Ion-Gated Gas Separation through Porous Graphene

Size: px
Start display at page:

Download "Ion-Gated Gas Separation through Porous Graphene"

Transcription

1 Online Supporting Information for: Ion-Gated Gas Separation through Porous Graphene Ziqi Tian, Shannon M. Mahurin, Sheng Dai,*,, and De-en Jiang *, Department of Chemistry, University of California, Riverside, California 92521, United States Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States *Corresponding authors: Table of Contents 1. Computational details 2. Pore-size modulation by the anion as reflected by the pore-anion distance 3. Gas permeation through the IL/graphene composite membranes of different pore sizes 4. Gas permeation through the [emim]bf 4 monolayer without the graphene layer 5. Effect of ionic liquid thickness on gas permeation 6. Force field parameters 7. References 1. Computational details Classical molecular dynamics (CMD) simulations were performed with the LAMMPS package 1 in the canonical (NVT) ensemble with two-dimensional periodic boundary condition (PBC) in xy directions. The porous graphene was fixed in the box, with dimensions of 49.2 Å by 42.6 Å in x and y directions, respectively. Forty ionic liquid pairs were coated above the surface in the case of a monolayer. Fifty gas molecules were placed in the gas phase above the ionic liquid layer on the feed side of the bichamber setup. The initial height of the feed-side chamber was adjusted to make the initial gas pressure at 10 atm, determined by the Peng Robinson equation. A vacuum layer was added on the other side of the porous graphene in the bi-chamber setup as the permeate side, with a thickness of 90 Å. During simulation, the size of the simulation box was fixed. The non-polarizable OPLS-AA type force field 2 was employed for the ionic liquids. Lennard- Jones parameters for the [emim] cation and all parameters for the BF 4 - and PF 6 - anions were from Liu et al. 3 The parameters for the bonded terms of the [emim] cation were from Borodin. 4 The partial atomic charges for the [emim] cation were obtained by fitting to the electrostatic potential at the B3LYP/6-31g(d) level from the RESP method of the Merz Kollman scheme. This set of parameters for [emim][bf 4 ] and [emim][pf 6 ] could well reproduce their bulk dynamic properties, as shown in our previous work. 5 The atomic charges of porous graphene were obtained based on DFT-derived electrostatic potential, also known as the Repeating Electrostatic Potential Extracted Atomic charges (REPEAT) method. 6 Regarding the Lennard-Jones terms for the carbon atoms in the graphene layer, we chose kcal/mol for ε and 3.4 Å for σ as recommended, 7-8 while ε of kcal/mol and σ of 2.45 Å were used for the terminating hydrogen atoms around the graphene pore rim. For CO 2 and N 2, three-site models were adopted, 9, 10 as our previous simulation. 11 All-atom model was used for methane. 2 Lennard-Jones potential terms were evaluated via the Lorentz-Berthelot mixing rule with a cutoff of 12 Å. S1

2 To calculate the long-range electrostatic interaction in the 2D periodic simulation cell, we used the 3D Particle-Particle-Particle-Mesh (PPPM) method with a slab correction for our main simulation runs. In the z-direction, a fictitious empty volume was inserted between the 2D slabs to correct the interslab dipolar interactions. Since the PPPM method is time-consuming for the periodic 2D system, 12 we also used a much faster truncation method for our parallel runs to obtain statistics on gas permeance, whereby a cutoff of 15 Å was used for the electrostatic interactions. Our tests showed that these two methods give very similar gas permeation data for the same system. All the data reported in this work were averaged over 20 parallel simulations from various initial velocity distributions. For each simulation, at the beginning, the ionic liquid layer was heated up to 1000 K for 1 ns and quenched to 300 K in 1 ns, to disperse the ionic liquid on porous graphene evenly. In most cases, ionic liquid formed a uniform layer, covering all the nanopores. After ionic liquid coating, 25 ns simulation was carried out in NVT ensemble. Temperature of ionic liquid and gas were kept at 300 K 13, 14 with the Nose-Hoover algorithm. 2. Pore-size modulation by the anion as reflected by the pore-anion distance Figure S1. Probability distribution of the distance from the pore center to the center of the closest BF 4 - anion for the [emim][bf 4 ]/6.0-Å-porous-graphene system (Figure 1c in the main text): with and without the CO 2 gas (w/o gas). S2

3 3. Gas permeation through the IL/graphene composite membranes of different pore sizes Figure S2. (a) A larger graphene pore of 9.6 Å in size; (b) a smaller graphene pore of 4.2 Å in size; (c) permeation of CO 2 and CH 4 through the [emim][bf 4 ]/9.6-Å-porous-graphene system. 4. Gas permeation through the [emim][bf 4 ] monolayer without the graphene layer Figure S3. Comparison of CO 2 and CH 4 permeation through a hypothetical unsupported ionic liquid layer at the same simulation conditions used in Figure 4 in the text. The centers of mass for both cations and anions are fixed to prevent the collapse of the membrane. S3

4 5. Effect of ionic liquid thickness on gas permeation Figure S4. Permeation of CO 2 and CH 4 through the [emim][bf 4 ]/6.0-Å-porous-graphene system for different thickness of the [emim][bf 4 ] ionic liquid (IL) layer. 6. Force field parameters 6.1 Gas molecules Table S1. Partial atomic charges and Lennard-Jones parameters for gas molecules ε / kcal/mol σ / Å q / e CO 2 C O N 2 N Center of Mass CH 4 C H Ionic liquids The OPLS force field was used for the ionic liquids The non-bonded term includes the Lennard-Jones and the Columbic interaction; the bonded term is expressed below: E bonded = K b (R R 0 ) 2 + K θ (θ θ 0 ) 2 + K φ [1 + d cos(nφ)] 2 bonds angles dihedrals impropers S4

5 Scheme 1. Partial atomic charges on the [emim], BF 4, and PF 6 ions. Atoms are labelled for the bonded-term parameters. Table S2. Lennard-Jones parameters for the ionic liquids ε / kcal/mol σ / Å Emim C (sp2; on the ring) C (sp3; off the ring) N H (-CH 3 ) H (-CH 2 -) H (on the ring) Anions B P F Bonded terms for the emim, BF 4, and PF 6 ion (K R, K θ, Kφ all in kcal/mol) Bond K R R 0 / Å C-Cm H-Cm C-N Cm-N H-C Cc-N Cc-Cc H-Cc B-F P-F Angle K θ θ 0 / H-Cm-C H-Cm-H Cm-C-N H-C-N C-N-Cc S5

6 Cc-N-Cc Cc-Cc-N H-Cc-N H-Cc-Cc N-Cc-N H-Cm-N F-B-F F-P-F /180.0 Dihedral Kφ d n N-Cc-N-Cc N-Cc-N-Cm H-Cc-N-Cc H-Cc-N-Cm Cc-Cc-N-Cc Cc-Cc-N-Cm N-Cc-Cc-H N-Cc-Cc-N H-Cc-Cc-H N-C-Cm-H H-C-Cm-H H-Cm-N-Cc Improper Kφ d n N-N-Cc-H Cc-N-Cc-H Cc-Cc-N-C Porous graphene Table S3. Lennard-Jones parameters for C and H atoms on the porous graphene ε / kcal/mol σ / Å C H Cartesian coordinates (Å) and partial atomic charges on the 6.0-Å porous graphene Rectangular unit cell: a=24.60 Å, b=21.30 Å q / e x y H H H H H H H H H H H H S6

7 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C S7

8 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C S8

9 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C S9

10 C C C C C C C C C C C C C C C C C C C C C C C References (1) Plimpton, S. J. Comput. Phys. 1995, 117, (2) Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc. 1996, 118, (3) Liu, Z. P.; Huang, S. P.; Wang, W. C. J. Phys. Chem. B 2004, 108, (4) Borodin, O. J. Phys. Chem. B 2009, 113, (5) Babarao, R.; Dai, S.; Jiang, D. E. J. Phys. Chem. B 2011, 115, (6) Campana, C.; Mussard, B.; Woo, T. K. J. Chem. Theory Comput. 2009, 5, (7) Sidorenkov, A. V.; Kolesnikova, S. V.; Saletsky, A. M. Eur Phys J B 2016, 89, 220. (8) Wang, J. M.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, (9) Murthy, C. S.; Singer, K.; Klein, M. L.; Mcdonald, I. R. Mol. Phys. 1980, 41, (10) Harris, J. G.; Yung, K. H. J. Phys. Chem. 1995, 99, (11) Liu, H. J.; Dai, S.; Jiang, D. E. Nanoscale 2013, 5, (12) Yeh, I. C.; Berkowitz, M. L. J. Chem. Phys. 1999, 111, (13) Nose, S. J. Chem. Phys. 1984, 81, (14) Hoover, W. G. Phys. Rev. A 1985, 31, S10

Universal Repulsive Contribution to the. Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information

Universal Repulsive Contribution to the. Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information Universal Repulsive Contribution to the Solvent-Induced Interaction Between Sizable, Curved Hydrophobes: Supporting Information B. Shadrack Jabes, Dusan Bratko, and Alenka Luzar Department of Chemistry,

More information

Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure

Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure Bladimir Ramos-Alvarado, Satish Kumar, and G. P. Peterson The George

More information

Computational Predictions of 1-Octanol/Water Partition Coefficient for Imidazolium based Ionic Liquids.

Computational Predictions of 1-Octanol/Water Partition Coefficient for Imidazolium based Ionic Liquids. Computational Predictions of 1-Octanol/Water Partition Coefficient for Imidazolium based Ionic Liquids. Ganesh Kamath,* a Navendu Bhatnagar b, Gary A. Baker a, Sheila N. Baker c and Jeffrey J. Potoff b

More information

WATER PERMEATION THROUGH GRAPHENE NANOSLIT BY MOLECULAR DYNAMICS SIMULATION

WATER PERMEATION THROUGH GRAPHENE NANOSLIT BY MOLECULAR DYNAMICS SIMULATION WATER PERMEATION THROUGH GRAPHENE NANOSLIT BY MOLECULAR DYNAMICS SIMULATION Taro Yamada 1 and Ryosuke Matsuzaki 2 1 Department of Mechanical Engineering, Tokyo University of Science, 2641 Yamazaki, Noda,

More information

Supporting Information

Supporting Information Supporting Information Interface-Induced Affinity Sieving in Nanoporous Graphenes for Liquid-Phase Mixtures Yanan Hou, Zhijun Xu, Xiaoning Yang * State Key Laboratory of Material-Orientated Chemical Engineering,

More information

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Supporting Information Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture Christopher E. Wilmer, 1 Omar K. Farha, 2 Youn-Sang Bae, 3,a Joseph T. Hupp, 2 and

More information

Supporting Information

Supporting Information Supporting Information Ionic Liquid Designed for PEDOT:PSS Conductivity Enhancement Ambroise de Izarra, a,b,1 Seongjin Park, a,1 Jinhee Lee, a Yves Lansac, b,c, * Yun Hee Jang a, * a Department of Energy

More information

Supporting Information for: Physics Behind the Water Transport through. Nanoporous Graphene and Boron Nitride

Supporting Information for: Physics Behind the Water Transport through. Nanoporous Graphene and Boron Nitride Supporting Information for: Physics Behind the Water Transport through Nanoporous Graphene and Boron Nitride Ludovic Garnier, Anthony Szymczyk, Patrice Malfreyt, and Aziz Ghoufi, Institut de Physique de

More information

k θ (θ θ 0 ) 2 angles r i j r i j

k θ (θ θ 0 ) 2 angles r i j r i j 1 Force fields 1.1 Introduction The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the forces (via gradient) in molecular dynamics simulations.

More information

Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study

Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study Julia Deitz, Yeneneh Yimer, and Mesfin Tsige Department of Polymer Science University of Akron

More information

Supporting Information

Supporting Information Supporting Information Structure and Dynamics of Uranyl(VI) and Plutonyl(VI) Cations in Ionic Liquid/Water Mixtures via Molecular Dynamics Simulations Katie A. Maerzke, George S. Goff, Wolfgang H. Runde,

More information

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon Supporting Information Part 2: Statistical Mechanical Model Nicholas P. Stadie*, Maxwell Murialdo, Channing C. Ahn, and Brent Fultz W. M.

More information

Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations

Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations Supporting Information for: Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations D. Fairen-Jimenez *, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons and T. Düren

More information

STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE

STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE International Journal of Modern Physics C Vol. 2, No. 9 (29) 1485 1492 c World Scientific Publishing Company STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE LEI GUO and ERIK

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics. C. J. F. Solano, D. Beljonne, R.

Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics. C. J. F. Solano, D. Beljonne, R. Ionic Liquids simulations : obtention of structural and transport properties from molecular dynamics C. J. F. Solano, D. Beljonne, R. Lazzaroni Ionic Liquids simulations : obtention of structural and transport

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Order in the chaos: The secret of the large negative entropy

More information

Non-equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite

Non-equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite Fluid Phase Equilibria 194 197 (2002) 309 317 Non-equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite S. Furukawa a,b,, C. McCabe a,c, T. Nitta b, P.T.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2824 Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded

More information

Determination of Kamlet-Taft parameters for selected solvate ionic liquids.

Determination of Kamlet-Taft parameters for selected solvate ionic liquids. Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Determination of Kamlet-Taft parameters for selected solvate ionic liquids. Daniel

More information

Effect of polarizability of halide anions on the ionic salvation in water clusters

Effect of polarizability of halide anions on the ionic salvation in water clusters University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 9-22-2003 Effect of polarizability of halide anions

More information

INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID. Kalyan Dhar 1 * and Syed Fahim 1

INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID. Kalyan Dhar 1 * and Syed Fahim 1 Bangladesh J. Sci. Res. 29(1): 41-46, 2016 (June) INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID Kalyan Dhar 1 * and Syed Fahim 1 Dept. di Chimica Materiali e Ingegneria chimica G. Natta, Politecnico

More information

Supporting Information

Supporting Information Projection of atomistic simulation data for the dynamics of entangled polymers onto the tube theory: Calculation of the segment survival probability function and comparison with modern tube models Pavlos

More information

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study Daiane Damasceno Borges 1, Douglas S. Galvao 1 1 Applied Physics Department and Center of Computational Engineering and Science,

More information

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes J. At. Mol. Sci. doi: 10.4208/jams.121011.011412a Vol. 3, No. 4, pp. 367-374 November 2012 Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes Xiu-Ying Liu a,, Li-Ying Zhang

More information

Multiscale Coarse-Graining of Ionic Liquids

Multiscale Coarse-Graining of Ionic Liquids 3564 J. Phys. Chem. B 2006, 110, 3564-3575 Multiscale Coarse-Graining of Ionic Liquids Yanting Wang, Sergei Izvekov, Tianying Yan, and Gregory A. Voth* Center for Biophysical Modeling and Simulation and

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES Atichat Wongkoblap*, Worapot Intomya, Warangkhana Somrup, Sorod Charoensuk, Supunnee Junpirom and Chaiyot Tangsathitkulchai School of Chemical

More information

Unit Cell-Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double Layer Confinement

Unit Cell-Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double Layer Confinement Unit Cell-Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double Layer Confinement Xin Yin, Yeqi Shi, Yanbing Wei, Yongho Joo, Padma Gopalan, Izabela Szlufarska,

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Dynamics. capacities of. (A.I.1) (E b ), bond. E total stretching (A.I.2) (A.I.3) A.I.1. Ebond force (A.I.4) (A.I.5)

Dynamics. capacities of. (A.I.1) (E b ), bond. E total stretching (A.I.2) (A.I.3) A.I.1. Ebond force (A.I.4) (A.I.5) Thermodynamics of liquids: Standard d molar entropies and heat capacities of common solvents from 2PT Molecular Dynamics Tod A Pascal, Shiang-Tai Lin and William A Goddard III Supplementary Materials Appendix

More information

Molecular dynamics study on the microstructure of CH3COOLi solutions with different concentrations

Molecular dynamics study on the microstructure of CH3COOLi solutions with different concentrations Molecular dynamics study on the microstructure of CH3COOLi solutions with different concentrations Guoyu Tan, Jiaxin Zheng* and Feng Pan* School of Advanced Materials, Peking University, Shenzhen Graduate

More information

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2975-2979, Oct-Dec 2013 Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane +

More information

MOLECULAR DYNAMICS SIMULATIONS OF CH4 CLATHRATE HYDRATE DISSOCIATION ADJACENT TO HYDRATED SILICA SURFACES

MOLECULAR DYNAMICS SIMULATIONS OF CH4 CLATHRATE HYDRATE DISSOCIATION ADJACENT TO HYDRATED SILICA SURFACES Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011. MOLECULAR DYNAMICS SIMULATIONS OF CH4 CLATHRATE HYDRATE DISSOCIATION

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 207 Supporting Information Carbon Nanoscroll- Silk Crystallite Hybrid Structure with Controllable Hydration

More information

Dioxide Is Facilitated In Narrow Carbon. Nanopores

Dioxide Is Facilitated In Narrow Carbon. Nanopores Displacement of Methane by Coadsorbed Carbon Dioxide Is Facilitated In Narrow Carbon Nanopores Piotr Kowalczyk *1, Piotr A. Gauden 2, Artur P. Terzyk 2, Sylwester Furmaniak 2, and Peter J.F. Harris 3 [1]

More information

First principles molecular dynamics simulation of a taskspecific. ionic liquid based on silver-olefin complex:

First principles molecular dynamics simulation of a taskspecific. ionic liquid based on silver-olefin complex: First principles molecular dynamics simulation of a taskspecific ionic liquid based on silver-olefin complex: atomistic insight into separation process De-en Jiang,* and Sheng Dai, Chemical Sciences Division

More information

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Kyoungmin Min, Namjung Kim and Ravi Bhadauria May 10, 2010 Abstract In this project, we investigate the shear properties of finite sized

More information

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams Supporting Information for: Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams Dorina F. Sava, Karena W. Chapman, Mark A. Rodriguez, Jeffery A. Greathouse, # Paul S. Crozier,^ Haiyan Zhao, Peter

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining. Dissimilar Free Surface Effects for Polystyrene and Poly(methyl methacrylate)

Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining. Dissimilar Free Surface Effects for Polystyrene and Poly(methyl methacrylate) Supporting Information for Glass-Transition and Side-Chain Dynamics in Thin Films: Explaining Dissimilar Free Surface Effects for Polystyrene and Poly(methyl methacrylate) David D. Hsu, Wenjie Xia, Jake

More information

Promoting effect of ethanol on dewetting transition in the confined region of melittin tetramer

Promoting effect of ethanol on dewetting transition in the confined region of melittin tetramer Nuclear Science and Techniques 23 (2012) 252 256 Promoting effect of ethanol on dewetting transition in the confined region of melittin tetramer REN Xiuping 1,2 ZHOU Bo 1,2 WANG Chunlei 1 1 Shanghai Institute

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Agency, Honcho, Kawaguchi, Saitama (Japan), University, Tsushima, Kita-ku, Okayama (Japan),

Agency, Honcho, Kawaguchi, Saitama (Japan), University, Tsushima, Kita-ku, Okayama (Japan), Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Why do zeolites induce unprecedented electronic state on exchanged metal ions?

More information

Supporting Information for. Hydrogen Bonding Structure at Zwitterionic. Lipid/Water Interface

Supporting Information for. Hydrogen Bonding Structure at Zwitterionic. Lipid/Water Interface Supporting Information for Hydrogen Bonding Structure at Zwitterionic Lipid/Water Interface Tatsuya Ishiyama,, Daichi Terada, and Akihiro Morita,, Department of Applied Chemistry, Graduate School of Science

More information

Molecular Dynamics Investigation of the ω-current in the Kv1.2 Voltage Sensor Domains

Molecular Dynamics Investigation of the ω-current in the Kv1.2 Voltage Sensor Domains Molecular Dynamics Investigation of the ω-current in the Kv1.2 Voltage Sensor Domains Fatemeh Khalili-Araghi, Emad Tajkhorshid, Benoît Roux, and Klaus Schulten Department of Physics, Department of Biochemistry,

More information

Molecular Dynamics Study of Carbon Dioxide Storage in Carbon-Based Organic Nanopores

Molecular Dynamics Study of Carbon Dioxide Storage in Carbon-Based Organic Nanopores Molecular Dynamics Study of Carbon Dioxide Storage in Carbon-Based Organic Nanopores Mohammad Kazemi and Ali Takbiri-Borujeni, West Virginia University Copyright 2016, Society of Petroleum Engineers This

More information

Supplementary Material. Physisorption of Hydrophobic and Hydrophilic 1-alkyl-3- methylimidazolium Ionic Liquids on the Graphite Plate Surface

Supplementary Material. Physisorption of Hydrophobic and Hydrophilic 1-alkyl-3- methylimidazolium Ionic Liquids on the Graphite Plate Surface Supplementary Material Physisorption of Hydrophobic and Hydrophilic 1-alkyl-3- methylimidazolium Ionic Liquids on the Graphite Plate Surface Mohammad Hadi Ghatee * and Fatemeh Moosavi (Department of Chemistry,

More information

Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water

Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 2 8 JANUARY 2000 Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water S. H. Lee Department of Chemistry,

More information

New Six-site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures

New Six-site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures New Six-site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures ALEXEI M. NIKITIN, 1,2 ALEXANDER P. LYUBARTSEV 2 1 Engelhardt Institute of Molecular Biology Russian Academy

More information

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface Supporting Information for Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite Edge Water Interface Zhen Jiang, Konstantin Klyukin, and Vitaly Alexandrov,, Department

More information

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table.

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. 1.6. Review of Electronegativity (χ) CONCEPT: Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. There are many definitions

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores CARBON Providence, Rhode Island Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores D. D. Do* and H. D. Do, University of Queensland, St. Lucia, Qld 7, Australia

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.162 Selective Molecular Sieving Through Porous Graphene Steven P. Koenig, Luda Wang, John Pellegrino, and J. Scott Bunch* *email: jbunch@colorado.edu Supplementary

More information

Supporting Information

Supporting Information Supporting Information Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications Gao-Lei Hou, 1 Marat Valiev, 2,* Xue-Bin Wang 1,* 1 Physical Sciences Division, Pacific Northwest

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

arxiv: v1 [cond-mat.soft] 26 Nov 2018

arxiv: v1 [cond-mat.soft] 26 Nov 2018 Water diffusion in rough carbon nanotubes Bruno Henrique da Silva e Mendonça a,, Patricia Ternes a, Evy Salcedo b, Alan B. de Oliveira c, Marcia C. Barbosa a a Instituto de Física, Universidade Federal

More information

Electronic Supporting Information Topological design of porous organic molecules

Electronic Supporting Information Topological design of porous organic molecules Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Electronic Supporting Information Topological design of porous organic molecules Valentina Santolini,

More information

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract.

Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara. CRMC-N CNRS, Campus de Luminy, Marseille, cedex 09, France. Abstract. A GRAND CANONICAL MONTE-CARLO STUDY OF H ADSORPTION IN PRISTINE AND Li-DOPED CARBON REPLICAS OF FAUJASITE ZEOLITE Thomas Roussel, Roland J.-M. Pellenq, Christophe Bichara CRMC-N CNRS, Campus de Luminy,

More information

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph.

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Supplementary Materials Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Tao Cheng,, Lu Wang, Boris V Merinov, and William

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

ATOMISTIC MODELLING OF CROSSLINKED EPOXY POLYMER

ATOMISTIC MODELLING OF CROSSLINKED EPOXY POLYMER ATOMISTIC MODELLING OF CROSSLINKED EPOXY POLYMER A. Bandyopadhyay 1, P.K. Valavala 2, G.M. Odegard 3 1. Department of Materials Science and Engineering, 512 M&M Building, Michigan Technological University,

More information

Supplementary Figure 1 Irregular arrangement of E,E-8-mer on TMA. STM height images formed when

Supplementary Figure 1 Irregular arrangement of E,E-8-mer on TMA. STM height images formed when Supplementary Figure 1 Irregular arrangement of E,E-8-mer on TMA. STM height images formed when a 5 µl heptanoic acid solution of E,E-8-mer is applied on: (a) a TMA templated HOPG substrate, U s = +1.00

More information

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model John Dood Hope College What are MD simulations? Model and predict the structure and dynamics of large macromolecules.

More information

Tailoring the Properties of Quadruplex Nucleobases for Biological and Nanomaterial Applications

Tailoring the Properties of Quadruplex Nucleobases for Biological and Nanomaterial Applications Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information for: Tailoring the Properties of Quadruplex Nucleobases

More information

Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale

Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale Copyright 2013 Tech Science Press CMES, vol.95, no.4, pp.303-315, 2013 Comparative Study of the Water Response to External Force at Nanoscale and Mesoscale H.T. Liu 1,2, Z. Chen 2, S. Jiang 2, Y. Gan 3,

More information

Supplemntary Infomation: The nanostructure of. a lithium glyme solvate ionic liquid at electrified. interfaces

Supplemntary Infomation: The nanostructure of. a lithium glyme solvate ionic liquid at electrified. interfaces Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 207 Supplemntary Infomation: The nanostructure of a lithium glyme solvate ionic liquid

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole ONETEP PB/SA: Application to G-Quadruplex DNA Stability Danny Cole Introduction Historical overview of structure and free energy calculation of complex molecules using molecular mechanics and continuum

More information

Supporting Information: Improved Parametrization. of Lithium, Sodium, Potassium, and Magnesium ions. for All-Atom Molecular Dynamics Simulations of

Supporting Information: Improved Parametrization. of Lithium, Sodium, Potassium, and Magnesium ions. for All-Atom Molecular Dynamics Simulations of Supporting Information: Improved Parametrization of Lithium, Sodium, Potassium, and Magnesium ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems. Jejoong Yoo and Aleksei Aksimentiev,,

More information

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Supplemental Information Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Endian Wang and Fernando A. Escobedo Table S1 Lennard-Jones

More information

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Richard H. Gee * Naida Lacevic and Laurence E. Fried University of California Lawrence

More information

Supporting information for: Anomalous Stability of Two-Dimensional Ice. Confined in Hydrophobic Nanopore

Supporting information for: Anomalous Stability of Two-Dimensional Ice. Confined in Hydrophobic Nanopore Supporting information for: Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopore Boxiao Cao, Enshi Xu, and Tianshu Li Department of Civil and Environmental Engineering, George Washington

More information

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia Molecular Dynamics Simulations Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia 1 An Introduction to Molecular Dynamics Simulations Macroscopic properties

More information

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia University of Groningen Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia IMPORTANT NOTE: You are advised to consult the publisher's version

More information

MARTINI simulation details

MARTINI simulation details S1 Appendix MARTINI simulation details MARTINI simulation initialization and equilibration In this section, we describe the initialization of simulations from Main Text section Residue-based coarsegrained

More information

The micro-properties of [hmpy+] [Tf 2 N-] Ionic liquid: a simulation. study. 1. Introduction

The micro-properties of [hmpy+] [Tf 2 N-] Ionic liquid: a simulation. study. 1. Introduction ISBN 978-1-84626-081-0 Proceedings of the 2010 International Conference on Application of Mathematics and Physics Volume 1: Advances on Space Weather, Meteorology and Applied Physics Nanjing, P. R. China,

More information

arxiv: v2 [cond-mat.stat-mech] 23 Sep 2009

arxiv: v2 [cond-mat.stat-mech] 23 Sep 2009 arxiv:0909.4097v2 [cond-mat.stat-mech] 23 Sep 2009 Fluctuations of water near extended hydrophobic and hydrophilic surfaces Amish J. Patel and David Chandler Department of Chemistry, University of California,

More information

Structural transition and solid-like behavior of alkane films confined in nano-spacing

Structural transition and solid-like behavior of alkane films confined in nano-spacing Fluid Phase Equilibria 183 184 (2001) 381 387 Structural transition and solid-like behavior of alkane films confined in nano-spacing S.T. Cui a,b,, P.T. Cummings b,c, H.D. Cochran a,b a Department of Chemical

More information

Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers

Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers Dipak

More information

Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition

Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition Proceedings of the ASME 9 International Mechanical Engineering Congress & Exposition IMECE9 November 3-9, Lake Buena Vista, Florida, USA Proceedings of the ASME International Mechanical Engineering Congress

More information

Supplementary Information. Surface Microstructure Engenders Unusual Hydrophobicity in. Phyllosilicates

Supplementary Information. Surface Microstructure Engenders Unusual Hydrophobicity in. Phyllosilicates Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Surface Microstructure Engenders Unusual Hydrophobicity in Phyllosilicates

More information

Preparation of Model

Preparation of Model Preparation of Model first-principles based simulation First principles 2 Atomistic Modelling first-principles simulation 3 Simply: we start from molecule Old fashion: write in hand or generate with code

More information

c 2010 ANJAN V. RAGHUNATHAN

c 2010 ANJAN V. RAGHUNATHAN c 2010 ANJAN V. RAGHUNATHAN MOLECULAR UNDERSTANDING OF OSMOSIS AND A MULTISCALE FRAMEWORK TO INVESTIGATE CONFINED FLUID PROPERTIES BY ANJAN V. RAGHUNATHAN DISSERTATION Submitted in partial fulfillment

More information

Atomistic Modeling of Cross-linked Epoxy Polymer

Atomistic Modeling of Cross-linked Epoxy Polymer 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference18th 1-15 April 010, Orlando, Florida AIAA 010-811 Atomistic Modeling of Cross-linked Epoxy Polymer Ananyo Bandyopadhyay

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

arxiv: v1 [physics.chem-ph] 8 Mar 2010

arxiv: v1 [physics.chem-ph] 8 Mar 2010 arxiv:1003.1678v1 [physics.chem-ph] 8 Mar 2010 A new battery-charging method suggested by molecular dynamics simulations Ibrahim Abou Hamad 1,, M. A. Novotny 1,2, D. Wipf 3, and P. A. Rikvold 4 1 HPC 2,

More information

What Does an Ionic Liquid Surface Really Look Like? Unprecedented Details from Molecular Simulations

What Does an Ionic Liquid Surface Really Look Like? Unprecedented Details from Molecular Simulations Page 1 of 7 PCCP Dynamic Article Links Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx COMMUNICATION What Does an Ionic Liquid Surface Really Look Like? Unprecedented Details from Molecular Simulations

More information

An Informal AMBER Small Molecule Force Field :

An Informal AMBER Small Molecule Force Field : An Informal AMBER Small Molecule Force Field : parm@frosst Credit Christopher Bayly (1992-2010) initiated, contributed and lead the efforts Daniel McKay (1997-2010) and Jean-François Truchon (2002-2010)

More information

Supporting Information

Supporting Information pk a values of titrable amino acids at the water/membrane interface Vitor H. Teixeira, Diogo Vila-Viçosa, Pedro B. P. S. Reis, and Miguel Machuqueiro Centro de Química e Bioquímica, Departamento de Química

More information

Morphology of Supported Polymer Electrolyte. Ultra-thin Films: a Numerical Study. Supporting Information

Morphology of Supported Polymer Electrolyte. Ultra-thin Films: a Numerical Study. Supporting Information Morphology of Supported Polymer Electrolyte Ultra-thin Films: a Numerical Study Supporting Information Daiane Damasceno Borges,, Gerard Gebel, Alejandro A. Franco, Kourosh Malek, and Stefano Mossa, Univ.

More information

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Pedro A. S. Autreto and Douglas S. Galvao Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,

More information

Supplementary Figure 1. Schematic of rapid thermal annealing process: (a) indicates schematics and SEM cross-section of the initial layer-by-layer

Supplementary Figure 1. Schematic of rapid thermal annealing process: (a) indicates schematics and SEM cross-section of the initial layer-by-layer Supplementary Figure 1. Schematic of rapid thermal annealing process: (a) indicates schematics and SEM cross-section of the initial layer-by-layer film configuration, (b) demonstrates schematic and cross-section

More information

Interface Resistance and Thermal Transport in Nano-Confined Liquids

Interface Resistance and Thermal Transport in Nano-Confined Liquids 1 Interface Resistance and Thermal Transport in Nano-Confined Liquids Murat Barisik and Ali Beskok CONTENTS 1.1 Introduction...1 1.2 Onset of Continuum Behavior...2 1.3 Boundary Treatment Effects on Interface

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Grzegorz Nawrocki and Marek Cieplak Institute of Physics, Polish Academy of Sciences,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

Supporting information

Supporting information Electronic Supplementary Material ESI for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Supporting information Understanding three-body contributions to coarse-grained force

More information