Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight Into Flavodiiron NO Reductases Hai T. Dong, a Corey J. White, a Bo Zhang, b Carsten Krebs, b Nicolai Lehnert a, * a Department of Chemistry, The University of Michigan, Ann Arbor, Michigan , United States b Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States S1

2 Table of Contents UV-Vis spectra: [Fe 2 ((Py 2 PhO 2 )MP)(OPr) 2 ](OTf) (1) and its reduced complex (2) (Figure S1)... S4 Titration of 1 with CoCp 2... S5-6 Temperature dependent absorption spectra of 2... S7 Product formed at -80 o C... S8 Absorbance versus time for the reaction of 2 with NO gas at -80 o C... S9 Product formed when warming up the solution from -80 o C to RT... S10 Product formed upon reaction of 2 with NO at RT... S11 Product formed when warming up the solution from -80 o C to RT vs. product formed directly at RT... S12 Repeat of the above characterizations with 1-OAc and 2-OAc... S13-15 Catalytic reactivity of 2-OAc observed in very quick succession cycles... S16 Comparison of 1-OAc before and after regeneration with acetic acid... S17 Cyclic voltammetry: [Fe 2 (BPMP)(OPr) 2 ]OTf vs. [CoCp 2 ][Fe2((Py2PhO2)MP)(OPr)2] (2)... S18 EPR spectra: Complex 1 vs. [Fe 2 (BPMP)(OPr)(O)] +... S19 Complex 2 vs. [Fe 2 (BPMP)(OPr)(O)] +... S20 Product at -80 o C at different temperatures... S21 Product at -80 o C vs. [Fe(TMG 3 tren)(no)](otf) 2... S22 Product warmed up from -80 o C vs. [Fe 2 (BPMP)(OPr)(O)] +... S23 Product formed directly at RT vs. [Fe 2 (BPMP)(OPr)(O)] +... S24 Solid state and gas phase IR spectra: Solid state IR of 1... S25 Solid state IR of 2... S26 Overlay of the IR spectra of 1 and of the reaction product of 2 with NO... S27 N 2 O yield at RT... S28 N 2 O formation from a RT reaction vs. a reaction at -80 o C, warmed up to RT... S29 N 2 O after 2 cycle of NO reduction using 2 eq. of acetic acid to regenerate 1-OAc... S30 Solution IR spectra: N 2 O and N 2 O formation in solution... S31 Complex 1 vs S32-80 o C product vs S33 15 N 18 O experiment to form product at -80 o C... S34 Changes in intensity of bands in the 1700 cm -1 and the N 2 O region... S H-NMR spectra: Complex 1... S37 S2

3 Complex 1-OAc after one turnover with NO and regeneration with acetic acid... S38 Complex 1-OAc from the first versus the second cycle... S39 Complex 2 generated in-situ by reacting 1 with CoCp 2... S40 2,6-Bis[((2-hydroxybenzyl)(2-pyridylmethyl)amino)methyl]-4-methylphenol (H 3 [(Py 2 PhO 2 )MP)... S41 TOF HPLC-MS Complex 1 with Fe... S42 Complex 1 with 57 Fe... S42 Mössbauer spectra: Complex 1 and 2... S43 Product at -80 o C... S44 Crystal Structure: Crystal structure of 2-OAc and essential structural parameters... S45-66 DFT Optimized structure of the diferrous dinitrosyl intermediate of 2... S67-69 References S3

4 Figure S1. Absorption spectra of complexes 1 and 2 in dichloromethane at 0.1 mm concentration at room temperature. S4

5 Figure S2. UV-Vis titration of complex 1 with CoCp 2 (up to 1 equivalent). Spectra were collected at 0.1 mm concentration of 1 in dichloromethane at room temperature. S5

6 Figure S3. Changes in the absorption spectrum of 1 after reaction with the second equivalent of CoCp 2. Spectra were obtained at a 0.1 mm concentration of 1 in dichloromethane at room temperature. S6

7 Comparison of compound 2 at different temperature and solid state 0.40 Absorbance Compound 2 at 20 o C Compound 2 at -80 o C Compound 2 crystalline material at RT in KBr Wavelength (nm) Figure S4. Top: spectral changes in the absorption spectrum of 2 upon cooling from room temperature to -80 o C. Note that these changes are fully reversible. In the process, the color of the solution changes from deep orange to light yellow. The spectra were collected at 0.1 mm concentration of 2 in dichloromethane. Bottom: Comparison of the UV-Vis spectrum obtained from crystalline material in KBr (black line) with the absorption spectra of complex 2 in solution at RT (red line) and -80 o C (blue line). S7

8 Absorbance NO reaction at -80 o C in CH 2 Cl 2 for 30 minutes 430 Complex 2 at -80 o C 15 minutes after adding NO gas 30 minutes after adding NO gas Wavelength (nm) Figure S5. UV-Vis spectral changes upon reaction of complex 2 with NO gas (syringed into the headspace of the reaction flask) at -80 o C. After ~30 minutes, no more changes in the absorption spectrum were observed, and the experiment was stopped. Spectra were collected at 0.1 mm concentration of 2 in dichloromethane. S8

9 Figure S6. A rate constant of s -1 is calculated from the absorbance increasing over the course of 30 minutes at 423 nm at -80 o C in the reaction of 2 with NO in dichloromethane (see Figure S5), using a single-exponential fit. The data show that the reaction has a significant rate, even at -80 o C. S9

10 0.8 Product at -80 o C warmed up to RT Absorbance Product at -80 o C 515 Product at RT Wavelength (nm) Figure S7. Changes in the absorption spectrum of the reaction product of 2 and NO gas (reaction run at -80 o C; see Figure S5) upon warming up of the solution to room temperature over the course of 45 minutes. Spectra were collected at a concentration of 0.1 mm 2 in dichloromethane. S10

11 Complex 2 Product after reaction with NO at RT Absorbance Wavelength (nm) Figure S8. Changes in the absorption spectrum of complex 2 upon reaction with NO gas at room temperature. These spectral changes occur in less than a minute. Spectra were collected at 0.1 mm concentration of 2 in dichloromethane. S11

12 Product comparison between RT and LT warmed up to RT Product warmed up from -80 o C to RT Product directly generated at RT Absorbance Wavelength (nm) Figure S9. Comparison of the absorption spectra of the product of the reaction of 2 with NO gas. Black: reaction performed at -80 o C, and then warmed up to room temperature. Red: reaction conducted at room temperature. Reactions were run at 0.1 mm 2 in dichloromethane. S12

13 Reaction of 2-OAc with NO gas at RT Absorbance Complex 2-OAc Product at RT Wavelength (nm) Figure S10. Changes in the absorption spectrum of 2-OAc upon reaction with NO gas at room temperature. These spectral changes occur in less than a minute. Spectra were collected at a concentration of 0.1 mm 2-OAc in dichloromethane. S13

14 Absorbance Reaction of 2-OAc with NO at -80 o C OAc at -80 o C Product after reaction with NO at -80 o C Wavelength (nm) Figure S11. Changes in the absorption spectrum of 2-OAc upon reaction with NO gas at -80 o C. Spectral changes stop after about 30 minutes of reaction time. Spectra were collected at a concentration of 0.1 mm 2-OAc in dichloromethane. S14

15 Product of 2-OAc at -80 o C warmed up to RT 0.8 Absorbance Product at -80 o C Product warmed up to RT Wavelength (nm) Figure S12. Changes in the absorption spectrum of the reaction product of 2-OAc and NO gas (reaction run at -80 o C; see Figure S11) upon warming up of the solution to room temperature over the course of 45 minutes. Spectra were collected at a concentration of 0.1 mm 2-OAc in dichloromethane. S15

16 Catalyst (2-OAc) regeneration in the presence of excess acetic acid and NO gas Product + acetic acid (regenerated 1-OAc) 2eq. CoCp 2 less than 30 seconds later 0.5 Absorbance Wavelength (nm) Figure S13. Changes in the absorption spectrum in the reaction between 2-OAc and excess NO gas in the presence of excess acetic acid. After NO addition, the product immediately starts to turn back into the starting material 1-OAc, evident from the shift in max. Spectra were collected at a concentration of 0.1 mm 2-OAc in dichloromethane. The shift in the yellow line, originating from the diferrous complex, is due to the immediate reaction between 2-OAc and NO as soon as CoCp 2 is added to the newly formed 1-OAc for the second reaction cycle. Similar experiments were repeated with 1 and 2, producing the same result. S16

17 Comparison of the absorption spectra after 3 cycles of NO reduction 0.9 Absorbance st cycle 3rd cycle Wavelength (nm) Figure S14. Changes in the absorption spectrum of the catalyst after 3 cycles of NO reduction. The max is still the same, but the intensity of the signal changes. This change does not seem to affect the yield of NO reduction, since quantitative amounts of N 2 O are detected from these cycles. S17

18 E 2 = mv 1/ E 1 = -282 mv 1/2 50 Current A mV/s 250mV/s 150mV/s Potential (mv) vs. Fc + /Fc Figure S15. Top: Cyclic voltammogram of a 5 mm solution of the diferrous complex [Fe 2 (BPMP)(OPr) 2 ]OTf in CH 2 Cl 2 at room temperature, obtained from previous work. 1 Tetrabutylammonium hexafluorophosphate was used as the electrolyte. Potentials are referenced to a Fc/Fc + standard. Bottom: Cyclic voltammogram of a 5 mm solution of the diferrous complex [CoCp 2 ][Fe 2 ((Py 2 PhO 2 )MP)(OPr) 2 ] in CH 2 Cl 2 at room temperature obtained at various scan rates. Tetrabutylammonium trifloromethansulfonate was used as the electrolyte. Potentials are referenced to a Fc/Fc + standard. S18

19 Figure S16. X-band EPR spectrum of a 2 mm solution of complex 1 in dichloromethane (blue) in comparison to that of the mixed-valent complex [Fe III Fe II (BPMP)(OPr)(O)] + (black) at the same concentration. 1 All data were collected at 2K. The data show that complex 1 is EPR silent. S19

20 Figure S17. X-band EPR spectrum of a 2 mm solution of complex 2 in dichloromethane (orange) in comparison to that of the mixed-valent complex [Fe III Fe II (BPMP)(OPr)(O)] + (black) at the same concentration. 1 All data were collected at 2K. The data show that complex 2 is EPR silent. S20

21 Figure S18. Temperature dependent X-band EPR spectra of the product formed from the reaction of 2 mm 2 with NO in dichloromethane at -80 o C. The data reveal two signals at g = 3.94 and g = 2.01 with a different temperature-dependence, indicating that they are associated with two different species. These signals, however, do only correspond to about ~5% of total iron (see Figure S19), so they originate from minor impurities. S21

22 Intensity Comparison between the -80 o C product and [Fe(TMG 3 tren)(no)](otf) 2 TMG3Tren NO complex Product after reaction with NO at -80 o C Magnetic Field (Gauss) Figure S19. X-band EPR spectrum of the product of the reaction of 2 mm 2 with NO at -80 o C in dichlorormethane (red), in comparison to that of a standard of the mononuclear {FeNO} 7 complex [Fe(TMG 3 tren)(no)](otf) 2 (black) 2 at the same concentration. All data were collected at 2K. See also Figure S18. S22

23 Figure S20. X-band EPR spectrum of the reaction product of 4 mm 2 with NO gas at -80 o C, which was subsequently warmed up to room temperature before the EPR samples were prepared (red). This is compared to the EPR spectrum of a 2 mm solution of the mixed-valent complex [Fe III Fe II (BPMP)(OPr)(O)] + (black). 1 All data were collected at 2K. The data show that the EPR signals observed at g = 3.94, 2.01 (red) at -80 o C (see Figure S18) disappear when the reaction mixture is allowed to warm up to room temperature. S23

24 Figure S21. X-band EPR spectrum of the product from the reaction of 4 mm 2 with excess NO gas at room temperature in dichloromethane in comparison to that of a 2 mm solution of the mixed-valent complex [Fe III Fe II (BPMP)(OPr)(O)] + (black). 1 All data were collected at 2 K. The data show that the room temperature product is EPR silent. S24

25 Figure S22. FT-IR spectrum of complex 1, collected from a pure solid at room temperature. S25

26 % Transmittance Reduction Product Wavenumber (cm -1 ) Figure S23. FT-IR spectrum of the reaction product of 2 with excess NO gas at room temperature, precipitated out of dichloromethane solution with diethylether, and measured in a KBr pellet. S26

27 % Transmittance Wavenumber (cm -1 ) Complex 1 Reduction Product Figure S24. Overlay of the IR spectra of the reaction product of 2 with NO (red) and complex 1 (black) in the cm -1 region, showing the possible formation of a bridging oxo complex. S27

28 10 N 2 O quantitation by gas headspace IR 8 mol of N 2 O y= x Chemically synthesized 2 + NO 2 generated by chemical reduction of 1 + NO Area under N 2 O curve Figure S25. Calibration curve for the quantitative detection of N 2 O by IR gas headspace analysis. Data for the reaction of 2 with NO gas at room temperature are indicated. See ref. 4 for the procedure to generate the calibration curve. The black line is the calibration curve generated from Piloty s acid, the black dots are the observed amounts of N 2 O formed in our experiments using chemically synthesized 2, and the blue dots are from complex 2 generated by chemical reduction of complex 1 by CoCp 2, quantified using the calibration curve. S28

29 Figure S26. Comparison of the IR gas headspace analysis of N 2 O formation between the reaction of 4 mm 2 with NO gas (a) at room temperature (red), and (b) at -80 o C, followed by warming up of the reaction mixture to room temperature (black). The data show that both reactions produce the same yield of N 2 O (= quantitative). S29

30 Expected Area: 4.11 Yield: 111% 0.10 Absorbance Area= FWHM= Wavenumber (cm -1 ) 0.10 Expected Area: 4.11 Yield: 99% Absorbance Area= FWHM= Wavenumber (cm -1 ) Figure S27. Comparison of the IR gas headspace analysis for N 2 O formation for the reaction of 8 mol of 2- OAc with NO gas in dichloromethane at room temperature. Top: first cycle, bottom: second cycle. Since CoCp 2 also reacts with NO gas directly to produce N 2 O, it is difficult to quantify the amount of N 2 O that is solely generated by 2-OAc when an excess amount of CoCp 2 is present in the reaction mixture. Therefore, we decided to run the reaction in cycles and only add quantitative amounts of CoCp 2 as needed to reduce 1-OAc back to 2- OAc. At the end of each cycle (after N 2 O detection), we purged out the solvent (CH 2 Cl 2 ), using N 2 gas from the Schlenk line, until only solid products remained. We then added the same amount of fresh CH 2 Cl 2 back in and subsequently added 2 equivalents of acetic acid. The red solution immediately turned blue, indicating the reformation of 1-OAc. Then, 2 equivalents of CoCp 2 were added to produce 2-OAc, which is then ready for the next cycle of NO reduction. Quantitative analysis of the product N 2 O was conducted by IR gas headspace analysis. S30

31 Figure S28. Detection of N 2 O and 15 N 2 18 O produced by the reaction of 2 with NO and 15 N 18 O gas, respectively, at -80 o C in dichloromethane, as observed by solution IR spectroscopy. S31

32 0.6 Solution IR of complex 1 and 2 in CH 2 Cl Absorbance Complex 2 Complex Wavenumber (cm -1 ) Figure S29. Solution IR spectra of complex 1 (blue) and complex 2 (black); the latter was generated by reducing 5 mm 1 with CoCp 2 in dichloromethane. S32

33 0.30 Solution IR of 2 and of the -80 o C product in CH 2 Cl Absorbance Product formed at -80 o C Complex Wavenumber (cm -1 ) Figure S30. Solution IR spectra of complex 2 (yellow) and of the reaction product of 5 mm 2 with NO gas in dichloromethane at -80 o C (black). The two signals at 2120 and 2150 cm -1 arise from possible impurities in the solvent. These signals are not consistent and have different intensities in different experiments. In addition, 15 N 18 O labelling experiments show that these signals are not isotope sensitive, and therefore, they do not arise from an NO-derived species. S33

34 Reaction with labeled NO at -80 o C Absorbance Product from reaction with 15 N 18 O at -80 o C Product from reaction with NO at -80 o C Wavenumber (cm -1 ) Figure S N 18 O labelling study using solution IR spectroscopy. The data show the product of the reaction of 5 mm 2 with NO/ 15 N 18 O gas (black/red spectra) in dichloromethane at -80 o C. The spectra demonstrate that the two signals at 1707 and 1726 cm -1 originate from N-O stretches in nitrosyl complexes that are formed in the low-temperature reaction (see text and Figure S18). S34

35 Figure S32. Solution IR spectra of the product of the reaction of 5 mm 2 with NO gas at -80 o C in dichloromethane. The data show the spectral changes when the sample is warmed up to room temperature in the sample holder. In this process (over time), the two N-O stretches at 1707 and 1726 cm -1 disappear, whereas at the same time the N 2 O signal increases in intensity. S35

36 NO decreases 0.05 Absorbance N 2 O increases Wavenumber (cm -1 ) Figure S33. Zoom into the solution IR data in Figure S31, focusing on the region of the N-O stretch of the nitrosyl complexes (left), and the N-N stretch of the product N 2 O. S36

37 Figure S34. 1 H-NMR spectrum of complex 1 in CD 2 Cl 2, referenced against solvent. S37

38 * * * * * * * Figure S35. 1 H-NMR spectrum of complex 1-OAc, regenerated after reaction of 2-OAc with NO (one cycle) using acetic acid in CD 2 Cl 2. The data are referenced against solvent. The finger print region is identical to 1- OAc (see overlay in Figure S36). The additional features are from CoCp 2, excess acid, and CH 2 Cl 2 in solution. S38

39 Figure S36. Overlay of the 1 H-NMR spectra of 1-OAc and regenerated 1-OAc (after reaction of 2-OAc with NO), with the finger print region zoomed in for clarity. S39

40 CoCp2 Figure S37. 1 H-NMR spectrum of complex 2 produced in situ by reduction of 1 with 2 equivalent of CoCp 2 in CD 2 Cl 2, referenced against solvent. S40

41 Figure S38. 1 H-NMR spectrum of the ligand H 3 [(Py 2 PhO 2 )MP] in CDCl 3, referenced against solvent. S41

42 Figure S39. TOF HPLC-MS of the natural abundant Fe complex 1. Figure S40. TOF HPLC-MS of the natural abundant 57 Fe complex 1. S42

43 0.0 ABSORPTION (%) A B VELOCITY (mm/s) Figure S K/53 mt Mossbauer characterization of complexes 1 (A, top) and 2 (B, bottom). The solid lines overlaying the experimental data are simulations using the parameters quoted in the main text. S43

44 A 10.0 ABSORPTION (%) B VELOCITY (mm/s) Figure S42. Mössbauer characterization of a sample of complex 2 reacted with NO gas (added by syringe transfer) at -80 o C for 60 min. The measurements were carried out on the same sample that was used for the spectra shown in Figures 9A and B in the main text. (A) Comparison of 4.2 K spectra recorded in a 53 mt magnetic field applied parallel (vertical bars) and perpendicular (solid line) to the γ radiation. The lack of field orientation dependence argues against the presence of a non-heme {FeNO} 7 complex with S=3/2 or a complex with S=1/2 ground state at any detectable amounts, in agreement with the EPR data, see Figure S19 The fieldorientation-independent features suggest a half-integer spin ground state with uniaxial spin expectation value; such systems produce only weak EPR features. (B) Spectrum recorded at 1.8 K in a 53 mt externally applied magnetic field. The magnetically split features become better defined at 1.8 K, indicating that the spectrum is not fully in the slow-relaxation limit at 4.2 K. The black line overlaying the raw spectrum is a Spin Hamiltonian simulation in the slow-relaxation limit of a ferromagnetically-coupled mixed-valent Fe(II)/Fe(III) species (30% total iron), using the following parameters: S tot =9/2, D = -1 cm -1, E/D =0.33, g = 2.0, δ 1 = 0.57 mm/s, ΔE Q1 = 0.92 mm/s, η 1 = 0, A z1 = 11.8 T (high-spin ferric site, 15% of total intensity) and δ 2 = 1.22 mm/s, ΔE Q2 = 2.89 mm/s, η 2 = 0.2, A z2 = 5.9 T (high-spin ferrous site, 15% of total intensity). Note that the spectra are only sensitive to the y-component of the A tensor. S44

45 Figure S43. Crystal structure of 2-OAc grown from diffusion of hexane into a CH 2 Cl 2 solution of the complex. Hydrogen atoms, solvent molecules and the cobaltocenium counter cation are omitted for clarity. S45

46 Table S1. Crystal data and structure refinement for 2-OAc. Identification code Empirical formula hd1152a_sq C51 H53 Cl4 Co Fe2 N4 O7 Formula weight Temperature Wavelength Crystal system, space group 85(2) K Å Monoclinic, C2/c Unit cell dimensions a = (7) Å alpha = 90 deg. b = (3) Å beta = (2) deg. c = (4) Å gamma = 90 deg. Volume (4) Å 3 Z, Calculated density 8, Mg/m 3 Absorption coefficient mm -1 F(000) 4720 Crystal size Theta range for data collection Limiting indices x x mm to deg. -38<=h<=38, -23<=k<=23, -21<=l<=22 Reflections collected / unique / [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters / 37 / 664 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient n/a Largest diff. peak and hole and e. Å -3 S46

47 Table S2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for 2-OAc. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Co(1) (1) (1) Co(2) (1) Fe(1) 3430(1) 2712(1) 2924(1) 35(1) Fe(2) 3427(1) 4473(1) 3390(1) 32(1) O(1) 3076(1) 3574(1) 3062(1) 35(1) O(2) 3690(1) 1821(1) 2732(1) 41(1) O(3) 3736(1) 5364(1) 3728(2) 41(1) O(4) 3769(1) 3256(1) 2272(2) 44(1) O(5) 3821(1) 4333(1) 2688(1) 39(1) O(6) 3933(1) 2870(1) 3976(2) 48(1) O(7) 3846(1) 3920(1) 4389(1) 42(1) N(1) 2843(1) 2434(1) 1914(2) 35(1) N(2) 2998(1) 2162(1) 3462(2) 41(1) N(3) 2946(1) 4772(1) 4001(2) 34(1) N(4) 2860(1) 4928(1) 2450(2) 33(1) C(1) 2642(1) 3545(2) 2945(2) 35(1) C(2) 2358(1) 3276(2) 2260(2) 40(1) C(3) 1909(1) 3231(2) 2158(2) 50(1) C(4) 1726(1) 3449(2) 2709(3) 54(1) C(5) 2012(1) 3736(2) 3373(2) 46(1) C(6) 2463(1) 3788(2) 3503(2) 39(1) C(7) 1241(2) 3385(3) 2590(4) 82(2) C(8) 2552(1) 3033(2) 1662(2) 40(1) C(9) 2605(1) 1875(2) 2137(2) 39(1) C(10) 2626(1) 1914(2) 2968(2) 43(1) C(11) 2282(2) 1677(2) 3215(3) 53(1) C(12) 2330(2) 1691(2) 3980(3) 63(1) C(13) 2717(2) 1941(2) 4495(3) 60(1) C(14) 3039(2) 2182(2) 4211(2) 50(1) C(15) 3018(1) 2241(2) 1283(2) 41(1) C(16) 3277(1) 1595(2) 1409(2) 38(1) C(17) 3210(1) 1150(2) 785(2) 42(1) C(18) 3441(1) 544(2) 847(2) 45(1) C(19) 3737(1) 362(2) 1548(2) 44(1) C(20) 3812(1) 792(2) 2174(2) 41(1) C(21) 3596(1) 1425(2) 2118(2) 37(1) C(22) 2758(1) 4138(2) 4202(2) 37(1) C(23) 2590(1) 5210(2) 3506(2) 34(1) C(24) 2504(1) 5081(2) 2661(2) 33(1) C(25) 2086(1) 5148(2) 2135(2) 38(1) C(26) 2031(1) 5056(2) 1363(2) 44(1) C(27) 2396(1) 4903(2) 1145(2) 40(1) S47

48 C(28) 2802(1) 4840(2) 1707(2) 35(1) C(29) 3201(1) 5131(2) 4719(2) 38(1) C(30) 3380(1) 5812(2) 4591(2) 37(1) C(31) 3299(1) 6382(2) 4976(2) 42(1) C(32) 3478(1) 7016(2) 4914(2) 46(1) C(33) 3740(1) 7083(2) 4446(2) 44(1) C(34) 3813(1) 6530(2) 4038(2) 43(1) C(35) 3642(1) 5881(2) 4101(2) 38(1) C(36) 3902(1) 3855(2) 2291(2) 38(1) C(37) 4178(2) 4040(2) 1793(3) 56(1) C(38) 3997(1) 3321(2) 4483(2) 45(1) C(39) 4286(2) 3117(2) 5273(3) 73(2) C(40) 4937(2) 1528(3) 3409(3) 81(2) C(41) 5383(2) 1593(3) 3469(3) 77(2) C(42) 5487(2) 2286(3) 3472(5) 97(2) C(43) 5095(2) 2652(3) 3416(5) 111(3) C(44) 4756(2) 2186(3) 3385(4) 97(2) C(45) 4873(2) 4266(3) 4185(3) 74(2) C(46) 5334(1) 4317(3) 4578(3) 61(1) C(47) 5466(1) 4988(2) 4471(3) 59(1) C(48) 5085(2) 5345(3) 4022(3) 71(1) C(49) 4725(2) 4904(3) 3843(3) 76(2) Cl(1) 4271(1) 424(1) 4339(1) 86(1) Cl(1A) 4619(5) 928(8) 4757(11) 115(7) Cl(2) 3878(1) 1157(1) 5302(1) 70(1) C(50) 4043(2) 1210(2) 4479(3) 70(1) Cl(3) 4443(2) 6535(3) 2554(5) 53(2) Cl(4) 3725(3) 5816(6) 1462(7) 66(2) C(51) 4136(5) 5793(5) 2364(6) 45(3) Cl(3A) 4426(2) 6430(5) 2489(5) 121(3) Cl(4A) 3688(3) 5885(5) 1302(5) 76(2) C(51A) 3901(5) 6058(8) 2245(6) 85(4) S48

49 Table S3. Bond lengths [Å] and angles [deg] for 2-OAc. Co(1)-C(43) 2.010(7) Co(1)-C(43)# (7) Co(1)-C(42) 2.018(7) Co(1)-C(42)# (7) Co(1)-C(41) 2.018(6) Co(1)-C(41)# (6) Co(1)-C(40)# (6) Co(1)-C(40) 2.023(6) Co(1)-C(44)# (6) Co(1)-C(44) 2.037(6) Co(2)-C(46)# (4) Co(2)-C(46) 2.021(4) Co(2)-C(47) 2.023(4) Co(2)-C(47)# (4) Co(2)-C(48) 2.023(6) Co(2)-C(48)# (6) Co(2)-C(45)# (4) Co(2)-C(45) 2.029(4) Co(2)-C(49) 2.037(5) Co(2)-C(49)# (5) Fe(1)-O(2) 2.022(2) Fe(1)-O(1) 2.100(2) Fe(1)-O(6) 2.107(2) Fe(1)-O(4) 2.143(3) Fe(1)-N(2) 2.220(3) Fe(1)-N(1) 2.247(3) Fe(2)-O(3) 2.013(2) Fe(2)-O(1) 2.077(2) Fe(2)-O(5) 2.093(2) Fe(2)-O(7) 2.188(2) Fe(2)-N(3) 2.253(3) Fe(2)-N(4) 2.253(3) O(1)-C(1) 1.336(4) O(2)-C(21) 1.325(4) O(3)-C(35) 1.314(4) O(4)-C(36) 1.252(4) O(5)-C(36) 1.267(4) O(6)-C(38) 1.257(4) O(7)-C(38) 1.266(4) N(1)-C(9) 1.469(4) N(1)-C(8) 1.482(4) N(1)-C(15) 1.490(5) N(2)-C(10) 1.338(5) N(2)-C(14) 1.345(5) N(3)-C(22) 1.484(4) N(3)-C(23) 1.486(4) N(3)-C(29) 1.490(4) N(4)-C(28) 1.333(4) N(4)-C(24) 1.349(4) S49

50 C(1)-C(2) 1.401(5) C(1)-C(6) 1.411(5) C(2)-C(3) 1.390(5) C(2)-C(8) 1.504(5) C(3)-C(4) 1.389(6) C(3)-H(3) C(4)-C(5) 1.390(6) C(4)-C(7) 1.501(6) C(5)-C(6) 1.388(5) C(5)-H(5) C(6)-C(22) 1.498(5) C(7)-H(7A) C(7)-H(7B) C(7)-H(7C) C(8)-H(8A) C(8)-H(8B) C(9)-C(10) 1.511(5) C(9)-H(9A) C(9)-H(9B) C(10)-C(11) 1.398(6) C(11)-C(12) 1.367(6) C(11)-H(11) C(12)-C(13) 1.386(7) C(12)-H(12) C(13)-C(14) 1.378(7) C(13)-H(13) C(14)-H(14) C(15)-C(16) 1.496(5) C(15)-H(15A) C(15)-H(15B) C(16)-C(17) 1.406(5) C(16)-C(21) 1.416(5) C(17)-C(18) 1.389(5) C(17)-H(17) C(18)-C(19) 1.382(6) C(18)-H(18) C(19)-C(20) 1.388(5) C(19)-H(19) C(20)-C(21) 1.414(5) C(20)-H(20) C(22)-H(22A) C(22)-H(22B) C(23)-C(24) 1.511(5) C(23)-H(23A) C(23)-H(23B) C(24)-C(25) 1.383(5) C(25)-C(26) 1.388(5) C(25)-H(25) C(26)-C(27) 1.384(5) C(26)-H(26) C(27)-C(28) 1.382(5) C(27)-H(27) C(28)-H(28) S50

51 C(29)-C(30) 1.506(5) C(29)-H(29A) C(29)-H(29B) C(30)-C(31) 1.395(5) C(30)-C(35) 1.420(5) C(31)-C(32) 1.392(5) C(31)-H(31) C(32)-C(33) 1.388(6) C(32)-H(32) C(33)-C(34) 1.385(5) C(33)-H(33) C(34)-C(35) 1.410(5) C(34)-H(34) C(36)-C(37) 1.508(6) C(37)-H(37A) C(37)-H(37B) C(37)-H(37C) C(38)-C(39) 1.506(5) C(39)-H(39A) C(39)-H(39B) C(39)-H(39C) C(40)-C(41) 1.402(8) C(40)-C(44) 1.415(9) C(40)-H(40) C(41)-C(42) 1.405(8) C(41)-H(41) C(42)-C(43) 1.419(8) C(42)-H(42) C(43)-C(44) 1.407(9) C(43)-H(43) C(44)-H(44) C(45)-C(49) 1.418(9) C(45)-C(46) 1.424(6) C(45)-H(45) C(46)-C(47) 1.420(7) C(46)-H(46) C(47)-C(48) 1.418(7) C(47)-H(47) C(48)-C(49) 1.396(8) C(48)-H(48) C(49)-H(49) Cl(1)-C(50) 1.766(5) Cl(1A)-C(50) 1.833(13) Cl(2)-C(50) 1.758(5) C(50)-H(50A) C(50)-H(50B) C(50)-H(50C) C(50)-H(50D) Cl(3)-C(51) 1.731(9) Cl(4)-C(51) 1.759(12) C(51)-H(51A) C(51)-H(51B) Cl(3A)-C(51A) 1.753(11) S51

52 Cl(4A)-C(51A) 1.684(10) C(51A)-H(51C) C(51A)-H(51D) C(43)-Co(1)-C(43)# (5) C(43)-Co(1)-C(42) 41.2(2) C(43)#1-Co(1)-C(42) 118.0(3) C(43)-Co(1)-C(42)# (3) C(43)#1-Co(1)-C(42)#1 41.2(2) C(42)-Co(1)-C(42)# (4) C(43)-Co(1)-C(41) 68.5(3) C(43)#1-Co(1)-C(41) 152.8(2) C(42)-Co(1)-C(41) 40.7(2) C(42)#1-Co(1)-C(41) 165.0(2) C(43)-Co(1)-C(41)# (2) C(43)#1-Co(1)-C(41)#1 68.5(3) C(42)-Co(1)-C(41)# (2) C(42)#1-Co(1)-C(41)#1 40.7(2) C(41)-Co(1)-C(41)# (3) C(43)-Co(1)-C(40)# (2) C(43)#1-Co(1)-C(40)#1 68.5(3) C(42)-Co(1)-C(40)# (2) C(42)#1-Co(1)-C(40)#1 68.8(3) C(41)-Co(1)-C(40)# (2) C(41)#1-Co(1)-C(40)#1 40.6(2) C(43)-Co(1)-C(40) 68.5(3) C(43)#1-Co(1)-C(40) 164.8(2) C(42)-Co(1)-C(40) 68.8(3) C(42)#1-Co(1)-C(40) 126.9(2) C(41)-Co(1)-C(40) 40.6(2) C(41)#1-Co(1)-C(40) 108.5(2) C(40)#1-Co(1)-C(40) 119.7(3) C(43)-Co(1)-C(44)# (3) C(43)#1-Co(1)-C(44)#1 40.7(3) C(42)-Co(1)-C(44)# (3) C(42)#1-Co(1)-C(44)#1 69.1(3) C(41)-Co(1)-C(44)# (2) C(41)#1-Co(1)-C(44)#1 68.5(3) C(40)#1-Co(1)-C(44)#1 40.8(3) C(40)-Co(1)-C(44)# (3) C(43)-Co(1)-C(44) 40.7(3) C(43)#1-Co(1)-C(44) 126.5(3) C(42)-Co(1)-C(44) 69.1(3) C(42)#1-Co(1)-C(44) 107.0(3) C(41)-Co(1)-C(44) 68.5(3) C(41)#1-Co(1)-C(44) 119.2(2) C(40)#1-Co(1)-C(44) 153.6(3) C(40)-Co(1)-C(44) 40.8(3) C(44)#1-Co(1)-C(44) 164.2(4) C(46)#2-Co(2)-C(46) C(46)#2-Co(2)-C(47) 138.9(2) C(46)-Co(2)-C(47) 41.1(2) C(46)#2-Co(2)-C(47)#2 41.1(2) S52

53 C(46)-Co(2)-C(47)# (2) C(47)-Co(2)-C(47)# (11) C(46)#2-Co(2)-C(48) 110.9(2) C(46)-Co(2)-C(48) 69.1(2) C(47)-Co(2)-C(48) 41.03(19) C(47)#2-Co(2)-C(48) (19) C(46)#2-Co(2)-C(48)#2 69.1(2) C(46)-Co(2)-C(48)# (2) C(47)-Co(2)-C(48)# (19) C(47)#2-Co(2)-C(48)# (19) C(48)-Co(2)-C(48)# C(46)#2-Co(2)-C(45)# (18) C(46)-Co(2)-C(45)# (18) C(47)-Co(2)-C(45)# (19) C(47)#2-Co(2)-C(45)# (19) C(48)-Co(2)-C(45)# (2) C(48)#2-Co(2)-C(45)#2 68.5(2) C(46)#2-Co(2)-C(45) (18) C(46)-Co(2)-C(45) 41.17(18) C(47)-Co(2)-C(45) 68.92(19) C(47)#2-Co(2)-C(45) (19) C(48)-Co(2)-C(45) 68.5(2) C(48)#2-Co(2)-C(45) 111.5(2) C(45)#2-Co(2)-C(45) 180.0(3) C(46)#2-Co(2)-C(49) 111.0(2) C(46)-Co(2)-C(49) 69.0(2) C(47)-Co(2)-C(49) 68.48(18) C(47)#2-Co(2)-C(49) (18) C(48)-Co(2)-C(49) 40.2(2) C(48)#2-Co(2)-C(49) 139.8(2) C(45)#2-Co(2)-C(49) 139.2(2) C(45)-Co(2)-C(49) 40.8(2) C(46)#2-Co(2)-C(49)#2 69.0(2) C(46)-Co(2)-C(49)# (2) C(47)-Co(2)-C(49)# (18) C(47)#2-Co(2)-C(49)# (18) C(48)-Co(2)-C(49)# (2) C(48)#2-Co(2)-C(49)#2 40.2(2) C(45)#2-Co(2)-C(49)#2 40.8(2) C(45)-Co(2)-C(49)# (2) C(49)-Co(2)-C(49)# O(2)-Fe(1)-O(1) (10) O(2)-Fe(1)-O(6) 93.02(10) O(1)-Fe(1)-O(6) 92.96(9) O(2)-Fe(1)-O(4) 91.47(10) O(1)-Fe(1)-O(4) 92.99(9) O(6)-Fe(1)-O(4) 93.91(11) O(2)-Fe(1)-N(2) 90.16(10) O(1)-Fe(1)-N(2) 84.60(10) O(6)-Fe(1)-N(2) 93.56(12) O(4)-Fe(1)-N(2) (11) O(2)-Fe(1)-N(1) 85.73(10) O(1)-Fe(1)-N(1) 87.57(9) S53

54 O(6)-Fe(1)-N(1) (11) O(4)-Fe(1)-N(1) 95.47(10) N(2)-Fe(1)-N(1) 77.10(11) O(3)-Fe(2)-O(1) (9) O(3)-Fe(2)-O(5) 88.44(10) O(1)-Fe(2)-O(5) 94.83(9) O(3)-Fe(2)-O(7) 93.76(10) O(1)-Fe(2)-O(7) 87.07(9) O(5)-Fe(2)-O(7) 97.20(10) O(3)-Fe(2)-N(3) 87.83(10) O(1)-Fe(2)-N(3) 88.74(9) O(5)-Fe(2)-N(3) (10) O(7)-Fe(2)-N(3) 92.45(10) O(3)-Fe(2)-N(4) 94.88(10) O(1)-Fe(2)-N(4) 83.66(9) O(5)-Fe(2)-N(4) 94.23(10) O(7)-Fe(2)-N(4) (10) N(3)-Fe(2)-N(4) 76.70(10) C(1)-O(1)-Fe(2) (19) C(1)-O(1)-Fe(1) (18) Fe(2)-O(1)-Fe(1) (11) C(21)-O(2)-Fe(1) 131.6(2) C(35)-O(3)-Fe(2) 131.8(2) C(36)-O(4)-Fe(1) 133.0(2) C(36)-O(5)-Fe(2) 136.6(2) C(38)-O(6)-Fe(1) 133.0(2) C(38)-O(7)-Fe(2) 133.1(2) C(9)-N(1)-C(8) 110.8(3) C(9)-N(1)-C(15) 112.5(3) C(8)-N(1)-C(15) 108.3(3) C(9)-N(1)-Fe(1) 108.7(2) C(8)-N(1)-Fe(1) (19) C(15)-N(1)-Fe(1) 106.5(2) C(10)-N(2)-C(14) 118.7(3) C(10)-N(2)-Fe(1) 114.8(2) C(14)-N(2)-Fe(1) 125.0(3) C(22)-N(3)-C(23) 110.4(3) C(22)-N(3)-C(29) 109.2(3) C(23)-N(3)-C(29) 111.4(2) C(22)-N(3)-Fe(2) (19) C(23)-N(3)-Fe(2) 110.9(2) C(29)-N(3)-Fe(2) 107.5(2) C(28)-N(4)-C(24) 118.2(3) C(28)-N(4)-Fe(2) 123.4(2) C(24)-N(4)-Fe(2) 114.4(2) O(1)-C(1)-C(2) 120.3(3) O(1)-C(1)-C(6) 120.7(3) C(2)-C(1)-C(6) 119.1(3) C(3)-C(2)-C(1) 119.4(3) C(3)-C(2)-C(8) 122.0(3) C(1)-C(2)-C(8) 118.6(3) C(4)-C(3)-C(2) 122.5(4) C(4)-C(3)-H(3) S54

55 C(2)-C(3)-H(3) C(3)-C(4)-C(5) 117.2(4) C(3)-C(4)-C(7) 121.5(4) C(5)-C(4)-C(7) 121.3(4) C(6)-C(5)-C(4) 122.4(4) C(6)-C(5)-H(5) C(4)-C(5)-H(5) C(5)-C(6)-C(1) 119.4(3) C(5)-C(6)-C(22) 121.1(3) C(1)-C(6)-C(22) 119.4(3) C(4)-C(7)-H(7A) C(4)-C(7)-H(7B) H(7A)-C(7)-H(7B) C(4)-C(7)-H(7C) H(7A)-C(7)-H(7C) H(7B)-C(7)-H(7C) N(1)-C(8)-C(2) 112.9(3) N(1)-C(8)-H(8A) C(2)-C(8)-H(8A) N(1)-C(8)-H(8B) C(2)-C(8)-H(8B) H(8A)-C(8)-H(8B) N(1)-C(9)-C(10) 112.7(3) N(1)-C(9)-H(9A) C(10)-C(9)-H(9A) N(1)-C(9)-H(9B) C(10)-C(9)-H(9B) H(9A)-C(9)-H(9B) N(2)-C(10)-C(11) 121.4(4) N(2)-C(10)-C(9) 116.7(3) C(11)-C(10)-C(9) 121.9(4) C(12)-C(11)-C(10) 119.2(4) C(12)-C(11)-H(11) C(10)-C(11)-H(11) C(11)-C(12)-C(13) 119.6(4) C(11)-C(12)-H(12) C(13)-C(12)-H(12) C(14)-C(13)-C(12) 118.2(4) C(14)-C(13)-H(13) C(12)-C(13)-H(13) N(2)-C(14)-C(13) 122.8(4) N(2)-C(14)-H(14) C(13)-C(14)-H(14) N(1)-C(15)-C(16) 115.1(3) N(1)-C(15)-H(15A) C(16)-C(15)-H(15A) N(1)-C(15)-H(15B) C(16)-C(15)-H(15B) H(15A)-C(15)-H(15B) C(17)-C(16)-C(21) 118.9(3) C(17)-C(16)-C(15) 118.2(3) C(21)-C(16)-C(15) 122.9(3) C(18)-C(17)-C(16) 122.0(4) S55

56 C(18)-C(17)-H(17) C(16)-C(17)-H(17) C(19)-C(18)-C(17) 119.1(3) C(19)-C(18)-H(18) C(17)-C(18)-H(18) C(18)-C(19)-C(20) 120.2(3) C(18)-C(19)-H(19) C(20)-C(19)-H(19) C(19)-C(20)-C(21) 121.8(3) C(19)-C(20)-H(20) C(21)-C(20)-H(20) O(2)-C(21)-C(20) 118.9(3) O(2)-C(21)-C(16) 123.3(3) C(20)-C(21)-C(16) 117.8(3) N(3)-C(22)-C(6) 111.6(3) N(3)-C(22)-H(22A) C(6)-C(22)-H(22A) N(3)-C(22)-H(22B) C(6)-C(22)-H(22B) H(22A)-C(22)-H(22B) N(3)-C(23)-C(24) 112.7(3) N(3)-C(23)-H(23A) C(24)-C(23)-H(23A) N(3)-C(23)-H(23B) C(24)-C(23)-H(23B) H(23A)-C(23)-H(23B) N(4)-C(24)-C(25) 122.3(3) N(4)-C(24)-C(23) 116.1(3) C(25)-C(24)-C(23) 121.5(3) C(24)-C(25)-C(26) 118.9(3) C(24)-C(25)-H(25) C(26)-C(25)-H(25) C(27)-C(26)-C(25) 118.9(3) C(27)-C(26)-H(26) C(25)-C(26)-H(26) C(28)-C(27)-C(26) 118.7(3) C(28)-C(27)-H(27) C(26)-C(27)-H(27) N(4)-C(28)-C(27) 123.0(3) N(4)-C(28)-H(28) C(27)-C(28)-H(28) N(3)-C(29)-C(30) 114.3(3) N(3)-C(29)-H(29A) C(30)-C(29)-H(29A) N(3)-C(29)-H(29B) C(30)-C(29)-H(29B) H(29A)-C(29)-H(29B) C(31)-C(30)-C(35) 119.3(3) C(31)-C(30)-C(29) 119.8(3) C(35)-C(30)-C(29) 120.9(3) C(32)-C(31)-C(30) 122.2(4) C(32)-C(31)-H(31) C(30)-C(31)-H(31) S56

57 C(33)-C(32)-C(31) 118.7(3) C(33)-C(32)-H(32) C(31)-C(32)-H(32) C(34)-C(33)-C(32) 120.3(3) C(34)-C(33)-H(33) C(32)-C(33)-H(33) C(33)-C(34)-C(35) 122.0(4) C(33)-C(34)-H(34) C(35)-C(34)-H(34) O(3)-C(35)-C(34) 120.0(3) O(3)-C(35)-C(30) 122.5(3) C(34)-C(35)-C(30) 117.5(3) O(4)-C(36)-O(5) 126.0(3) O(4)-C(36)-C(37) 118.0(3) O(5)-C(36)-C(37) 115.9(3) C(36)-C(37)-H(37A) C(36)-C(37)-H(37B) H(37A)-C(37)-H(37B) C(36)-C(37)-H(37C) H(37A)-C(37)-H(37C) H(37B)-C(37)-H(37C) O(6)-C(38)-O(7) 126.3(3) O(6)-C(38)-C(39) 115.6(3) O(7)-C(38)-C(39) 118.1(3) C(38)-C(39)-H(39A) C(38)-C(39)-H(39B) H(39A)-C(39)-H(39B) C(38)-C(39)-H(39C) H(39A)-C(39)-H(39C) H(39B)-C(39)-H(39C) C(41)-C(40)-C(44) 108.3(5) C(41)-C(40)-Co(1) 69.5(4) C(44)-C(40)-Co(1) 70.1(4) C(41)-C(40)-H(40) C(44)-C(40)-H(40) Co(1)-C(40)-H(40) C(40)-C(41)-C(42) 108.8(5) C(40)-C(41)-Co(1) 69.9(4) C(42)-C(41)-Co(1) 69.6(4) C(40)-C(41)-H(41) C(42)-C(41)-H(41) Co(1)-C(41)-H(41) C(41)-C(42)-C(43) 106.9(5) C(41)-C(42)-Co(1) 69.6(3) C(43)-C(42)-Co(1) 69.1(4) C(41)-C(42)-H(42) C(43)-C(42)-H(42) Co(1)-C(42)-H(42) C(44)-C(43)-C(42) 108.9(5) C(44)-C(43)-Co(1) 70.7(4) C(42)-C(43)-Co(1) 69.7(4) C(44)-C(43)-H(43) C(42)-C(43)-H(43) S57

58 Co(1)-C(43)-H(43) C(43)-C(44)-C(40) 107.1(5) C(43)-C(44)-Co(1) 68.6(4) C(40)-C(44)-Co(1) 69.1(3) C(43)-C(44)-H(44) C(40)-C(44)-H(44) Co(1)-C(44)-H(44) C(49)-C(45)-C(46) 107.9(5) C(49)-C(45)-Co(2) 69.9(3) C(46)-C(45)-Co(2) 69.1(2) C(49)-C(45)-H(45) C(46)-C(45)-H(45) Co(2)-C(45)-H(45) C(47)-C(46)-C(45) 107.4(5) C(47)-C(46)-Co(2) 69.5(3) C(45)-C(46)-Co(2) 69.7(3) C(47)-C(46)-H(46) C(45)-C(46)-H(46) Co(2)-C(46)-H(46) C(48)-C(47)-C(46) 107.8(4) C(48)-C(47)-Co(2) 69.5(3) C(46)-C(47)-Co(2) 69.4(3) C(48)-C(47)-H(47) C(46)-C(47)-H(47) Co(2)-C(47)-H(47) C(49)-C(48)-C(47) 108.6(5) C(49)-C(48)-Co(2) 70.4(3) C(47)-C(48)-Co(2) 69.5(3) C(49)-C(48)-H(48) C(47)-C(48)-H(48) Co(2)-C(48)-H(48) C(48)-C(49)-C(45) 108.3(4) C(48)-C(49)-Co(2) 69.4(3) C(45)-C(49)-Co(2) 69.3(3) C(48)-C(49)-H(49) C(45)-C(49)-H(49) Co(2)-C(49)-H(49) Cl(2)-C(50)-Cl(1) 109.0(3) Cl(2)-C(50)-Cl(1A) 107.0(6) Cl(2)-C(50)-H(50A) Cl(1)-C(50)-H(50A) Cl(2)-C(50)-H(50B) Cl(1)-C(50)-H(50B) H(50A)-C(50)-H(50B) Cl(2)-C(50)-H(50C) Cl(1A)-C(50)-H(50C) Cl(2)-C(50)-H(50D) Cl(1A)-C(50)-H(50D) H(50C)-C(50)-H(50D) Cl(3)-C(51)-Cl(4) 111.9(7) Cl(3)-C(51)-H(51A) Cl(4)-C(51)-H(51A) Cl(3)-C(51)-H(51B) S58

59 Cl(4)-C(51)-H(51B) H(51A)-C(51)-H(51B) Cl(4A)-C(51A)-Cl(3A) 112.8(8) Cl(4A)-C(51A)-H(51C) Cl(3A)-C(51A)-H(51C) Cl(4A)-C(51A)-H(51D) Cl(3A)-C(51A)-H(51D) H(51C)-C(51A)-H(51D) Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 #2 -x+1,-y+1,-z+1 S59

60 Table S4. Anisotropic displacement parameters (Å 2 x 10 3 ) for 2-OAc. The anisotropic displacement factor exponent takes the form: -2 pi 2 [ h 2 a* 2 U h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Co(1) 49(1) 41(1) 134(1) 0 49(1) 0 Co(2) 36(1) 85(1) 53(1) -34(1) 11(1) 0(1) Fe(1) 42(1) 25(1) 38(1) -2(1) 15(1) 2(1) Fe(2) 35(1) 24(1) 38(1) -2(1) 13(1) 1(1) O(1) 39(1) 24(1) 42(1) -2(1) 15(1) 1(1) O(2) 52(1) 30(1) 42(1) -3(1) 18(1) 4(1) O(3) 42(1) 33(1) 53(2) -9(1) 22(1) -3(1) O(4) 52(1) 34(1) 52(2) -7(1) 23(1) -4(1) O(5) 40(1) 35(1) 45(1) -4(1) 18(1) -2(1) O(6) 54(2) 40(1) 44(1) -8(1) 7(1) 9(1) O(7) 48(1) 33(1) 41(1) -3(1) 8(1) 6(1) N(1) 45(2) 24(1) 38(2) -3(1) 15(1) 0(1) N(2) 59(2) 27(1) 45(2) 2(1) 26(2) 4(1) N(3) 39(1) 25(1) 37(2) 0(1) 12(1) 2(1) N(4) 37(1) 23(1) 39(2) 0(1) 12(1) 1(1) C(1) 37(2) 24(2) 46(2) 2(1) 15(2) 1(1) C(2) 44(2) 26(2) 50(2) -4(1) 14(2) -1(1) C(3) 45(2) 34(2) 65(3) -17(2) 12(2) -5(2) C(4) 45(2) 41(2) 78(3) -15(2) 25(2) -5(2) C(5) 49(2) 32(2) 64(2) -6(2) 27(2) -3(2) C(6) 45(2) 23(2) 50(2) 1(1) 19(2) 0(1) C(7) 51(3) 83(4) 112(4) -41(3) 29(3) -18(2) C(8) 45(2) 26(2) 46(2) -3(1) 8(2) 0(1) C(9) 45(2) 25(2) 52(2) -4(1) 21(2) -5(1) C(10) 62(2) 20(2) 54(2) -1(1) 29(2) 2(1) C(11) 70(3) 33(2) 68(3) -2(2) 40(2) -5(2) C(12) 88(3) 41(2) 80(3) 7(2) 55(3) 0(2) C(13) 94(3) 42(2) 60(3) 7(2) 45(3) 13(2) C(14) 78(3) 32(2) 47(2) 4(2) 29(2) 12(2) C(15) 53(2) 32(2) 38(2) -2(1) 16(2) -1(1) C(16) 48(2) 28(2) 43(2) -4(1) 23(2) -6(1) C(17) 50(2) 36(2) 45(2) -8(2) 22(2) -7(2) C(18) 51(2) 38(2) 53(2) -16(2) 23(2) -4(2) C(19) 45(2) 32(2) 60(2) -10(2) 25(2) 0(1) C(20) 42(2) 34(2) 51(2) -3(2) 20(2) -1(1) C(21) 44(2) 26(2) 46(2) -5(1) 23(2) -4(1) C(22) 48(2) 26(2) 43(2) 2(1) 22(2) 1(1) C(23) 36(2) 25(2) 41(2) -1(1) 12(1) 4(1) C(24) 35(2) 20(1) 45(2) -2(1) 16(1) 0(1) C(25) 40(2) 30(2) 44(2) -4(1) 15(2) 0(1) C(26) 40(2) 38(2) 46(2) -3(2) 6(2) 6(1) C(27) 47(2) 33(2) 39(2) -2(1) 12(2) 1(1) C(28) 42(2) 26(2) 39(2) 1(1) 16(2) 3(1) S60

61 C(29) 44(2) 33(2) 37(2) -1(1) 15(2) 1(1) C(30) 43(2) 30(2) 37(2) -3(1) 10(2) 0(1) C(31) 57(2) 39(2) 34(2) -6(1) 19(2) 0(2) C(32) 61(2) 31(2) 42(2) -10(1) 13(2) 1(2) C(33) 52(2) 33(2) 44(2) -5(2) 12(2) -4(2) C(34) 48(2) 36(2) 47(2) -9(2) 19(2) -6(2) C(35) 42(2) 31(2) 40(2) -7(1) 12(2) 0(1) C(36) 40(2) 37(2) 38(2) -2(1) 15(2) 2(1) C(37) 71(3) 43(2) 68(3) -6(2) 41(2) -4(2) C(38) 53(2) 37(2) 42(2) 0(2) 10(2) 8(2) C(39) 102(4) 51(3) 48(2) -3(2) 0(2) 25(2) C(40) 74(3) 84(4) 95(4) -25(3) 41(3) -21(3) C(41) 73(3) 70(3) 97(4) -24(3) 39(3) 2(3) C(42) 62(3) 71(3) 172(7) -47(4) 58(4) -13(3) C(43) 80(4) 64(3) 204(8) -53(4) 68(5) -8(3) C(44) 64(3) 99(4) 147(6) -33(4) 61(4) -1(3) C(45) 51(2) 105(4) 72(3) -53(3) 28(2) -17(3) C(46) 51(2) 77(3) 58(3) -28(2) 21(2) 3(2) C(47) 45(2) 78(3) 54(2) -27(2) 16(2) -5(2) C(48) 59(3) 93(4) 55(3) -31(3) 10(2) 8(2) C(49) 48(2) 118(5) 57(3) -44(3) 9(2) 8(3) Cl(1) 96(1) 76(1) 87(1) 9(1) 28(1) 17(1) Cl(1A) 120(10) 101(10) 181(17) 104(12) 127(12) 67(10) Cl(2) 84(1) 63(1) 68(1) 18(1) 29(1) 6(1) C(50) 97(4) 50(2) 70(3) 14(2) 35(3) 2(2) Cl(3) 40(2) 59(3) 60(3) 4(2) 16(2) -12(1) Cl(4) 49(2) 62(3) 90(6) 8(3) 24(3) 1(2) C(51) 53(7) 31(5) 58(6) -5(4) 27(5) -1(4) Cl(3A) 105(4) 174(6) 82(3) 1(3) 29(3) -56(4) Cl(4A) 86(3) 81(4) 65(2) -28(3) 28(2) -24(3) C(51A) 79(7) 101(9) 67(5) -11(6) 13(5) -4(7) S61

62 Table S5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for 2-OAc. x y z U(eq) H(3) H(5) H(7A) H(7B) H(7C) H(8A) H(8B) H(9A) H(9B) H(11) H(12) H(13) H(14) H(15A) H(15B) H(17) H(18) H(19) H(20) H(22A) H(22B) H(23A) H(23B) H(25) H(26) H(27) H(28) H(29A) H(29B) H(31) H(32) H(33) H(34) H(37A) H(37B) H(37C) H(39A) H(39B) H(39C) H(40) H(41) H(42) H(43) H(44) S62

63 H(45) H(46) H(47) H(48) H(49) H(50A) H(50B) H(50C) H(50D) H(51A) H(51B) H(51C) H(51D) S63

64 Table S6. Torsion angles [deg] for 2-OAc. Fe(2)-O(1)-C(1)-C(2) 128.2(3) Fe(1)-O(1)-C(1)-C(2) -51.9(4) Fe(2)-O(1)-C(1)-C(6) -51.4(4) Fe(1)-O(1)-C(1)-C(6) 128.5(3) O(1)-C(1)-C(2)-C(3) 178.2(3) C(6)-C(1)-C(2)-C(3) -2.3(5) O(1)-C(1)-C(2)-C(8) -0.9(5) C(6)-C(1)-C(2)-C(8) 178.6(3) C(1)-C(2)-C(3)-C(4) 0.5(6) C(8)-C(2)-C(3)-C(4) 179.5(4) C(2)-C(3)-C(4)-C(5) 1.7(6) C(2)-C(3)-C(4)-C(7) (4) C(3)-C(4)-C(5)-C(6) -2.0(6) C(7)-C(4)-C(5)-C(6) 178.6(4) C(4)-C(5)-C(6)-C(1) 0.2(5) C(4)-C(5)-C(6)-C(22) 176.2(3) O(1)-C(1)-C(6)-C(5) (3) C(2)-C(1)-C(6)-C(5) 2.0(5) O(1)-C(1)-C(6)-C(22) 5.5(5) C(2)-C(1)-C(6)-C(22) (3) C(9)-N(1)-C(8)-C(2) 56.5(4) C(15)-N(1)-C(8)-C(2) (3) Fe(1)-N(1)-C(8)-C(2) -63.6(3) C(3)-C(2)-C(8)-N(1) (4) C(1)-C(2)-C(8)-N(1) 66.1(4) C(8)-N(1)-C(9)-C(10) -87.3(3) C(15)-N(1)-C(9)-C(10) 151.2(3) Fe(1)-N(1)-C(9)-C(10) 33.5(3) C(14)-N(2)-C(10)-C(11) -0.1(5) Fe(1)-N(2)-C(10)-C(11) (3) C(14)-N(2)-C(10)-C(9) (3) Fe(1)-N(2)-C(10)-C(9) 15.6(4) N(1)-C(9)-C(10)-N(2) -34.1(4) N(1)-C(9)-C(10)-C(11) 148.5(3) N(2)-C(10)-C(11)-C(12) -0.9(5) C(9)-C(10)-C(11)-C(12) 176.4(3) C(10)-C(11)-C(12)-C(13) 0.2(6) C(11)-C(12)-C(13)-C(14) 1.5(6) C(10)-N(2)-C(14)-C(13) 1.9(5) Fe(1)-N(2)-C(14)-C(13) 167.3(3) C(12)-C(13)-C(14)-N(2) -2.6(6) C(9)-N(1)-C(15)-C(16) -50.4(4) C(8)-N(1)-C(15)-C(16) (3) Fe(1)-N(1)-C(15)-C(16) 68.6(3) N(1)-C(15)-C(16)-C(17) 138.4(3) N(1)-C(15)-C(16)-C(21) -43.6(5) C(21)-C(16)-C(17)-C(18) 1.0(5) C(15)-C(16)-C(17)-C(18) 179.1(3) C(16)-C(17)-C(18)-C(19) 2.0(6) S64

65 C(17)-C(18)-C(19)-C(20) -2.1(6) C(18)-C(19)-C(20)-C(21) -0.6(6) Fe(1)-O(2)-C(21)-C(20) (2) Fe(1)-O(2)-C(21)-C(16) 3.5(5) C(19)-C(20)-C(21)-O(2) (3) C(19)-C(20)-C(21)-C(16) 3.5(5) C(17)-C(16)-C(21)-O(2) 178.3(3) C(15)-C(16)-C(21)-O(2) 0.2(5) C(17)-C(16)-C(21)-C(20) -3.6(5) C(15)-C(16)-C(21)-C(20) 178.4(3) C(23)-N(3)-C(22)-C(6) 52.0(4) C(29)-N(3)-C(22)-C(6) 174.7(3) Fe(2)-N(3)-C(22)-C(6) -69.1(3) C(5)-C(6)-C(22)-N(3) (4) C(1)-C(6)-C(22)-N(3) 63.0(4) C(22)-N(3)-C(23)-C(24) -91.7(3) C(29)-N(3)-C(23)-C(24) 146.9(3) Fe(2)-N(3)-C(23)-C(24) 27.3(3) C(28)-N(4)-C(24)-C(25) 0.0(4) Fe(2)-N(4)-C(24)-C(25) (2) C(28)-N(4)-C(24)-C(23) (3) Fe(2)-N(4)-C(24)-C(23) 24.7(3) N(3)-C(23)-C(24)-N(4) -35.5(4) N(3)-C(23)-C(24)-C(25) 147.4(3) N(4)-C(24)-C(25)-C(26) -0.1(5) C(23)-C(24)-C(25)-C(26) 176.8(3) C(24)-C(25)-C(26)-C(27) -0.3(5) C(25)-C(26)-C(27)-C(28) 0.7(5) C(24)-N(4)-C(28)-C(27) 0.5(5) Fe(2)-N(4)-C(28)-C(27) 156.6(3) C(26)-C(27)-C(28)-N(4) -0.9(5) C(22)-N(3)-C(29)-C(30) (3) C(23)-N(3)-C(29)-C(30) -53.3(4) Fe(2)-N(3)-C(29)-C(30) 68.4(3) N(3)-C(29)-C(30)-C(31) 128.3(3) N(3)-C(29)-C(30)-C(35) -53.7(4) C(35)-C(30)-C(31)-C(32) -1.8(5) C(29)-C(30)-C(31)-C(32) 176.2(3) C(30)-C(31)-C(32)-C(33) 0.8(6) C(31)-C(32)-C(33)-C(34) 1.3(6) C(32)-C(33)-C(34)-C(35) -2.5(6) Fe(2)-O(3)-C(35)-C(34) (3) Fe(2)-O(3)-C(35)-C(30) 24.0(5) C(33)-C(34)-C(35)-O(3) (3) C(33)-C(34)-C(35)-C(30) 1.4(5) C(31)-C(30)-C(35)-O(3) 179.2(3) C(29)-C(30)-C(35)-O(3) 1.2(5) C(31)-C(30)-C(35)-C(34) 0.7(5) C(29)-C(30)-C(35)-C(34) (3) Fe(1)-O(4)-C(36)-O(5) -7.8(6) Fe(1)-O(4)-C(36)-C(37) 173.1(3) Fe(2)-O(5)-C(36)-O(4) -6.6(6) Fe(2)-O(5)-C(36)-C(37) 172.4(3) S65

66 Fe(1)-O(6)-C(38)-O(7) -23.9(7) Fe(1)-O(6)-C(38)-C(39) 156.7(4) Fe(2)-O(7)-C(38)-O(6) -0.2(7) Fe(2)-O(7)-C(38)-C(39) 179.3(3) C(44)-C(40)-C(41)-C(42) -0.7(8) Co(1)-C(40)-C(41)-C(42) 58.9(5) C(44)-C(40)-C(41)-Co(1) -59.7(5) C(40)-C(41)-C(42)-C(43) 0.2(8) Co(1)-C(41)-C(42)-C(43) 59.3(6) C(40)-C(41)-C(42)-Co(1) -59.1(4) C(41)-C(42)-C(43)-C(44) 0.4(10) Co(1)-C(42)-C(43)-C(44) 60.0(6) C(41)-C(42)-C(43)-Co(1) -59.6(5) C(42)-C(43)-C(44)-C(40) -0.9(9) Co(1)-C(43)-C(44)-C(40) 58.6(5) C(42)-C(43)-C(44)-Co(1) -59.4(6) C(41)-C(40)-C(44)-C(43) 1.0(8) Co(1)-C(40)-C(44)-C(43) -58.3(6) C(41)-C(40)-C(44)-Co(1) 59.3(4) C(49)-C(45)-C(46)-C(47) -0.1(5) Co(2)-C(45)-C(46)-C(47) -59.5(3) C(49)-C(45)-C(46)-Co(2) 59.4(3) C(45)-C(46)-C(47)-C(48) 0.6(5) Co(2)-C(46)-C(47)-C(48) -59.0(3) C(45)-C(46)-C(47)-Co(2) 59.6(3) C(46)-C(47)-C(48)-C(49) -0.8(5) Co(2)-C(47)-C(48)-C(49) -59.8(3) C(46)-C(47)-C(48)-Co(2) 59.0(3) C(47)-C(48)-C(49)-C(45) 0.8(5) Co(2)-C(48)-C(49)-C(45) -58.5(3) C(47)-C(48)-C(49)-Co(2) 59.2(3) C(46)-C(45)-C(49)-C(48) -0.4(5) Co(2)-C(45)-C(49)-C(48) 58.5(3) C(46)-C(45)-C(49)-Co(2) -58.9(3) Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 #2 -x+1,-y+1,-z+1 S66

67 Figure S44. Optimized structure of the proposed diferrous dinitrosyl intermediate of complex 2 with hydrogen atoms omitted for clarity. The structure was optimized using the BP86 functional and the TZVP basis set. S67

68 Table S7. XYZ coordinates for the DFT-optimized structure of the dinitrosyl intermediate. Fe Fe O O O O O C H C H C H C H C C H H C H C H C H C H C C H H C H C H C H C H C C H H C H C H C H C H S68

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Supporting Information

Supporting Information Supporting Information A Trinitrosyl Iron Complex (a {Fe(NO) 3 } 10 TNIC) Stabilized by an N- Heterocyclic Carbene and the Cationic and Neutral {Fe(NO) 2 } 9/10 Products of Its NO Release Chung-Hung Hsieh

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies Satheesh Ellipilli, Sandeep Palvai and Krishna N Ganesh* Chemical Biology Unit,

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Supporting Information for: Catalytic N 2 Reduction to Silylamines and Thermodynamics of N 2 Binding at Square Planar Fe

Supporting Information for: Catalytic N 2 Reduction to Silylamines and Thermodynamics of N 2 Binding at Square Planar Fe Supporting Information for: Catalytic N 2 Reduction to Silylamines and Thermodynamics of N 2 Binding at Square Planar Fe Demyan E. Prokopchuk, a Eric S. Wiedner, a Eric D. Walter, b Codrina V. Popescu,

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 10, S1-S17, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Structural Analysis and Antitumor Activity

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Supporting Information

Supporting Information Supporting Information Correlating Bridging Ligand with Properties of Ligand- Templated [Mn II 3X 3 ] 3+ Clusters (X = Br -, Cl -, H -, MeO - ) Kevin J. Anderton, 1 David M. Ermert, 1 Pedro A. Quintero,

More information

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts S1 Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts Artis Kinens, Simonas Balkaitis and Edgars Suna * Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia University

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Aromatic Triazole Foldamers Induced by C H X (X = F, Cl) Intramolecular Hydrogen Bonding Jie Shang,, Nolan M. Gallagher, Fusheng Bie,, Qiaolian Li,, Yanke Che, Ying Wang,*,, and

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences (SLU), Box 7015, SE-75007, Uppsala, Sweden,

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide Supporting Information for Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide Haihong He a, Zhiwei Ye b, Yi Xiao b, *, Wei Yang b, *, Xuhong Qian

More information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Pyridyl vs bipyridyl anchoring groups of porphyrin sensitizers for

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. DFT optimized structure of the [Ag III (L 1 )](ClO 4 ) 2 (1 ClO4 ) complex (CCDC code 978368). Hydrogen atoms and the two perchlorate anions have been omitted

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Supporting Information

Supporting Information Supporting Information Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors Peng-Cheng Wang a, Jim-Min Fang a,b, *, Keng-Chang Tsai c, Shi-Yun Wang b, Wen-I Huang b, Yin-Chen Tseng b,

More information

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan* Supporting Information for: Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide Ka-Cheong Lau, Richard F. Jordan* Department of Chemistry, The University of Chicago, 5735 South Ellis

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information

Reactivity of Diiron Imido Complexes

Reactivity of Diiron Imido Complexes One-electron Oxidation Chemistry and Subsequent Reactivity of Diiron Imido Complexes Subramaniam Kuppuswamy, Tamara M. Powers, Bruce M. Johnson, Carl K. Brozek, Jeremy P. Krogman, Mark W. Bezpalko, Louise

More information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2013 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 ISSN 1099 0682 SUPPORTING INFORMATION DOI: 10.1002/ejic.201300309 Title: Hydrogen Evolution Catalyzed by Aluminum-Bridged

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Ruth Castro-Rodrigo, Sumit Chakraborty, Lloyd Munjanja, William W. Brennessel, and William D. Jones* Department

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting information for Red-light activated photocorms of Mn(I) species bearing electron

More information

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property Supporting Information for: Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property Wen-Bin Jia, Hao-Wei Wang, Long-Mei Yang, Hong-Bo Lu, Lin Kong, Yu-Peng

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

Redox Noninnocence of the Bridge in Copper(II) Salophen and bis-oxamato Complexes

Redox Noninnocence of the Bridge in Copper(II) Salophen and bis-oxamato Complexes Electronic supplementary Information for Redox Noninnocence of the Bridge in Copper(II) Salophen and bis-oxamato Complexes David de Bellefeuille, a Maylis Orio, b Anne-Laure Barra, c Ally Aukauloo, d,e

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N Supporting information for: Crystallographic characterization of the geometry changes upon electron loss from 2-tertbutyl-3-aryl-2,3-diazabicyclo[2.2.2]octanes Stephen F. Nelsen, Asgeir E. Konradsson,

More information

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Molecules 2001, 6, 777-783 molecules ISSN 1420-3049 http://www.mdpi.org Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Platinum(II) Seyyed Javad Sabounchei * and Ali Naghipour Chemistry.

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Ullmann-Type Intramolecular C-O Reaction Toward Thieno[3,2-b]furan Derivatives with up to Six Fused Rings

Ullmann-Type Intramolecular C-O Reaction Toward Thieno[3,2-b]furan Derivatives with up to Six Fused Rings Ullmann-Type Intramolecular C-O Reaction Toward Thieno[3,2-b]furan Derivatives with up to Six Fused Rings Daoliang Chen,, Dafei Yuan,, Cheng Zhang,, Hao Wu,, Jianyun Zhang,, Baolin Li*, and Xiaozhang Zhu*,,

More information

Maximizing the electron exchange in a [Fe 3 ] cluster

Maximizing the electron exchange in a [Fe 3 ] cluster Supplementary Information for: Maximizing the electron exchange in a [Fe 3 ] cluster Raúl Hernández Sánchez, Amymarie K. Bartholomew, Tamara M. Powers, Gabriel Ménard, and Theodore A. Betley* Department

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Electronic Supplementary Information High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Experimental details Synthesis of pyreno[4,5-a]coronene: In 1960 E. Clar et.al 1 and

More information

Supporting Information

Supporting Information Supporting Information Tetrathiafulvalene Diindolylquinoxaline: A Dual Signaling Anion Receptor with Phosphate Selectivity Christopher Bejger, Jung Su Park, Eric S. Silver, and Jonathan L. Sessler* 1.

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) A Large Spin, Magnetically Anisotropic, Octanuclear

More information

Supporting Information

Supporting Information Supporting Information Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerism Benjamin Gutschank, Stephan Schulz,* Dieter Bläser and Christoph Wölper Crystallographic

More information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ANNEXE 1 : SPECTRES DE RÉSNANCE MAGNÉTIQUE NUCLÉAIRE DES PRTNS 126 [N-(But-3-ényl)méthylamino]acétate d éthyle (1) N C 2 Et 127 Chlorure de N-but-3-ényl-N-(carboxyméthyl)méthylammonium (2) Cl - H N + H

More information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Ailing Zhang, Sakthi Raje, Jianguo Liu, Xiaoyan Li, Raja Angamuthu, Chen-Ho Tung, and Wenguang Wang* School of Chemistry and Chemical

More information

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes.

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes. Supporting Information for Catalytic Water Oxidation by A Bio-inspired Nickel Complex with Redox Active Ligand Dong Wang* and Charlie O. Bruner Department of Chemistry and Biochemistry and Center for Biomolecular

More information

Supplementary Information

Supplementary Information Supplementary Information Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds Yuexin Guo, Xiao Feng,*, Tianyu Han, Shan Wang, Zhengguo Lin, Yuping Dong,

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Spin Transition and Structural Transformation in a

Spin Transition and Structural Transformation in a Supporting Information for Spin Transition and Structural Transformation in a Mononuclear Cobalt(II) Complex Ying Guo, Xiu-Long Yang, Rong-Jia Wei, Lan-Sun Zheng, and Jun Tao* State Key Laboratory of Physical

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain. a Institute of Chemical Research of Catalonia, Av. Països Catalans, 16, 43007 Tarragona, Spain. b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain

More information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2 Electronic Supplementary Information for: Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O - and H O Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(µ- O)dimanganese(III,IV)

More information

Supporting Information for the Article Entitled

Supporting Information for the Article Entitled Supporting Information for the Article Entitled Catalytic Production of Isothiocyanates via a Mo(II) / Mo(IV) Cycle for the Soft Sulfur Oxidation of Isonitriles authored by Wesley S. Farrell, Peter Y.

More information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13 AEXE 1 : SPECTRES DE RÉSACE MAGÉTIQUE UCLÉAIRE DES PRTS ET DES CARBES-13 122 3,4-Bis(méthoxycarbonyl)-2-méthyl-5-(pent-4 -ényl)-1-phényl-1h-pyrrole (82). Ph 2 C C 2 123 Acide 2-(-benzoyl--méthylamino)oct-7-énoïque

More information

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Krista L. Vikse, a Matthew A. Henderson, a Allen G. Oliver b and

More information

Supporting Information

Supporting Information Supporting Information Exploring the detection of metal ions by tailoring the coordination mode of V-shaped thienylpyridyl ligand in three MOFs Li-Juan Han,, Wei Yan, Shu-Guang Chen, Zhen-Zhen Shi, and

More information

Impeller-like dodecameric water clusters in metal organic nanotubes

Impeller-like dodecameric water clusters in metal organic nanotubes Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Impeller-like dodecameric water clusters in metal organic

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic Supplementary Information

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Supporting Information for: Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Sílvia Alujas-Burgos, Cristina Oliveras-González, Ángel Álvarez-Larena, Pau

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

A versatile electronic hole in one-electron oxidized Ni II bissalicylidene

A versatile electronic hole in one-electron oxidized Ni II bissalicylidene Electronic Supplementary Information for manuscript: A versatile electronic hole in one-electron oxidized Ni II bissalicylidene phenylenediamine complexes Olaf Rotthaus, Olivier Jarjayes,* Carlos Perez

More information

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding Supporting Information for: Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding Catalysts Kayla M. Diemoz, Jason E. Hein, Sean O. Wilson, James C. Fettinger, Annaliese K. Franz*

More information

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 Role of a Non-Innocent Pincer Ligand in the Activation of CO 2 at (PNN)Ru(H)(CO) Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University

More information

Supporting Information

Supporting Information Supporting Information Distinct Mechanoresponsive Luminescence, Thermochromism, Vapochromism and Chlorine Gas Sensing by a Solid-State Organic Emitter S1 Figure S1. 1 H NMR (in CDCl 3 ) spectra of as synthesized

More information

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling Supplementary File Modification of Boc-protected CA508 via acylation and Suzuki-Miyaura Coupling Martin Pisár, Eva Schütznerová 2, Filip Hančík, Igor Popa 3, Zdeněk Trávníček 3 and Petr Cankař, * Department

More information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou* [a] Shanghai Key Laboratory

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Iron Complexes of a Bidentate Picolyl HC Ligand: Synthesis,

More information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information Cyanide-bridged tetradecanuclear Ru II 3M II 11 clusters (M II = Zn II and Cu II ) based on the high connectivity building block [Ru 3 (HAT)(CN) 12 ] 6+ : structural and photophysical properties Juan Manuel

More information

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Armand Jansen van Rensburg, a Marilé Landman, a * Petrus H. van Rooyen, a Marrigje M. Conradie b and Jeanet

More information

Elaborately Tuning Intramolecular Electron Transfer Through Varying Oligoacene Linkers in the Bis(diarylamino) Systems

Elaborately Tuning Intramolecular Electron Transfer Through Varying Oligoacene Linkers in the Bis(diarylamino) Systems Electronic Supplementary Information (ESI) Elaborately Tuning Intramolecular Electron Transfer Through Varying Oligoacene Linkers in the Bis(diarylamino) Systems Jing Zhang 1,+, Zhao Chen 2,+, Lan Yang

More information