molecules have contour lengths typically on the order

More information

The Young s Modulus of Single-Walled Carbon Nanotubes

The Young s Modulus of Single-Walled Carbon Nanotubes The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating

More information

Industrialization of boron nitride nanotubes: Synthesis, chemistry, assemblies and composites

Industrialization of boron nitride nanotubes: Synthesis, chemistry, assemblies and composites Nano-Israel 2016 February 22-23, 2016, Tel Aviv Industrialization of boron nitride nanotubes: Synthesis, chemistry, assemblies and composites Dr. Benoit Simard Principal Research Officer and Group Leader,

More information

Next Generation of Nano-Enhanced Composites and 3D Printable Materials. Dr. Elena Polyakova, CEO OTCQB: GPHBF TSX-V:GGG OTCQB: GPHBF

Next Generation of Nano-Enhanced Composites and 3D Printable Materials. Dr. Elena Polyakova, CEO OTCQB: GPHBF TSX-V:GGG OTCQB: GPHBF Next Generation of Nano-Enhanced Composites and 3D Printable Materials Dr. Elena Polyakova, CEO Forward Looking Statements Information set forth in this presentation may contain forward-looking statements.

More information

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014 Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date:13-1818 th July 2014 An electrochemical method for the synthesis of single and few layers graphene sheets for high temperature

More information

Abstract Process Economics Program Report 51C POLYMER NANOCOMPOSITES (June 2002)

Abstract Process Economics Program Report 51C POLYMER NANOCOMPOSITES (June 2002) Abstract Process Economics Program Report 51C POLYMER NANOCOMPOSITES (June 2002) With the rush of interest in all things related to nanotechnology, polymer nanocomposites represent one of the emerging

More information

Novel Dispersion and Self-Assembly

Novel Dispersion and Self-Assembly Novel Dispersion and Self-Assembly of Carbon Nanotubes Mohammad F. Islam 100g Department of Chemical Engineering and Department of Materials Science & Engineering Funding Agencies http://islamgroup.cheme.cmu.edu

More information

Welsh Centre for Printing and Coating. College of Engineering

Welsh Centre for Printing and Coating. College of Engineering Welsh Centre for Printing and Coating College of Engineering Welsh Centre for Printing and Coating Potential applications for plasma functionalised GNP s for active packaging Tim Claypole a, Chris Spacie

More information

Graphene-Rubber Composites

Graphene-Rubber Composites Rev:2016-11-12 Ver.1.0.0 Graphene-Rubber Composites Product Features Rubber material is one of the most important and widely deployed materials. It is utilized in high- tech products, military defense

More information

An overview of the emerging graphene industry in the UK

An overview of the emerging graphene industry in the UK 12 Graphene has attracted considerable funding from government for universities and academic-industry collaborations. The start up sector has been particularly active. Having had no home-grown opportunity

More information

Nanomaterials in Coatings

Nanomaterials in Coatings Nanomaterials in Coatings Cal Poly State University Department of Chemistry and Biochemistry San Luis Obispo, CA www.polymerscoatings.calpoly.edu What is Nanotechnology It is a matter of scale 1 nm = 10-9

More information

Polymerveredelung durch Nanotechnologie:

Polymerveredelung durch Nanotechnologie: Polymerveredelung durch Nanotechnologie: Hoch transparente Werkstoffe für die Laserbeschriftung Project House Functional Polymers @ Interfaces and Surfaces DECHEMA, Frankfurt, March 9 th 2005 Dr. Ralf

More information

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Waleed Nusrat, 100425398 PHY 3090U Material Science Thursday April 9 th 2015 Researchers optimize the

More information

Release Liners: The Most Important Trash You ll Ever Buy. by Charles Sheeran

Release Liners: The Most Important Trash You ll Ever Buy. by Charles Sheeran Release Liners: The Most Important Trash You ll Ever Buy. by Charles Sheeran MPI Release 37 East Street, Winchester, MA 01890 Phone: 888-MPI-8088 Fax: 781-729-9093 www.mpirelease.com Abstract If you ve

More information

Learning Model Answers Year 11 Double Chemistry

Learning Model Answers Year 11 Double Chemistry 1 Describe ionic bonding Describe covalent bonding Occurs between metals and non-metals. Electrons are transferred. There is an electrostatic force of attraction between oppositely charged ions. Occurs

More information

For personal use only

For personal use only ARCHER EXPLORATION LIMITED Graphite Presentation June 2015 Gerard Anderson Greg English Managing Director Chairman Contents Introduction Objective boutique diversified graphite producer Pipeline of activity

More information

custom reticle solutions

custom reticle solutions custom reticle solutions 01 special micro structures Pyser Optics has over 60 years experience in producing high quality micro structure products. These products are supplied worldwide to industries including

More information

Thermal Interface Materials (TIMs) for IC Cooling. Percy Chinoy

Thermal Interface Materials (TIMs) for IC Cooling. Percy Chinoy Thermal Interface Materials (TIMs) for IC Cooling Percy Chinoy March 19, 2008 Outline Thermal Impedance Interfacial Contact Resistance Polymer TIM Product Platforms TIM Design TIM Trends Summary 2 PARKER

More information

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments:

Name: New Document 1. Class: Date: 83 minutes. Time: 82 marks. Marks: Comments: New Document Name: Class: Date: Time: 83 minutes Marks: 82 marks Comments: Q. Solid, liquid and gas are three different states of matter. (a) Describe the difference between the solid and gas states, in

More information

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

RAJASTHAN TECHNICAL UNIVERSITY, KOTA RAJASTHAN TECHNICAL UNIVERSITY, KOTA (Electronics & Communication) Submitted By: LAKSHIKA SOMANI E&C II yr, IV sem. Session: 2007-08 Department of Electronics & Communication Geetanjali Institute of Technical

More information

Ultrafast Nano Imprint Lithography

Ultrafast Nano Imprint Lithography Ultrafast Nano Imprint Lithography Imprint in less than 1 sec Logos Anti-counterfeiting nanostructures Miniaturized QRs Customized designs 2 Pulsed-NIL technology enables printing times in less than 100

More information

Graphene Commercialisation Summary of Industry Consultation Workshops

Graphene Commercialisation Summary of Industry Consultation Workshops Graphene Commercialisation Summary of Industry Consultation Workshops Dr Martin Kemp Eur Ing, C Eng, FIMMM, Chartered Marketer Theme Manager, NanoKTN Chairman, IOM3 Nanomaterials Committee HVM Graphene

More information

Multi-Wall Carbon Nanotubes/Styrene Butadiene Rubber (SBR) Nanocomposite

Multi-Wall Carbon Nanotubes/Styrene Butadiene Rubber (SBR) Nanocomposite Fullerenes, Nanotubes, and Carbon Nanostructures, 15: 207 214, 2007 Copyright # Taylor & Francis Group, LLC ISSN 1536-383X print/1536-4046 online DOI: 10.1080/15363830701236449 Multi-Wall Carbon Nanotubes/Styrene

More information

Please allow us to demonstrate our capabilities and test us testing your samples!

Please allow us to demonstrate our capabilities and test us testing your samples! We determine properties of surfaces, thin films, and layer structures Hardness Young s modulus Scratch, friction, and wear tests Topography Mapping of thermal, magnetic, and electronic properties Please

More information

Nano Materials and Devices

Nano Materials and Devices Nano Materials and Devices Professor Michael Austin Platform Technologies Research Institute Nano Materials and Devices Program Aim: to develop an integrated capability in nanotechnology Design and modelling

More information

Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer

Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer Small-scale demo, large-scale promise of novel bromine battery 27 June 2014, by Nancy W. Stauffer Figure 1 The availability of low-cost, high-capacity energy storage technology could profoundly change

More information

3.30 TITANIUM DIOXIDE

3.30 TITANIUM DIOXIDE 181 3.30 TITANIUM DIOXIDE Technology Prospects Addressable market size 5 Competitive landscape 3 IP landscape 4 Commercial prospects 4 Technology drawbacks 3 Total score (out of max. 25): 19 3.30.1 Properties

More information

M. Audronis 1 and F. Zimone 2 1. Nova Fabrica Ltd. 1. Angstrom Sciences Inc.

M. Audronis 1 and F. Zimone 2 1. Nova Fabrica Ltd. 1. Angstrom Sciences Inc. M. Audronis 1 and F. Zimone 2 1 Nova Fabrica Ltd. 1 Angstrom Sciences Inc. Email: info@novafabrica.biz 1 Founded in 2013 the company is based in Lithuania (northern EU). NF are involved in two business

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

Novel Tooling for Scaling of High Quality CVD Graphene Production. Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright

Novel Tooling for Scaling of High Quality CVD Graphene Production. Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright Novel Tooling for Scaling of High Quality CVD Graphene Production Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright 1 Commercialization of Nano Materials Commercialization Volume production

More information

New Materials and New Applications

New Materials and New Applications New Materials and New Applications Craig Lawrance Technical Manager, Textile Centre of Excellence craiglawrance@textile training.com 31st January 2018 6th Thematic Presentation, Huddersfield, UK Textile

More information

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells 2011 GCEP Report Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells Investigators Zhenan Bao, Associate Professor, Chemical Engineering

More information

MR Range. 0.82µF µ2F µ3F µ7F µF 85 50

MR Range. 0.82µF µ2F µ3F µ7F µF 85 50 MR Range. The MR range of capacitors is, we believe, the ultimate audio grade capacitor currently available on the market. It is the result of a two year research programme into the influence an audio

More information

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Supporting Information: Carbon nanotube coated snowman-like particles and their electro-responsive characteristics Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Experimental Section 1.1 Materials The MWNT

More information

SWCNTs Single Wall Carbon Nanotubes

SWCNTs Single Wall Carbon Nanotubes Carbon Nanotubes - CNTs 1 SWCNTs Single Wall Carbon Nanotubes 2 Carbon Nanotubes - Growth 3 Carbon Nanotubes Building Principles 4 Carbon Nanotubes Building Principle 5 Carbon Nanotubes Building Principle

More information

DEPARTMENT OF POLYMER AND PROCESS ENGINEERING (http://www.uet.edu.pk/polymer.htm)

DEPARTMENT OF POLYMER AND PROCESS ENGINEERING (http://www.uet.edu.pk/polymer.htm) DEPARTMENT OF POLYMER AND PROCESS ENGINEERING (http://www.uet.edu.pk/polymer.htm) Programs Offered The Department offers the following degree programmes a) M.Sc. Polymer and Process Engineering b) Ph.D.

More information

Nanoscale Issues in Materials & Manufacturing

Nanoscale Issues in Materials & Manufacturing Nanoscale Issues in Materials & Manufacturing ENGR 213 Principles of Materials Engineering Module 2: Introduction to Nanoscale Issues Top-down and Bottom-up Approaches for Fabrication Winfried Teizer,

More information

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces by Angelo Yializis Ph.D., Xin Dai Ph.D. Sigma Technologies International Tucson, AZ USA SIGMA

More information

Functionalized Carbon Nanotubes a key to nanotechnology?

Functionalized Carbon Nanotubes a key to nanotechnology? 1 27th Max Born Symposium Multiscale Modeling of Real Materials Wroclaw, Sep 19, 2010 Functionalized Carbon Nanotubes a key to nanotechnology? Karolina Milowska, Magda Birowska & Jacek A. Majewski Faculty

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Thermoelectric Energy Harvesting with Carbon Nanotube Systems

Thermoelectric Energy Harvesting with Carbon Nanotube Systems Thermoelectric Energy Harvesting with Carbon Nanotube Systems Presented by Thomas C. Van Vechten, Ph.D. At the New England Nanomanufacturing Summit at UMass Lowell, June 2010 1 Outline Carbon Nanotubes

More information

Arkema will exhibit at the JEC Composites 2007 Show, in Paris (France), from April 3rd to 5th 2007.

Arkema will exhibit at the JEC Composites 2007 Show, in Paris (France), from April 3rd to 5th 2007. Arkema at JEC Composites 2007 Show Hall 1 Stand M22 Paris, April 3 rd to 5 th, 2007 Arkema will exhibit at the JEC Composites 2007 Show, in Paris (France), from April 3rd to 5th 2007. Arkema today is the

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Surface Modification of Carbon Fibres for Interface Improvement in Textile Composites

Surface Modification of Carbon Fibres for Interface Improvement in Textile Composites Appl Compos Mater (2018) 25:853 860 https://doi.org/10.1007/s10443-018-9727-8 Surface Modification of Carbon Fibres for Interface Improvement in Textile Composites Jiawen Qiu 1 & Jiashen Li 1 & Zishun

More information

High-throughput Agrochemical Formulation: Easing the Route to Commercial Manufacture

High-throughput Agrochemical Formulation: Easing the Route to Commercial Manufacture High-throughput Agrochemical Formulation: Easing the Route to Commercial Manufacture Ian Tovey, Syngenta HTFS III 26-APRIL-2017 Agribusiness an essential industry By 2050, global population will rise by

More information

Inorganic Nanoparticles & Inks

Inorganic Nanoparticles & Inks Inorganic Nanoparticles & Inks About Us nanograde AG possesses the most powerful nanomaterials platform and offers the customized development and production of nanoparticles and ink formulations. nanograde

More information

Institut für Energie und Umwelttechnik e.v.

Institut für Energie und Umwelttechnik e.v. Institut für Energie und Umwelttechnik e.v. Continuous synthesis of highly-specific nanopowder on the pilot-plant scale Tim Hülser Successful R&I 2015, Düsseldorf Duisburg, North-Rhine-Westphalia, Germany

More information

Microbeads AS is a Norwegian company based upon the manufacturing of uniform shaped and monosized polymer particles.

Microbeads AS is a Norwegian company based upon the manufacturing of uniform shaped and monosized polymer particles. Microbeads AS is a Norwegian company based upon the manufacturing of uniform shaped and monosized polymer particles. PERFECT PARTICLES WHO NEEDS THEM? Adding Microbeads particles in different industrial

More information

TABLE OF CONTENTS 1 RESEARCH METHODOLOGY Investment analysis Market impediment analysis EXECUTIVE SUMMARY...

TABLE OF CONTENTS 1 RESEARCH METHODOLOGY Investment analysis Market impediment analysis EXECUTIVE SUMMARY... TABLE OF CONTENTS 1 RESEARCH METHODOLOGY... 22 1.1 Investment analysis...... 22 1.2 Market impediment analysis... 24 2 EXECUTIVE SUMMARY... 27 2.1 Products...... 27 2.2 Production in 2017...... 29 2.3

More information

EVERLIGHT ELECTRONICS CO., LTD.

EVERLIGHT ELECTRONICS CO., LTD. Lead (Pb) Free Product - RoHS Compliant Feature Piranha package. Colorless clear resin. Low thermal resistance Packaged in tubes for automatic insertion equipment. Total flux: 7150 to 14250 mlm at 70mA.

More information