IB Chemistry. Chapter 4.1

Size: px
Start display at page:

Download "IB Chemistry. Chapter 4.1"

Transcription

1 IB Chemistry Chapter 4.1

2 Chemical Bonds Atoms or ions that are strongly attached to one another Chemical bonds will form if potential energy decreases (becomes more stable) 2

3 Valence Electrons Valence electrons are the electrons in the outer shell that are on the same period or row. These are the electrons that are involved in bonding atoms together. Valence electrons can easily be found by finding the group number the element is in Nitrogen has 5 valence electrons (it is in group 5) Group 1 has 1, group 2 has 2, group 3 has 3, etc.

4 Ions When an atom gains or loses an electron, it is called an ion. (The valence electrons are the ones lost) Cation if positively charged or giving electrons away. Anion if negatively charged or accepting electrons.

5 Ions Metals tend to lose their valence electrons when bonding and become cations. This is due to lower ionization energies Nonmetals tend to gain electrons in their highest energy level when bonding and become anions. This is due to high electronegativity and high ionization energies The most stable atoms have 8 electrons in their highest energy level (the octet rule)

6 Predicting Ionic Charges Group 1: Lose 1 electron to form 1+ ions H + Li + Na + K +

7 Predicting Ionic Charges Group 2: Loses 2 electrons to form 2+ ions Be 2+ Mg 2+ Ca 2+ Sr 2+ Ba 2+

8 Predicting Ionic Charges B 3+ Al 3+ Ga 3+ Group 3: Loses 3 electrons to form 3+ ions

9 Predicting Ionic Charges Carbon loses 4, but the metals have multiple charges Group 4: Lose 4 electrons or gain 4 electrons?

10 N 3- P 3- As 3- Predicting Ionic Charges Nitride Phosphide Arsenide Group 5: Gains 3 electrons to form 3- ions

11 O 2- S 2- Se 2- Predicting Ionic Charges Oxide Sulfide Selenide Group 6: Gains 2 electrons to form 2- ions

12 Predicting Ionic Charges F 1- Cl 1- Br 1- I 1- Fluoride Chloride Bromide Iodide Group 7: Gains 1 electron to form 1- ions

13 Predicting Ionic Charges Group 0: Stable Noble gases do not form ions!

14 Predicting Ionic Charges Transition metals: Many transition elements have more than one possible charge. Iron(II) = Fe 2+ Iron(III) = Fe 3+

15 Predicting Ionic Charges Some transition elements have only one possible charge. Zinc = Zn 2+ Silver = Ag +

16 Polyatomic ions These are groups of atoms that hang around together and have a charge. Hydroxide ion Ammonium ion

17 Here is a trick to name and know about 48 polyatomic ions. Now to name them Like the chart above (base element name) ate BO 3 CO 3 NO 3 1 more oxygen than above Per -(base element name) ate 1 less oxygen than above (base element name ite 2 less oxygen than above Hypo (base element name) - ite PO 4 O SO 4 AsO 4 SeO 4 SbO 4 TeO 4 F ClO 3 BrO 3 IO 3 Noble Gases

18 The Octet Rule Atoms tend to gain, lose, or share e- until they are surrounded by 8 valence e- and are thus energetically stable. Exceptions do occur (and will be discussed later.) 18

19 Increasing Diff. of EN Types of Bonds 1. Ionic: electrostatic attraction between oppositely charged ions (typically between a metal and a nonmetal) 2. Covalent: sharing of e- between two atoms (typically between nonmetals) molecules created 3. Metallic: sea of e- ; bonding e- are relatively free to move throughout the 3D structure Ionic Covalent Metallic 19

20 Ionic bonding Ionic bonds do not form molecules An ionic formula is an empirical formula (smallest whole number ratio of atoms) and doesn t show what the structure looks like Ionic compounds are neutral, the positive charges balance out the negative charges. Ionic bonds form a lattice structure 20

21 Ionic Bonding Results as atoms lose or gain e - to achieve 8 electrons in the highest shell The bonded state is lower in energy (and therefore more stable). Electrostatic attraction results from the opposite charges. Occurs when diff. of EN of atoms is > 1.7 (maximum is 3.3: CsF) Can lead to interesting crystal structures Ionic compounds are brittle solids with high melting points. Solids do not conduct electricity, but molten form will conduct (ions freely moving) 21

22 Naming Ionic Compounds Cation first, then anion Monatomic cation = name of the element Ca 2+ = calcium ion Monatomic anion = root + -ide Cl - = chloride CaCl 2 = calcium chloride If the anion is a polyatomic ion, just use the name on the polyatomic ion CaSO 4 = calcium sulfate

23 Naming Ionic Compounds Metals with multiple charges (transition metals) some metal forms more than one cation use Roman numeral in name PbCl 2 Pb 2+ is cation PbCl 2 = lead(ii) chloride

24 Writing Ionic Compound Formulas Example: Barium nitrate 1. Write the formulas for the cation and anion, including CHARGES! 2. Check to see if charges are balanced. 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion. Ba 2+ ( NO - 3 ) 2 Ba(NO 3 ) 2 Not balanced!

25 Writing Ionic Compound Formulas Example: Iron(III) chloride 1. Write the formulas for the cation and anion, including CHARGES! 2. Check to see if charges are balanced. 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion. Fe 3+ Cl - 3 FeCl 3 Not balanced!

26 Writing Ionic Compound Formulas Example: Aluminum sulfide 1. Write the formulas for the cation and anion, including CHARGES! 2. Check to see if charges are balanced. 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion. Al 3+ S Al 2 S 3 Not balanced!

27 Writing Ionic Compound Formulas Example: Magnesium carbonate 1. Write the formulas for the cation and anion, including CHARGES! 2. Check to see if charges are balanced. Mg 2+ CO 3 2- MgCO 3 They are balanced!

28 Writing Ionic Compound Formulas Example: Zinc hydroxide 1. Write the formulas for the cation and anion, including CHARGES! 2. Check to see if charges are balanced. 3. Balance charges, if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion. Zn 2+ ( OH - ) 2 Zn(OH) 2 Not balanced!

29 Chapter

30 Covalent Bonds Covalent bonds form molecules The formula is not always empirical but shows what the molecule looks like A molecular formula shows what the molecule actually looks like Molecular formula: C 6 H 6 empirical: CH 30

31 Molecules- 2 or more atoms bound together that act as a single, distinct object Theses molecules are shown in ball and stick form. These are also represented in structural formulas like this: H O H N H H H H H C H H

32 Condensed structural formula Ball and Stick Structural Condensed

33 Diatomics, H N F O I Cl Br Elements can exist as molecules. These elements can exist as shown. Notice that P and S have been added

34 Covalent Bonding Atoms share e- to achieve noble gas configuration that is lower in energy (and therefore more stable). Polar covalent: (different elements) e- pulled closer to more EN atom and are shared unequally -Nonpolar covalent: (same elements) e- shared equally 34

35 Polarity: Polarity in covalent bonds 1. Polar bond: bonds in which electron density is unsymmetrical 2. Dipole: Contains a + and a - pole 3. Nonpolar bond: two atoms joined are identical. 4. Covalent bonds between two unlike atoms are always polar. 5. The extent of the polarity of a covalent bond is related to the difference in the electronegativity.

36 H 2 nonpolar; the hydrogens share the electrons equally HF polar: fluorine pulls the electrons closer so they share the electrons unequally In a polar molecule, one end is partially positive and one is partially negative (Dipole) s + s - + H F or H F (vector points to neg. end) 36

37 Covalent bonds a line between atoms shows that 2 electrons are being shared H F (single bond) Multiple bonds A double line shows that 4 electrons are being shared O=O (double bond) A triple line shows that 6 electrons are being shared N=N (triple bond) Bond length : triple < double < single Bond energy : triple>double>single 37

38 Bond Order An indication of bond strength and bond length Single bond: 1 pair of e- shared Ex: F 2 :F-F: Double bond: 2 pairs of e- shared Longest, weakest Ex: O 2 O=O Triple bond: 3 pairs of e- shared Ex: N 2 :N N: Shortest, strongest 38

39 Lewis Structures Lewis structures show how valence electrons are arranged among atoms in a molecule. Lewis structures Reflect the central idea that stability of a compound relates to noble gas electron arrangemnent. Shared electrons pairs are covalent bonds and can be represented by two dots (:) or by a single line ( - )

40 Lewis structures Central atom least electronegative atom (carbon is always in the center if its in the molecule) Hydrogen can only have a single bond because it only needs 2 electrons (can never be a central atom) Count the number of valence electrons in the molecule and make sure that many are in the Lewis structure. If there is a charge, add e- (if an anion) or subtract e- (if a cation). Complete the octet for all atoms (remember hydrogen only needs 2 electrons) Another exception to the rule: Boron only wants 6 electrons around it

41 .... Completing a Lewis Structure -CH 3 CCl Make carbon the central atom (least electronegative atom) Add up available valence electrons: C = 4, H = (3)(1),Cl = 7 Total = 14 Join peripheral atoms to the central atom with electron pairs. Complete octets on atoms other than hydrogen with remaining electrons H H.. C.. H.. Cl.. Lone pairs

42 Lone pairs- electrons that are not shared but belong to a single atom in a Lewis structure If there are too many electrons when drawing a Lewis structure, try multiple bonds

43 Resonance Occurs when more than one valid Lewis structure can be written for a particular molecule. These are resonance structures. The actual structure is an average of the resonance structures.

44 Bond Order & Resonance Structures Bond order: single bond = 1, double bond=2, triple bond = 3 To determine bond order with resonance structures: Pick one bond and add up the integer bond order in one resonance structure to the same bond position in all other resonance structures. Divide the sum by the number of resonance structures to find bond order. 44

45 Which has shorter bonds? What is the bond order in each? SO 3 or SO 3 2- Answer: SO 3 Bond order for SO 3 is 1 1/3 bond order of SO 3 2- is 1 45

46 Molecular shapes: V.S.E.P.R. model Valence-shell electron-pair repulsion theory Because e - pairs repel, molecular shape adjusts so the valence e - pairs are as far apart as possible around the central atom. Electron domains: areas of valence e - density around the central atom; result in different molecular shapes Includes bonding e - pairs and nonbonding e - pairs A single, double, or triple bond counts as one domain A lone pair counts as one domain Summary of L m AB n : L = lone or non-bonding pairs A = central atom B = bonded atoms

47 basic domains Linear bond angle = 180 Trigonal planar bond angle = 120 Tetrahedral bond angle = If there are only two atoms in a molecule, the geometry is linear

48 # of e - domains Molecular geometry formula Predicted bond angle(s) Example (Lewis structure with molecular shape) X 2 A 180º X Linear AB 2 CO 2

49 B B A B 3 X A X X AB 3 Trigonal planar 120 NO 3 - B : A B < 120º Trigonal planar LAB 2 Bent NO 2 1-

50 B B A 109.5º 4 X X A X X B B AB 4 Tetrahedral B : A < 109.5º CH 4 or X A X B LAB 3 B Trigonal pyramidal B : Ex: NH 3 = 107º <<109.5º NH 3 X X Tetrahedral : A L 2 AB 2 B Bent Ex: H 2 O = 104.5º H 2 O

51 Molecular Polarity A molecule is polar if its centers of (+) and (-) charge do not coincide. A bond s polarity is determined by the difference of EN between atoms in bond. Partial (+) and partial (-) on atoms in a polar bond can be represented as d + and d -. Bond polarity is most often represented by an arrow that points toward the d - (most EN atom), showing the shift in e - density. d + d - H-Cl: : : H-Cl: : :

52 The sum of the bond s dipoles in a molecule determines the overall polarity of the molecule. Shapes whose dipoles cancel out (nonpolar) as long as all outside atoms are the same: Linear, trigonal planar, tetrahedral- no lone pairs (if one of the outside atoms are different, the molecule is polar) Shapes whose dipoles don t cancel out (polar): Bent and trigonal pyramidal lone pairs on central atom

53 Ex: Draw Lewis structures and name the molecular geometry. Is it polar or nonpolar? CO 2 Linear(nonpolar) H 2 S bent (polar) CCl 4 SO 2 Tetrahedral (nonpolar) bent (polar)

54 Intermolecular forces Chapter 4.3

55 Intermolecular Forces Forces that attract molecules to other molecules. These include: Hydrogen bonding Dipole-dipole attraction van der waals forces

56 Melting points and boiling points reflect the strength of bonds or intermolecular forces. Intermolecular forces are much weaker than chemical bonds

57 Relative Magnitudes of Forces The types of bonding forces vary in their strength as measured by average bond energy. Strongest Covalent bonds (400 kcal) Hydrogen bonding (12-16 kcal ) Dipole-dipole interactions (2-0.5 kcal) Weakest Van der waals (less than 1 kcal)

58 Polarity A molecule, such as HF, that has a center of positive charge and a center of negative charge is said to be polar, or to have a dipole. H F d+ d-

59 Dipole-Dipole Attraction Attraction between oppositely charged regions of neighboring molecules. As the polarity increases, the attraction increases. Dipole-dipole occurs in polar molecules

60 Hydrogen Bonding attraction between hydrogen and more electronegative neighboring atoms such as fluorine, oxygen and nitrogen. (very polar bonds) This is just a strong dipole-dipole attraction Hydrogen bonding occurs in polar molecules where H is bonded to F, O, or N

61 Hydrogen Bonding in Water

62 Induced or instantaneous dipoles Occurs in all molecules and atoms Van der waals forces These are the only forces of attraction between completely nonpolar molecules Larger molecules (more electrons) create stronger van der waals forces

63 Van der waals in Hydrocarbons

64 List the following in order of increasing boiling points: BaCl 2, H 2, CO, HF, Ne Answer: H 2, Ne, CO, HF, BaCl 2 nonpolar, nonpolar, polar, polar, ionic Van der waals, van der waals, dipole-dipole, hydrogen, ionic

65 Chapter 4.4

66 Metallic bonding Metallic elements have low I.E.; this means valence e - are held loosely. A metallic bond forms between metal atoms because of the movement of valence e - from atom to atom to atom in a sea of electrons. The metal thus consists of cations held together by negatively-charged e - "glue. This results in excellent thermal & electrical conductivity, ductility, and malleability. A combination of 2 metals is called an alloy. 66

67 Free e - move rapidly in response to electric fields, thus metals are excellent conductors of electricity. Free e - transmit kinetic energy rapidly, thus metals are excellent conductors of heat. Layers of metal atoms are difficult to pull apart because of the movement of valence e-, so metals are durable. However, individual atoms are held loosely to other atoms, so atoms slip easily past one another, so metals are ductile.

68 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact number of atoms, but instead the smallest whole number ratio of atoms (no lewis structures) Covalent compound (nonmetal/nonmetal) creates molecules Formula tells you the exact number of atoms in the molecule. (lewis structures)

UNIT 5.1. Types of bonds

UNIT 5.1. Types of bonds UNIT 5.1 Types of bonds REVIEW OF VALENCE ELECTRONS Valence electrons are electrons in the outmost shell (energy level). They are the electrons available for bonding. Group 1 (alkali metals) have 1 valence

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Unit 3: Chemical Bonding and Molecular Structure Bonds Forces that hold groups of atoms together and make them function as a unit. Ionic bonds transfer of electrons

More information

UNIT 3: CONCEPTS OF CHEMICAL BONDING. Chapter Chapter

UNIT 3: CONCEPTS OF CHEMICAL BONDING. Chapter Chapter UNIT 3: CONCEPTS OF CHEMICAL BONDING Chapter 8.1-8.7 Chapter 2.5-2.7 UNIT 3.1 Chapter 8.1, 8.2 2 CHEMICAL BONDS Atoms or ions that are strongly attached to one another Chemical bonds will form if potential

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Unit 5: Ionic and Metallic Bonding H 2 O Valence Electrons are? The electrons responsible for the chemical properties of atoms, and are those in the outer energy level. Valence electrons - The s and p

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Chemistry 51 Chapter 5 OCTET RULE & IONS

Chemistry 51 Chapter 5 OCTET RULE & IONS OCTET RULE & IONS Most elements, except noble gases, combine to form compounds. Compounds are the result of the formation of chemical bonds between two or more different elements. In the formation of a

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Formula Writing. (nonmetals) METALS. oxidation number-number assigned to keep track of electron gain or loss. lose electron. gain electron anion

Formula Writing. (nonmetals) METALS. oxidation number-number assigned to keep track of electron gain or loss. lose electron. gain electron anion Formula Writing oxidation number-number assigned to keep track of electron gain or loss lose electron + cation METALS - gain electron anion (nonmetals) cation is written first anion is second positive

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

NOTES: UNIT 6: Bonding

NOTES: UNIT 6: Bonding Name: Regents Chemistry: Mr. Palermo NOTES: UNIT 6: Bonding www.mrpalermo.com Name: Key Ideas Compounds can be differentiated by their chemical and physical properties. (3.1dd) Two major categories of

More information

ELECTRONS. Construct your own electron dot diagram Choose one element & drag the correct number of VALENCE Br electrons around it.

ELECTRONS. Construct your own electron dot diagram Choose one element & drag the correct number of VALENCE Br electrons around it. Ch. 6 - Chemical Bonds Chemical reactivity depends on electron configuration. Remember the Stable Octet rule: when the highest energy level occupied is filled with electrons (8 electrons for most atoms),

More information

NOTES: Unit 4: Bonding

NOTES: Unit 4: Bonding Name: Regents Chemistry: Mr. Palermo Student Version NOTES: Unit 4: Bonding Name: 1. Ion 2. Positive/Negative ion 3. Stable Octet 4. Diatomic Molecules 5. Electronegativity 6. Ionic Bond 7. Covalent Bond

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Metals with Variable Charge

Metals with Variable Charge Metals with Variable Charge Most transition metals (3-12) and Group 4A (14) metals form 2 or more positive ions, except Zn 2+, Ag +, and Cd 2+, which form only one ion. 2013 Pearson Education, Inc. Chapter

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Chemical Bonding Bonding Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Type of bond depends on electron configuration and electronegativity Why do

More information

Chemistry Chapter 6 Test Review

Chemistry Chapter 6 Test Review Chemistry Chapter 6 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mutual electrical attraction between the nuclei and valence electrons

More information

Formation of Ions. Ions formed when atoms gain or lose valence e - to achieve a stable octet

Formation of Ions. Ions formed when atoms gain or lose valence e - to achieve a stable octet Ionic Bonding Formation of Ions Ions formed when atoms gain or lose valence e - to achieve a stable octet Cation Positively charged ion Forms when atom loses electrons Anion negatively charged ion Forms

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds Involves valence electrons. PE is lower in bonded atoms. Attractive force that develops

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Big Ideas in Unit 6 How do atoms form chemical bonds? How does the type of a chemical bond influence a compounds physical and

More information

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed. CHEMICAL BONDS Atoms or ions are held together in molecules or compounds by chemical bonds. The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms

More information

CHAPTER 8 Ionic and Metallic Bonds

CHAPTER 8 Ionic and Metallic Bonds CHAPTER 8 Ionic and Metallic Bonds Shows the kind of atoms and number of atoms in a compound. MgCl 2 NaCl CaCO 3 Al 2 O 3 Ca 3 (PO 4 ) 2 Chemical Formulas Al: Cl: counting atoms AlCl 3 Pb: N: O: Pb(NO

More information

CP Covalent Bonds Ch. 8 &

CP Covalent Bonds Ch. 8 & CP Covalent Bonds Ch. 8 & 9 2015-2016 Why do atoms bond? Atoms want stability- to achieve a noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Honors Chemistry - Unit 9 Chapter 6: Bonding & Molecular Structures. Unit 9 Packet Page 1 of 14

Honors Chemistry - Unit 9 Chapter 6: Bonding & Molecular Structures. Unit 9 Packet Page 1 of 14 Honors Chemistry - Unit 9 Chapter 6: Bonding & Molecular Structures Unit 9 Packet Page 1 of 14 Vocab Quiz: UT Due: Test Date: Quiz Date(s): FORMULAS/CONSTANTS Memorize VSEPR Chart First 6 Shapes!! OBJECTIVES:

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Notes: Covalent Bonding

Notes: Covalent Bonding Name Chemistry Pre-AP Notes: Covalent Bonding Period The main focus of this unit is on the covalent bond; however, we will briefly treat the ionic and metallic bond as well. I. Chemical Bonding Overview

More information

Bonding. October 13, Honors TypesofChemicalBonds.notebook

Bonding. October 13, Honors TypesofChemicalBonds.notebook Bonding Power Standards 1. OBJ: Students will be able to identify an ionic compound 2. OBJ: Students will be able to write out an ionic compounds in name and formula. 3. OBJ: Students will be able to characterize

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chemical Bonding. Comparison of Properties Ionic Compounds Covalent Compounds Metals

Chemical Bonding. Comparison of Properties Ionic Compounds Covalent Compounds Metals Chemical Bonding Comparison of Properties Ionic Compounds Covalent Compounds Metals Essential Questions Why/How do atoms combine with one another to form the vast array of chemical substances that exist?

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

Ionic, Covalent, Metallic

Ionic, Covalent, Metallic Ionic, Covalent, Metallic Physical Properties of Types of Compounds IONIC COVALENT METALLIC Attractive/force strength Melting/Boiling point Strong Weak Varies High Low Varies Vapor pressure Low High Varies

More information

The Structure of Matter:

The Structure of Matter: The Structure of Matter: How atoms form compounds and Chemical Bonding This information is found in Chapter 6 Sections 1 & 3. 1 Compounds Are formed when two or more elements combine (or compounds combine)

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING 6.1 Introduction to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

Chemical Bonding: Chemical Formulas HL

Chemical Bonding: Chemical Formulas HL Name: Chemical Bonding 5. Chemical Bonding: Chemical Formulas Ionic Bonding Covalent Bonding Electronegativity Shapes of Molecules and Intermolecular Forces Objectives -understand that compounds can be

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Name: Practice Packet. Regents Chemistry: Dr. Shanzer. Chapter 9: Chemical Bonding.

Name: Practice Packet. Regents Chemistry: Dr. Shanzer. Chapter 9: Chemical Bonding. Name: Regents Chemistry: Dr. Shanzer Practice Packet Chapter 9: Chemical Bonding http://drshanzerchemistry.weebly.com 1 Chemical Bonding Objectives Describe the 2 major types of chemical bonds in terms

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

All elements what to be STABLE (full or empty like the noble gases of group 18.) All except H and He want 8 valence electrons (Stable Octet!

All elements what to be STABLE (full or empty like the noble gases of group 18.) All except H and He want 8 valence electrons (Stable Octet! SCIENCE FOUNDATIONS Chemical Bonds Remember from last chapter the number of VALENCE ELECTRONS (electrons in the outermost energy level) and OXIDATION NUMBER (ion each element becomes to get full or empty)

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Ionic and Molecular Compounds

Ionic and Molecular Compounds Ionic and Molecular Compounds Chapter 6 Ch. 6 Ionic and Molecular Compounds 6.1 Ions: Transfer of Electrons 6.2 Writing Formulas for Ionic Compounds 6.3 Naming and Writing Ionic Formulas 6.4 Polyatomic

More information

Ionic and Molecular Compounds

Ionic and Molecular Compounds Ionic and Molecular Compounds Chapter 6 Ch. 6 Ionic and Molecular Compounds 6.1 Ions: Transfer of Electrons 6.2 Writing Formulas for Ionic Compounds 6.3 Naming and Writing Ionic Formulas 6.4 Polyatomic

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Chapter 5 BONDING AND MOLECULES

Chapter 5 BONDING AND MOLECULES Chapter 5 BONDING AND MOLECULES How Do Atoms Combine to Form Compounds? (5.1) Chemical bonds: a force of attraction between atoms or ions. Octet Rule: atoms tend to gain, lose, or share electrons in order

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds involve adjustments in the position of one or more valence electrons. PE is lower in bonded

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

H 2 O. Chapter 9 Chemical Names and Formulas

H 2 O. Chapter 9 Chemical Names and Formulas H 2 O Chapter 9 Chemical Names and Formulas Section 9.1 Naming Ions OBJECTIVES: Identify the charges on monatomic ions by using the periodic table, and name the ions. Section 9.1 Naming Ions OBJECTIVES:

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Chemical Bonding. Chemical Bonds. Metals, Ions, or Molecules. All Matter Exists as Atoms,

Chemical Bonding. Chemical Bonds. Metals, Ions, or Molecules. All Matter Exists as Atoms, Chemical Bonding Valence electrons (the outer most electrons) are responsible for the interaction between atoms when forming chemical compounds. Another way to say that is that valence electrons are the

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CEMICAL BNDING Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to the

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

1.3 Bonding. They have full outer shells and the electrons are paired with opposite spins fulfilling the 'octet rule'.

1.3 Bonding. They have full outer shells and the electrons are paired with opposite spins fulfilling the 'octet rule'. 1.3 Bonding Electron configuration: They have full outer shells and the electrons are paired with opposite spins fulfilling the 'octet rule'. Bonding: All other elements on the periodic table will combine

More information

Gilbert Kirss Foster. Chapter 4. Chemical Bonding. Understanding Climate Change

Gilbert Kirss Foster. Chapter 4. Chemical Bonding. Understanding Climate Change Gilbert Kirss Foster Chapter 4 Chemical Bonding Understanding Climate Change Chapter Outline 4.1 Types of Chemical Bonds 4.2 Naming Compounds and Writing Formulas 4.3 Lewis Structures 4.4 Electronegativity,

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Sample Introductory Chemistry, 5e (Tro) Chapter 10 Chemical Bonding 10.1 True/False Questions 1) Bonding theories are used to predict

More information

Unit 4: Chemical Bonds. Chapter 7-9

Unit 4: Chemical Bonds. Chapter 7-9 Unit 4: Chemical Bonds Chapter 7-9 Objectives 26 Identify the number of valence electrons for elements and their Lewis dot structure 27 Define the terms cation and anion including radius size and charge

More information

Unit 5: Covalent Bonding and Acids

Unit 5: Covalent Bonding and Acids Unit 5: Covalent Bonding and Acids Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: 1) Ionic bonds transfer of electrons (gained or lost; makes formula unit)

More information

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Name: Period: Due Date: 1-18-2019 / 100 Formative pts. Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Topic-1: Review: 1. Valence electrons: The electrons in the outermost of an atom Valence

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster CH1010 Exam #2 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 3: Atomic Structure, Explaining the Properties of Elements Trends to know (and be

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 12 Chemical Bonding Structure

More information

What are the rules for writing and naming stable ionic formulas?

What are the rules for writing and naming stable ionic formulas? 1 1. Define electronegativity. a measure of the ability of an atom in a chemical compound to attract electrons. 2. On the periodic table, where are the LEAST/MOST electronegative elements found? Least-Bottom

More information

Unit 4. Bonding and Nomenclature

Unit 4. Bonding and Nomenclature Unit 4 Bonding and Nomenclature A. Vocabulary Chemical Bond attractive force between atoms or ions that binds them together as a unit bonds form in order to decrease potential energy (PE) increase stability

More information

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together When atoms form chemical bonds their valence electrons move around. This makes atoms

More information

NAME: DATE: CLASS: Chapter Metallic Bonding

NAME: DATE: CLASS: Chapter Metallic Bonding Chapter 7 7.3 Metallic Bonding Ionic & Metallic Bonding 1. LESSON REVIEW Use the diagram of metallic bonding to answer the following questions. 1. What is the name of the model of metallic bonding that

More information

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding.

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

Core v Valence Electrons

Core v Valence Electrons Bonding Core v Valence Electrons The core electrons (represented by the noble gas from the previous row) are those electrons held within the atom. These electrons are not involved in the bonding, but contribute

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Bonds can bend and stretch without breaking (bond lengths are averages)

Bonds can bend and stretch without breaking (bond lengths are averages) The Structure of Matter What are compounds? Two or more different elements bonded together by VALENCE ELECTRONS o The force that holds two atoms together The ability to write a formula, such as H2O, indicates

More information

Ch 6.1 Chemical Bonding

Ch 6.1 Chemical Bonding Ch 6.1 Chemical Bonding Chemical Bonds the attractive forces that hold different atoms or ions together (Intramolecular or electrostatic Forces Why Bond? Atoms bond to achieve a full outer energy level

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Chemistry Study Guide

Chemistry Study Guide Chemistry Study Guide Marking Period 3 Exam Week of 3/21/17 Study Guide due - When studying for this test, use your do nows, notes, homework, class handouts, and your textbook. Vocabulary Chapter 7 Anion

More information

1. What is a chemical bond? 2. What is the octet rule? Why do atoms in bonding follow it?

1. What is a chemical bond? 2. What is the octet rule? Why do atoms in bonding follow it? Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations 1. What is a chemical bond? 2. What is the octet rule? Why do atoms in bonding follow it? 3. What are oxidation numbers? How do we find them? 4.

More information

Unit 7. Bonds and Naming

Unit 7. Bonds and Naming Unit 7 Bonds and Naming I. Ionic Bonds Positive ion is attracted to a negative ion; usually a metal & a nonmetal Ionic compound: a substance that has ionic bonds Cation: positive ion Anion: negative ion

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Ionic Compound Formulas.

Ionic Compound Formulas. Ionic Compound Formulas www.lab-initio.com Valence Electrons Electrons are divided between core and valence electrons B 1s 2 2s 2 2p 1 Core = [He], valence = 2s 2 2p 1 Br [Ar] 3d 10 4s 2 4p 5 Core = [Ar]

More information

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) Se 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 December 10, 2014 Write the formulas for the following covalent compounds.

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information