Move salts to after ionic

Size: px
Start display at page:

Download "Move salts to after ionic"

Transcription

1 Move salts to after ionic BNDING Ahem-I mean, Chemical Bonding n 1. Chemical bond attraction between atoms in a compound or a molecule Forming a bond n a. When a chemical bond is formed, ENERGY is. RELEASED n This is a exothermic reaction. 2 Mg (s) + 2 (g)à 2Mg (s) attraction 1

2 Breaking a bond n b. When a chemical bond is broken, ENERGY is. ABSRBED n This is a endothermic reaction. 2. Chemical Energy n a. Stored in CEMICAL. BNDS n b. Form of PTENTIAL energy. electricity 2 2 (l) 2 2 (g) + 2 (g) (Electrolysis) 3. Bond Formation n Valence e- play a major role in chemical bonding 3. Bond Formation (cont.) n b. When forming chemical bonds, atoms take on e- configuration of the nearest noble gas (octet rule). 2

3 The ctet Rule n Atoms try to achieve a noble gas e- configuration n For most atoms this means a total of 8 valence e- n Atoms will gain, lose or share to get that magic number. Ionic Bonds n 1.e- are TRANSFERRED from outer shell of one atom to the outer shell of another atom TRANSFER What s an ion?! Ionic Bonds n 2. Bond is formed when the positive ion is attracted to the negative ion. Ions n 1. cation is a PSITIVE ion. cation n 2. anion is a NEGATIVE ion. anion negative 3

4 3. Best examples of ionic bonding n a. Between groups 1A and 2A with groups 6A and 7A When is a bond ionic? n 1. Metal combined with a nonmetal n Ex: Mg, Na n 2. Positive ion with a negative ion n 3. Electronegativity difference 1.7 or greater Let s look at that electronegativity deal. Ions cont. n 3. Positive ions (metallic ions) are smaller than their atoms 1s 2 2s 2 2p 6 3s 1 1s 2 2s 2 2p 6 Na Na +1 Na Na = 0.9 = 3.0 Difference = 2.1 Li 2 Li = 1.0 = 3.5 Difference= 2.5 CaF 2 Ca = 1.0 F = 4.0 Difference = 3.0 *Greatest ionic character n a. Why? n 1. outer energy level was removed n 2. Unbalanced positive charge draws e- closer to nucleus 4

5 Ions cont. if you can t read this see the next slide n 4. Negative ions (nonmetallic ions) are larger X than their + atoms -1 X n a. Why? n 1. Excess negative charge weakens pull of nucleus on e- cloud F F -1 1s 2 2s 7 e- 2 2p 5 1s 2 8 e- 2s 2 2p 6 Ions cont. n 4. Negative ions (nonmetallic ions) are larger than their atoms n a. Why? n 1. Excess negative charge weakens pull of nucleus on e- cloud F 1s 2 2s 2 2p 5 F -1 1s 2 2s 2 2p 6 Chemical Formulas n 1. Empirical formula n a. Shows only lowest ratio of atoms or ions in the compound n b. represents all ionic compounds Ex: Na, Mg 2, Al 2 3, Ba 2 Chemical Formula cont. n 2. Molecular formula n a. Shows number & kind of atoms in one molecule n b. not necessarily in lowest ratio n c. represents covalent compounds only Ex: C , 2 2, C 2, 2 5

6 Electron Dot Structures again! (Lewis Dot Structures) n Represents the valence e - Wooohooo! n B s e- configuration is 1s ; 2 2s 2 2p 1 so the outer energy level is, 2 and there are 2+1 = 3 electrons in level 2. These are the valence electrons!" Try another one n Br is [Ar] 3d 10 4s 2 4p 5 n ow many valence electrons are present? 7 Represents valence e- Represents nucleus and core e- Lewis Dot and Ionic Bonding Let s take a closer look Na ow many does Na want to give away? 1 ow many does want to take? 1 ow many valence e-? Does it want to give away or take to make 8 (octet rule)? ow many valence e-? Does it want to give away or take to make 8 (octet rule)? So what is the charge? +1 Na +1 So what is the charge?

7 Na &.perfect match Na +1-1 What would the empirical formula look like? Na 1 1 or just Na Try another Mg ow many valence e-? Does it want to give away or take to make 8 (octet rule)? Br ow many valence e-? Does it want to give away or take to make 8 (octet rule)? Let s take a closer look Mg & Br what a team! ow many does Mg want to give away? 2 So what is the charge? +2 Mg +2 ow many does Br want to take? 1 So what is the charge? -1 Br -1-1 Mg Br -1 Br +2 What would the empirical formula look like? Mg 1 Br 2 or just MgBr2 7

8 Formation of Salt verall: Na + ½ 2 à Na 1. Ionization of Na Na kcal/mol à Na +1 +1e 2. Splitting of 2 molecule Energy released? ½ kcal/mol à 3. Formation of Chloride Ion Energy taken in? + 1e à kcal/mol 4. Bond Formation Na à Na kcal/mol verall Energy Change? n Energy released: = 272 kcal n Energy taken in: = 145 kcal n verall energy released = 127 kcal/mol LATTICE ENERGY Lattice Structure Covalent bonding n 1. Form when 2 atoms share a pair of e- n 2. Between 2 nonmetals (C 2 ) n 3. Between & a Nonmetal ( 2, ) 8

9 Molecule n 1. Smallest particle of a substance formed by covalent bonding n 2. Can represent elements ( 2 ) or compounds (C 2 ) Two types of Covalent Bonding n 1. Nonpolar n e- are shared equally WY?! n 2. Polar n e- are shared unequally ; some atoms have a stronger attraction for e- Nonpolar Covalent Bonds (e- shared equally) n Between the same atoms n Can be diatomic elements : 2, N 2, 2, F 2, 2, Br 2, I 2 n Electronegativity difference is 0.3 or less Diatomic elements e- dot formula Molecular formula 2 2 Single covalent bond 9

10 More Diatomic Elements N N e- dot formula Molecular formula 2 Double covalent bond You try N N N 2 N 2 Triple covalent bond Polar Covalent Bonds (e- are shared unequally) n Between different atoms n Electronegativity difference 0.4à 1.6 Polar Covalent Bonding: Linear e- dot formula Molecular formula atoms in the bond.9 Polar Covalent Bonding: Bent e- dot formula Molecular formula 4 e- pairs 2 bonds

11 Polar Covalent Bonding: Pyramid N e- dot formula Molecular formula N N N.9 Pyramid 4 e- pairs 3 bonds Valence-Shell Electron Pair Repulsion Theory (VSEPR) n VSEPR states that e- pairs around an atom try to get as far apart from one another as possible n Shapes of molecules are based on this idea ybridization n Carbon forms 4 equivalent bonds n Why? 2s 2 2p 2 PRMTIN 2s 1 2p 3,, YBRIDIZATIN (sp 3 ) 4 ne s & three p orbitals combine to form four orbitals of equal energy (sp 3 orbital) 11

12 sp 3 hybrid orbital When bonding, the promotion to hybridization can occur Ex: Methane C 4 & C C Shape: tetrahedron sp 3 hybrid orbital C Nonpolar Covalent Bonding: Tetrahedron C e- dot formula 4 e-pairs, 4 bonds C C Another type of linear C 2 C C C *nonpolar Molecular formula : C 4 12

13 Recap: Shapes of Molecules n 1. Linear n 2. Bent n 3. Pyramid n 4. Tetrahedron Polar Molecules DIPLES (polar molecules) a. define: Molecule with a asymmetrical (uneven) distribution of electrical charge (e-) b. examples: F,, Br, N 3, attracts electrons more c. Polar covalent bonding usually results in polar molecules n Case 1: Polar covalent bond between 2 atoms gives a polar molecule Ex:, Br n Case 2: Molecule with unsymmetrical arrangement of polar bonds Ex: N 3 N 2 PYRAMID BENT 105 d. Nonpolar Molecules n Case 1: Can result from polar bonds if there is a symmetrical distribution of charge (bonds) Ex: C 4, C 4, C C C C C 13

14 Case 2: Nonpolar covalent bonds always produce nonpolar molecules Ex: 2, N 2, 2, F 2, 2, Br 2, I 2 Nonmetals + Nonmetals Nonmetals + MLECULE Molecular SARED TRANSFERRED Metals + Nonmetals INS Empirical 1.7 or > Diatomic Elements Bonds to form..3 or less.4à 1.6 NNPLAR Share e- equally Nonpolar 2, 2 PLAR Share e- unequally Polar 2, N 3 Symmetrical arrangement C 4, C 4, C 2 Main Properties of Salts Ionic! n igh melting points and boiling points n Very hard, very brittle (breaks on cleavage plane) n Conduct electricity when dissolved in water n STP! 14

15 CEMICAL BND CNCEPT MAP Nonmetals + Nonmetals Nonmetals + MLECULE Molecular SARED 0.3 or less 0.4à 1.6 NNPLAR Share e- equally PLAR Share e- unequally TRANSFERRED Metals + Nonmetals INS Empirical 1.7 or > Exceptions to the Rule n e n n Be n B Something could bond here! Something could bond here! Something could bond here! Something could bond here! e B Be Nonpolar 2, 2 Polar 2, N 3 Symmetrical arrangement C 4, C 4, C 2 15

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CEMICAL BNDING Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to the

More information

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed. CHEMICAL BONDS Atoms or ions are held together in molecules or compounds by chemical bonds. The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CEMISTRY The Molecular Nature of Matter SIXT EDITIN Jespersen Brady yslop Chapter 9 The Basics of Chemical Bonding Copyright 2012 by John Wiley & Sons, Inc. Chemical Bonds Attractive forces that hold atoms

More information

Chemical Bonds. A chemical bond is the force of attraction holding atoms together due to the transfer or sharing of valence electrons between them.

Chemical Bonds. A chemical bond is the force of attraction holding atoms together due to the transfer or sharing of valence electrons between them. Chemical Bonds A chemical bond is the force of attraction holding atoms together due to the transfer or sharing of valence electrons between them. Atoms will either gain, lose or share electrons in order

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

Section 6.1 Types of Chemical Bonding

Section 6.1 Types of Chemical Bonding Section 6.1 Types of Chemical Bonding Chemical bond: Chemical bond: Chemical bond: a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together.

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

Test Review # 4. Chemistry: Form TR4.11A

Test Review # 4. Chemistry: Form TR4.11A Chemistry: Form TR4.11 REVIEW Name Date Period Test Review # 4 Bonding. The electrons of one atom are attracted to the protons of another. When atoms combine, there is a tug of war over the valence electrons.

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: forces of attraction within the same molecule. Examples:

More information

Section 8.1 The Covalent Bond

Section 8.1 The Covalent Bond Section 8.1 The Covalent Bond Apply the octet rule to atoms that form covalent bonds. Describe the formation of single, double, and triple covalent bonds. Contrast sigma and pi bonds. Relate the strength

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 12 Chemical Bonding Structure

More information

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation Lecture Presentation Chapter 9 Chemical Bonding I: The Lewis Model HIV-Protease HIV-protease is a protein synthesized by the human immunodeficiency virus (HIV). This particular protein is crucial to the

More information

UNIT 5.1. Types of bonds

UNIT 5.1. Types of bonds UNIT 5.1 Types of bonds REVIEW OF VALENCE ELECTRONS Valence electrons are electrons in the outmost shell (energy level). They are the electrons available for bonding. Group 1 (alkali metals) have 1 valence

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Physical Science 1 Chapter 12 THE MODERN ATOM

Physical Science 1 Chapter 12 THE MODERN ATOM THE MODERN ATOM The modern model of the atom describes the electron cloud consisting of separate energy levels, each containing a fixed number of electrons. The energy levels increase in energy based on

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept Chem 1075 Chapter 12 Chemical Bonding Lecture Outline Slide 2 Chemical Bond Concept Recall that an atom has and electrons. Core electrons are found to the nucleus. Valence electrons are found in the s

More information

Chemistry Review Unit 4 Chemical Bonding

Chemistry Review Unit 4 Chemical Bonding Chemistry Review The Nature of Chemical Bonding, Directional Nature of Covalent Bonds, Intermolecular Forces Bonding 1. Chemical compounds are formed when atoms are bonded together. Breaking a chemical

More information

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

Lesson 1: Stability and Energy in Bonding Introduction

Lesson 1: Stability and Energy in Bonding Introduction Lesson 1: Stability and Energy in Bonding Introduction Chemical bonding is the simultaneous attraction of two positive nuclei to negative electrons. Chemical bonding is said to be the glue that holds particles

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Atom the smallest unit of matter indivisible. Helium atom

Atom the smallest unit of matter indivisible. Helium atom Atom the smallest unit of matter indivisible Helium atom electron shells a) Atomic number = number of Electrons b) Electrons vary in the amount of energy they possess, and they occur at certain energy

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the

Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the outermost, or highest energy level The number of Valence

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms.

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms. A chemical bond is a mutual electrical attraction between the nucleus and valence electrons of different atoms that binds the atoms together. Why bond? As independent particles, atoms have a high potential

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Lewis Symbols and the Octet Rule When atoms or ions are strongly attracted to one another, we say that there is a chemical bond between them. In chemical

More information

Noble gases do not join other atoms to form compounds. They seem to be most stable just as they are.

Noble gases do not join other atoms to form compounds. They seem to be most stable just as they are. UNIT 3: TE NATURE MATTER: MLECULES There are fewer than one hundred naturally occurring elements on the earth, but there are billions of compounds made of those elements. In this unit, we will examine

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

4/6/2015. Formed between metals and non-metals Opposite sides of the periodic table CHEMICAL BOND IONIC VS. COVALENT BONDS CHEMICAL BONDING BOND TYPES

4/6/2015. Formed between metals and non-metals Opposite sides of the periodic table CHEMICAL BOND IONIC VS. COVALENT BONDS CHEMICAL BONDING BOND TYPES CEMICAL BOND CEMICAL BONDING BOND TYPES IONIC VS. COVALENT BONDS Ionic Bond bonding between a metal (cation) & a non metal (anion) that involves the transfer of electrons from cation to anion (forms compounds)

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

Often times we represent atoms and their electrons with Lewis Dot Structures.

Often times we represent atoms and their electrons with Lewis Dot Structures. They are trying to get their number of valence electrons to either 0 or 8. Group 1: 1 valence electron Group 2: 2 valence electrons Group 13: 3 valence electrons Group 14: 4 valence electrons Group 15:

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

IB Chemistry. Chapter 4.1

IB Chemistry. Chapter 4.1 IB Chemistry Chapter 4.1 Chemical Bonds Atoms or ions that are strongly attached to one another Chemical bonds will form if potential energy decreases (becomes more stable) 2 Valence Electrons Valence

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

MATTER AND ITS PROPERTIES

MATTER AND ITS PROPERTIES FINAL REVIEW MATTER AND ITS PROPERTIES VIDEO ATOM Smallest unit of an element that maintains the chemical identity of that element. ELEMENT A pure substance that cannot be broken down into simpler, stable

More information

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding.

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

NOTES: UNIT 6: Bonding

NOTES: UNIT 6: Bonding Name: Regents Chemistry: Mr. Palermo NOTES: UNIT 6: Bonding www.mrpalermo.com Name: Key Ideas Compounds can be differentiated by their chemical and physical properties. (3.1dd) Two major categories of

More information

Atom the smallest unit of matter indivisible. Helium atom

Atom the smallest unit of matter indivisible. Helium atom Atom the smallest unit of matter indivisible Helium atom electron shells a) Atomic number = number of Electrons a) Electrons vary in the amount of energy they possess, and they occur at certain energy

More information

Chapter #3 Chemical Bonding

Chapter #3 Chemical Bonding Chapter #3 Chemical Bonding Valence Electrons electrons in the last energy level of an atom. Lewis dot symbols Consists of the symbol of an element and one dot for each valence electron in the atom of

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: 1. I can define intramolecular forces and intermolecular

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Covalent bonding occurs in nonmetal compounds. Use the highlighter to select the compounds that are covalently bonded. HCl

Covalent bonding occurs in nonmetal compounds. Use the highlighter to select the compounds that are covalently bonded. HCl Covalent bonding occurs in nonmetal compounds. Use the highlighter to select the compounds that are covalently bonded. 2 C 2 Cl Li NaF Mg C 4 N NaCl 3 Drag this to the target to reveal the answers. Properties

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

Chemistry Objective. Warm-Up What do the following atoms have to do to become stable? a. barium b. nitrogen c. fluorine

Chemistry Objective. Warm-Up What do the following atoms have to do to become stable? a. barium b. nitrogen c. fluorine Chemistry Objective Students will: 1. describe how a covalent bond is formed. 2. describe properties of a covalently bonded substance. 3. describe the difference between a polar covalent and nonpolar covalent

More information

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS 1 CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS PERIODIC TRENDS: See pages 214-216, 221 Table 11.3, and 227 + 228 of text. Lewis Structures of Atoms: The Lewis Dot Diagram

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chemical Bonding -- Lewis Theory (Chapter 9)

Chemical Bonding -- Lewis Theory (Chapter 9) Chemical Bonding -- Lewis Theory (Chapter 9) Ionic Bonding 1. Ionic Bond Electrostatic attraction of positive (cation) and negative (anion) ions Neutral Atoms e - transfer (IE and EA) cation + anion Ionic

More information

Ch8 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch8 Test. Multiple Choice Identify the choice that best completes the statement or answers the question. h8 Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. n ionic bond is. a. attraction of an atom for its electrons. b. attraction of atoms for electrons

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chapter 6 PRETEST: Chemical Bonding

Chapter 6 PRETEST: Chemical Bonding Chapter 6 PRETEST: Chemical In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.The charge on an ion is a. always positive.

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds Chapter 8 Chemical Bonding: General Concepts 1 8.1 Electron transfer leads to the formation of ionic compounds Ionic compounds form when metals and nonmetals react The attraction between positive and negative

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Chemical Bonding Bonding Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Type of bond depends on electron configuration and electronegativity Why do

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Big Ideas in Unit 6 How do atoms form chemical bonds? How does the type of a chemical bond influence a compounds physical and

More information

Name: Practice Packet. Regents Chemistry: Dr. Shanzer. Chapter 9: Chemical Bonding.

Name: Practice Packet. Regents Chemistry: Dr. Shanzer. Chapter 9: Chemical Bonding. Name: Regents Chemistry: Dr. Shanzer Practice Packet Chapter 9: Chemical Bonding http://drshanzerchemistry.weebly.com 1 Chemical Bonding Objectives Describe the 2 major types of chemical bonds in terms

More information

BONDING REVIEW. You need a Periodic Table, Electronegativity table & Polarity chart!

BONDING REVIEW. You need a Periodic Table, Electronegativity table & Polarity chart! BONDING REVIEW You need a Periodic Table, Electronegativity table & Polarity chart! What is the correct bond angle for Bent with 2 lone pairs on the central atom? 105 What is the predicted bond angle for

More information

Types of Bonding : Ionic Compounds. Types of Bonding : Ionic Compounds

Types of Bonding : Ionic Compounds. Types of Bonding : Ionic Compounds Types of Bonding : Ionic Compounds Ionic bonding involves the complete TRANSFER of electrons from one atom to another. Usually observed when a metal bonds to a nonmetal. - - - - - - + + + + + + + + + +

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity

Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity Chapters 7.1-2 and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity Chemical Bonds and energy bond formation is always exothermic As bonds form, chemical potential energy is released as other

More information

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING 6.1 Introduction to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds Involves valence electrons. PE is lower in bonded atoms. Attractive force that develops

More information

Chapter 9 MODELS OF CHEMICAL BONDING

Chapter 9 MODELS OF CHEMICAL BONDING Chapter 9 MODELS OF CHEMICAL BONDING 1 H H A + B H H A B A comparison of metals and nonmetals 2 9.1 Atomic Properties & Chemical Bonds Chemical bond: A force that holds atoms together in a molecule or

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

UNIT 7 DAY 1. Ionic Bonding Basics; Dot diagrams

UNIT 7 DAY 1. Ionic Bonding Basics; Dot diagrams UNIT 7 DAY 1 Ionic Bonding Basics; Dot diagrams U7D1: Ionic Bonding Basics HW: See Schedule; Lab Due Thursday Do Now: 1.Write your name, date and period on all packets. 2.Look through schedule 3. answer

More information

Chapter 6. The Chemical Bond

Chapter 6. The Chemical Bond Chapter 6 The Chemical Bond Some questions Why do noble gases rarely bond to other elements? How does this relate to why the atoms of other elements do form bonds? Why do certain elements combine to form

More information

Also see lattices on page 177 of text.

Also see lattices on page 177 of text. Chemistry Ch 6 sect 3 «F_Name» «L_Name» Period «Per» «num» 6-3-1 Compare and contrast a chemical formula for a molecular compound with one for an ionic compound. Bond: Attraction between 2 or more atoms

More information

REVIEW ANSWERS EXAM 3 GENERAL CHEMISTRY I Do not hesitate to contact the instructor should you have any questions.

REVIEW ANSWERS EXAM 3 GENERAL CHEMISTRY I Do not hesitate to contact the instructor should you have any questions. REVIEW ANSWERS EXAM 3 GENERAL CEMISTRY I Do not hesitate to contact the instructor should you have any questions. 1) Predict which of the following has the largest atomic radius: potassium (K) OR selenium

More information

10. CHEMICAL BONDING

10. CHEMICAL BONDING CLASS-10 1. List the factors that determine the type of bond that will be formed between two atoms? A. The factors that determine the type of bond that will be formed between two atoms are (i) Number of

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chemistry Chapter 6 Test Review

Chemistry Chapter 6 Test Review Chemistry Chapter 6 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mutual electrical attraction between the nuclei and valence electrons

More information

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds Kinds of chemical bonds: 1. Ionic 2. Covalent 3. Metallic Useful guideline: Octet rule Atoms tend to gain, lose, or share e - to achieve

More information

1.12 Covalent Bonding

1.12 Covalent Bonding 1.12 Covalent Bonding covalent bond a bond that arises when two atoms share one or more pairs of electrons between them. The shared electron pairs are attracted to the nuclei of both atoms. molecule two

More information