Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview

Size: px
Start display at page:

Download "Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview"

Transcription

1 Chapter 4 Thermochemistry 4.1 Energy Storage and Reference Thermochemistry is the study of the energy released when the atomic-level associations are changed. A chemical reaction (rxn) is one where these associations change. We are free to choose our energy reference, or zero of energy, as we please. We could choose the reference to be separated atoms. However, as you will see, a smarter choice for our standard state is the most stable elemental form at a convenient T and P. Once the zero is chosen, our job is: to follow the energy. That means, if the atom-atom associations change to a more energetically favorable arrangement, there must be an exactly compensating release of energy which we can measure with the aid of calorimeters. 4.2 Chemical Rxns Consider the formation of a molecule of 2 in the gas phase. (By in the gas phase we mean that there are no interactions between 2 units. (This is an idealization achieved only at low.) ( )+ 2 ( ) 2 ( ) REFERENCE state for the energy state function. Thatis,the = 0 2. The combustion of diamond (to 2 ) yields almost 2 kj/mole more energy than does graphite at STP. This means that at modest pressures diamond has a higher enthalpy than graphite, i.e. diamond is metastable wrt graphite at STP. However, the barrier is so large that diamonds will easily outlast human-kind and therefore we can consider diamonds a stationary state. 3. A reaction with a -ve [ (P) (R)] means that the enthalpy is lower for the products, i.e. the reaction is energetically down-hill. This type of reaction is called exothermic, and as energy must be conserved, some energy will come out. If your holding the beaker (a diabatic vessel), your hand will feel the energy released (from the molecular associations sector into molecular kinetic energy), as the reaction proceeds. 4.3 Hess s law Overview 1. Hess s law is no more than a reminder that enthalpy is a state function. H =0= P. 1. We take the most stable elemental form at 1 bar and the specified temperature (usually K) as the 2. For a specified reaction, + + ; = P. The stoichiometric coefficients being +ve for products and -ve for reactants. This sign convention achieves the P R Think about it this way: The energy (heat) released and enthalpy are on opposite sides of an equation that balances energy as well atoms. Therefore energy balanced reaction expressions would read or 31

2 + + + Energy Q h Name out +ve -ve exothermic in -ve +ve endothermic 3. The value of only makes sense in the context of a reaction with specified coefficients. (The subscript is telling you, the reader, to look for the balanced equation that the writer is referring to.) In other words, if an alternate reaction 0 is specified as then 0 =2 Definition 1 The subscript refers to one unit of the reaction with the stoichiometric coefficients as written. This means, any quantity such as has an implied reaction with specified coefficients. The change ( ) refers to taking the stoichiometric coefficient number of moles of R and converting them into P. 4. Hess s law is most often applied to get the standard (P = 1 bar, T = K) enthalpy of reaction, which would read, for a rxn statement with specified stoichiometric coefficients, = P. Definition 2 The standard enthalpic state ( = =0) is taken (for convenience) to be that of the most stable elemental form at STP. Definition 3 If the reaction produces a single mole of product ( =1) from the elements in their standard states then = 5. Consider this example. Note that there are 4 measurable enthalpies, 3 of which would be standard enthalpies (if P=1 bar, T= K) of formation: [ 2 ] = 286 [ [ ]= 635 [ and [ ( ) 2]= 985 [ Therefore, for the rxn 2 +, wehave = [ ( ) 2] ( [ 2 ]+ [ ]) = 64 [ ] Bond Enthalpies (energies) One can get enthalpies corresponding to average bond energies. These bond enthalpies are extremely valuable in building up (in a ticker-toy fashion) estimates of the enthalpies of molecules 1. These energies are useful for systems with no delocalized bonding. Values for organics are far more accurate than those for inorganics. Using tables like those given in the text on pg. 69 (also found on the WWW) are the starting point. To help understand what bond enthalpies are, what they are not and how to use them, consider the following examples. 1. The enthalpy of 4 is 1664 kj/mole less than that of the separated atoms. (a) Therefore, = 416 (b) The energy required to dissociate one H from 4 is 427. = Review example 4.1 in the text, = kj/mole. 3. Do problem 4.30, pg Finally, consider the enthalpy of formation 2 2 ( ), i.e. 2 ( )+ 2 ( ) 2 2 ( ) ; Enthalpy diagram for 2 2 All values in 1 The utility of bond enthalpies is that much (but certainly not all) of chemistry is local. 32

3 The value of ( 2 2 ( )) can be estimated from the following data. (a) The energy released to form 2 2 from atomic elements. This energy is a sum of bond enthalpies 2. 2 ( )+2 ( ) 2 2 ( ); [ +2 ]= [ (261)] = 695[ (b) The value of for 2, 2 ( ) 2 ( ) ; = 243 4[ (c) The energy required to take atoms of from the reference state to the gas phase. 2 ( ) 2 ( ) ; = [ (d) Adding the above (a+b+c) we estimate, ( 2 2 ( )) = 2 5 [ ] long indeed for the firstonesinthelist)andtheserulers will be very hard (expensive) to make accurately and easy to use. Remark 3 We are free to choose the zero of energy variables as we please! However we must always be sure ourzeroiscommunicatedtoallpotentialusers. Thisis why we all agree to use the same smart choices of the reference states. 4.4 ( ) To determine how the enthalpy for a reaction changes with temperature ( ), all we need to appreciate is that in changing the temperature all the enthalpies (those of the reactants R and products P) change in accordance with their heat capacities. The individual enthalpies increase with T (C is a strictly positive quantity) but ( ) can increase or decrease with T. a result that relies on estimates of the bond enthalpies. Remark 1 Note this is inaccurate as it involves the difference between large numbers with a resulting small value. This is a situation always to be avoided if at all possible. This points to WHY we choose the reference states to be the stable forms at a convenient T and P rather than say the separated atoms. Let me elaborate on this point. Consider the molecules O 2 and N 2. The enthalpies associated with these bonds are 494 and 942 kj/mole, respectively. (The binding energy of N 2,the triple bond, is one of the strongest molecular bonds.) If we chose our reference state to be the separated atoms, the molecular enthalpies would be H = (O 2 ) = -494 and H = (N 2 ) = -942 kj/mole below the separated atoms. In general, the bonded forms are hundreds of kj (100 kj/mole = 1.03 ev/unit), in association energy, below the separated atoms. As we are almost always interested in the enthalpy difference between bonded forms, it is convenient to take our reference as a bonded form. This largely avoids taking the difference between large numbers. Remark 2 An analogy: Say we are interested in the gravitational potential energy of objects in this room. We need a reference from which to measure the height of the object. We could take this reference as the center of the earth, the sidewalk outside, the floor level of the lab, or the level of the bench top we are doing the experiment on. If we choose the later we can carry the ruler in our hands and it can be made cheaply with precision markings. If we choose any of the others, we have to have a long (very 2 Some of these values have large uncertainties. For example, another source for the Se-Cl gives 243 rather than 261 kj/mole. Consider my favorite reaction: + + ( 2 )= ( 1 )+ R 2 1 [ ( )+ ( ) ( ) ( )] It is convenient (for me) to define, [ ] =C (P) (R) = P P P R Then we just have ( 2 )= ( 1 )+ R 2 1 C ( ) Note that if, as is generally the case, the individual heat capacities are represented as polynomials, C ( ) can be represented as a polynomial, derived by just summingtermsoflikeorder,with+ signs for products and for reactants. (Don t forget the stoichiometric coefficients!) Remark 4 You should now understand why heat capacities are fit to readily integrated standard functional forms (such as polynomials.) Exercise In the figure above, two of four cases are drawn. Draw the other two. For which cases can the sign of the enthalpy change with increasing temperature? 33

4 4.5 Experimental and Data from: 1. Calorimetry - The heat released by the reaction is captured in calorimeter which is ideally adiabatically separated from the remainder of the universe. 2. Spectroscopic studies 3. And most importantly, from other and values using Hess s law. Here you have to be confident of the values for the other legs. This has been done for tabulated values by measuring all legs and checking for consistency, (i.e. going in a complete cycle and ending up with no change.) 4. QMical calc (isodesmic) (d) The desired = (e) However if really in an adiabatic enclosure = (f) the object of the experiment is really to get so that the R in (c) can be done. 2. Bomb calorimetry (Constant V, = ) is used when there are volatile or gaseous species in the reaction. As dv=0, = is the measured quantity and must be calculated by adding the change in PV energy. Overview Calorimetry Lets discuss the three most common types of calorimetry. 1. Constant-pressure calorimetry is the simplest type and can be used if there are no gases or volatile species involved. As (in the ideal experiment) no heat is lost to the outside, the heat given up by the reaction is captured by the calorimeter, = However, the process that actually occurs (A) is not the reaction enthalpy change at a fixed temperature (as heating or cooling) can occur during the reaction. Therefore to get the reaction enthalpy, we need to break down the real process into two steps. While the process by which accurate values can be obtained is quite involved, the basic process can be analyzed with the aid of another triangle diagram, this time referring the changes in the internal energies (rather than H) between various thermodynamic states.. (a) The actual process (A) is R( 1 ) P( 2 )isthe sum of: (b) The desired step (B), the conversion of reactants to products R P at a constant (initial) temperature R( 1 ) P( 1 ) (c) The heating of the products to the final temperature (C): P( 1 ) P( 2 ) = R 2 1 [ (P)+ ] Clearly one needs a separate experiment to determine (P)+ (a) The actual process (A) R( 1 ) P( 2 )canbe decomposed into: (b) A heating step (B), = R 2 1 [ (R)+ ] (again requires one or more separate experiments) and 34

5 (c) The desired internal energy change is (C). If the calorimeter is really adiabatic, = = (d) Again the object of the experiment is really to get so that the R in (b) can be done. (e) Corrections must be applies for the energy input from ignition and stirring. To get standard state values requires an additional set of corrections 3. Step-by-step Bare-bones logic. (a) Determine the heat capacity of the calorimeter (C =allpartsincluding the water in inner bath, not a molar value.) Measure the change in temperature when you dump in a known amount of energy. This can be done by i) passing a known current through a known resistor ( = = 2 = 2 ) or ii) using a reference reaction for which the heat released (under constant volume conditions) is already known. C ) = [ ] ) = (b) run reaction and measure temperature increase in the heat bath exp (c) Calculate exp = [ ] exp[k] (d) Calculate the = exp and the molar value by dividing by the number of moles of product = (e) Calculate = + ( ) 0 if only l s ( )= ( ) if g involved This procedure illustrates the first-pass logic but cannot give the standard reference values. To get these, the previously mentioned (Washburn) corrections must be made (see footnote) for which you need to know the pressure of the bomb and the EoS of the gases involved. (a) The experimental and reference sample are each connected to heaters which try to keep the temperatures of the two samples the same. (That is, the temperatures of both samples start at 298 K and heat at a rate of, say, 5 C/min. (b) The power [ ]( = = 2 ) is measured for both samples. There will be a power difference ( = ) due to the fact that the samples will have different heat capacities. (The sample with the larger heat capacity will require more power to heat.) i) If the heat capacities are different but constant will be a constant. ii) If the heat capacity of the sample grows linearly while the heat capacity of the reference is constant, will increase linearly. If they both increase linearly, will increase linearly with the difference in slopes of the heat capacities. (c) Or iii) when a PT occurs in the sample (one must not occur in the reference), much more heat will have to be dumped into the sample than in the reference. The total heat required to execute the PT is the excess energy, which is calculated from the excess power times the time = = R [ with = (d) As DSC is employed for condensed phases Fig. of DSC 3. Differential Scanning Calorimetry (DSC) is a simple and fast method of determining the enthalpies of condensed phase (s-s or s-l) exothermic phase transitions (PTs). The way to view this processinasfollows: 3 Search WEB for Washburn corrections. These procedures correct for: a) Compression of the condensed phase and gas phase species to 1 atm pressure, b) Enthalpy of solution and of dilution of the product gases in the aqueous phase (e.g. HCl, 1:600), c) Vaporization of water because of the heat liberated by the reaction, and d) energy changes associated with non-isothermal reactions. 35

Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview

Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview Chapter 4 Thermochemistry 4.1 Energy Storage and Reference Thermochemistry is the study of the energy released when the atomic-level associations are changed. A chemical reaction (rxn) is one where these

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Chapter 6. Heat Flow

Chapter 6. Heat Flow Chapter 6 Thermochemistry Heat Flow Heat (q): energy transferred from body at high T to body at low T Two definitions: System: part of universe we are interested in Surrounding: the rest of the universe

More information

Ch. 6 Enthalpy Changes

Ch. 6 Enthalpy Changes Ch. 6 Enthalpy Changes Energy: The capacity to do work. In Physics, there are 2 main types of energy Kinetic (energy of motion) = ½ mv 2 Potential (energy of position due to gravity)= mgh In Chemistry,

More information

First Law of Thermodynamics

First Law of Thermodynamics Energy Energy: ability to do work or produce heat. Types of energy 1) Potential energy - energy possessed by objects due to position or arrangement of particles. Forms of potential energy - electrical,

More information

5.1 Exothermic and endothermic reactions

5.1 Exothermic and endothermic reactions Topic 5: Energetics 5.1 Exothermic and endothermic reactions Chemical reactions involve the breaking and making of bonds. Breaking bonds requires energy,whereas energy is given out when new bonds are formed.

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93

Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Problems: 9, 19, 24, 25, 26, 27, 31-33, 37, 39, 43, 45, 47, 48, 53, 55, 57, 59, 65, 67, 73, 78-82, 85, 89, 93 Chapter 6 Thermochemistry The study of chemical reactions and the energy changes

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6 Thermochemistry This chapter develops for the student the concepts of thermochemistry. Upon completion of Chapter 6, the student should be able to: 1. Define and explain the following terms:

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Unit 7 Thermochemistry Chemistry 020, R. R. Martin

Unit 7 Thermochemistry Chemistry 020, R. R. Martin Unit 7 Thermochemistry Chemistry 020, R. R. Martin 1. Thermochemistry Heat is a form of energy - which may take many forms: - Kinetic energy due to motion, ½ mv 2 - Potential energy due to position - Electrical

More information

CHEM 103 CHEMISTRY I

CHEM 103 CHEMISTRY I CHEM 103 CHEMISTRY I CHAPTER 5 THERMOCHEMISTRY Inst. Dr. Dilek IŞIK TAŞGIN Inter-Curricular Courses Department Çankaya University, Inc. Energy Energy is the ability to do work or transfer heat. Energy

More information

Chapter 2 First Law Formalism

Chapter 2 First Law Formalism Chapter 2 First Law Formalism 2.1 The Special Character of State Variables A gas can be characterized by a set of state variables. Some, such as temperature, pressure, and volume, are measured directly

More information

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Lecture Synopsis 1. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry 1. Light the Furnace: The Nature of Energy and Its Transformations a. Thermochemistry is the study of the relationships between chemistry and energy i. This means that we will

More information

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics Dr. D. E. Manolopoulos First Year (0 Lectures) Michaelmas Term Lecture Synopsis. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Lecture Presentation. Chapter 5. Thermochemistry Pearson Education, Inc.

Lecture Presentation. Chapter 5. Thermochemistry Pearson Education, Inc. Lecture Presentation Chapter 5 Energy Energy is the ability to do work or transfer heat. Energy used to cause an object that has mass to move is called work. Energy used to cause the temperature of an

More information

Enthalpy. Slide 1. Slide 2 Reaction Energies. Slide 3 Enthalpy of Reactions. Calorimetry of Chemistry

Enthalpy. Slide 1. Slide 2 Reaction Energies. Slide 3 Enthalpy of Reactions. Calorimetry of Chemistry Slide 1 Enthalpy Calorimetry of Chemistry Slide 2 Reaction Energies In our earlier discussions of calorimetry, we used physical sources of heat (hot metal slug). It is also possible to use chemical sources

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom.

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom. Energy Relations in Chemistry: Thermochemistry The Nature of Energy Sugar you eat is "combusted" by your body to produce CO 2 and H 2 O. During this process energy is also released. This energy is used

More information

Thermodynamics I - Enthalpy

Thermodynamics I - Enthalpy Thermodynamics I - Enthalpy Tinoco Chapter 2 Secondary Reference: J.B. Fenn, Engines, Energy and Entropy, Global View Publishing, Pittsburgh, 2003. 1 Thermodynamics CHEM 2880 - Kinetics An essential foundation

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Energy Thermodynamics Study of the relationship between heat, work, and other forms of energy Thermochemistry A branch of thermodynamics Focuses on the study of heat given off

More information

Chemistry: The Central Science. Chapter 5: Thermochemistry

Chemistry: The Central Science. Chapter 5: Thermochemistry Chemistry: The Central Science Chapter 5: Thermochemistry Study of energy and its transformations is called thermodynamics Portion of thermodynamics that involves the relationships between chemical and

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

Chem 150 Week 7 Handout 1 Thermochemistry (I) Energy used to move an object over some distance.

Chem 150 Week 7 Handout 1 Thermochemistry (I) Energy used to move an object over some distance. Chem 150 Week 7 Handout 1 Thermochemistry (I) Define Energy: The capacity to do work or to transfer heat. Work Energy used to move an object over some distance. w = F x d, where w is work, F is the force,

More information

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy Chapter Objectives Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 9 Energy and Chemistry Explain the economic importance of conversions between different forms of energy and the inevitability

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 Chapter 10 Thermochemistry Heat

More information

TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use)

TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use) 361 Lec 7 Fri 9sep15 TODAY 0. Why H = q (if p ext =p=constant and no useful work) 1. Constant Pressure Heat Capacity (what we usually use) 2. Heats of Chemical Reactions: r H (mechanics of obtaining from

More information

Date: SCH 4U Name: ENTHALPY CHANGES

Date: SCH 4U Name: ENTHALPY CHANGES Date: SCH 4U Name: ENTHALPY CHANGES Enthalpy (H) = heat content of system (heat, latent heat) Enthalpy = total energy of system + pressure volume H = E + PV H = E + (PV) = final conditions initial conditions

More information

Chemical Thermodynamics

Chemical Thermodynamics Quiz A 42.8 ml solution of ammonia (NH 3 ) is titrated with a solution of 0.9713 M hydrochloric acid. The initial reading on the buret containing the HCl was 47.13 ml and the final reading when the endpoint

More information

To calculate heat (q) for a given temperature change: heat (q) = (specific heat) (mass) ( T) where T = T f T i

To calculate heat (q) for a given temperature change: heat (q) = (specific heat) (mass) ( T) where T = T f T i Use your textbook or other resources available to answer the following questions General Information: Thermochemistry Phase Change A change in the physical form/state but not a change in the chemical identity

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Thermodynamic Processes and Thermochemistry

Thermodynamic Processes and Thermochemistry General Chemistry Thermodynamic Processes and Thermochemistry 박준원교수 ( 포항공과대학교화학과 ) 이번시간에는! Systems, states, and processes The first law of thermodynamics: internal energy, work, and heat Heat capacity,

More information

Chapter 8 Thermochemistry

Chapter 8 Thermochemistry William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 8 Thermochemistry Edward J. Neth University of Connecticut Outline 1. Principles of heat flow 2. Measurement

More information

17.2 Thermochemical Equations

17.2 Thermochemical Equations 17.2. Thermochemical Equations www.ck12.org 17.2 Thermochemical Equations Lesson Objectives Define enthalpy, and know the conditions under which the enthalpy change in a reaction is equal to the heat absorbed

More information

Enthalpy and Internal Energy

Enthalpy and Internal Energy Enthalpy and Internal Energy H or ΔH is used to symbolize enthalpy. The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w, where ΔE is the change in internal energy, q is heat and

More information

Major Concepts Calorimetry (from last time)

Major Concepts Calorimetry (from last time) Major Concepts Calorimetry (from last time) Heat capacity Molar heat capacity (per mole) Specific heat capacity (per mass) Standard state enthalpies: Hº Physical Changes Chemical Changes Hess's Law Balancing

More information

Chemistry 163B. Thermochemistry. Chapter 4 Engel & Reid

Chemistry 163B. Thermochemistry. Chapter 4 Engel & Reid Chemistry 163B Thermochemistry Chapter 4 Engel & Reid 3 heats of reactions (constant volume; bomb calorimeter) ΔU V = q V ΔU= U products -U reactants 4 heats of reactions (constant volume; fig 4.3 E&R)

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

Thermochemistry. Section The flow of energy

Thermochemistry. Section The flow of energy Thermochemistry Section 17.1 - The flow of energy What is Energy? Energy is the capacity for doing work or supplying heat Energy does not have mass or volume, and it can only be detected because of its

More information

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy AP Chemistry: Thermochemistry Lecture Outline 5.1 The Nature of Energy Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationships between chemical

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 OFB Chap. 10 2 Thermite Reaction

More information

3.2 Calorimetry and Enthalpy

3.2 Calorimetry and Enthalpy 3.2 Calorimetry and Enthalpy Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1 g of a substance by 1 C. The SI units for specific heat capacity

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS

CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS CHAPTER 3 THE FIRST LAW OF THERMODYNAM- ICS Introduction In this chapter, we discuss the First Law of Thermodynamics (energy cannot be created or destroyed). In our discussion, we will define some important

More information

Chapter 6. Energy Thermodynamics

Chapter 6. Energy Thermodynamics Chapter 6 Energy Thermodynamics 1 Energy is... The ability to do work. Conserved. made of heat and work. a state function. independent of the path, or how you get from point A to B. Work is a force acting

More information

CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 #25 - REVIEW CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016

Chapter 6. Thermochemistry. Chapter 6. Chapter 6 Thermochemistry. Chapter 6 Thermochemistry Matter vs Energy 2/16/2016 Chapter 6 Thermochemistry Chapter 6 Chapter 6 Thermochemistry 6.1 Chemical Hand Warmers 6.2 The Nature of Energy: Key Definitions 6.3 The First Law of Thermodynamics: There is no Free Lunch 6.4 6.5 Measuring

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

Thermochemistry AP Chemistry Lecture Outline

Thermochemistry AP Chemistry Lecture Outline Thermochemistry AP Chemistry Lecture Outline Name: thermodynamics: the study of energy and its transformations -- thermochemistry: the subdiscipline involving chemical reactions and energy changes Energy

More information

IB Chemistry Solutions Gasses and Energy

IB Chemistry Solutions Gasses and Energy Solutions A solution is a homogeneous mixture it looks like one substance. An aqueous solution will be a clear mixture with only one visible phase. Be careful with the definitions of clear and colourless.

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics 4) 2 nd Law of Thermodynamics 5) Gibbs Free Energy 6) Phase Diagrams and REAL Phenomena 7)

More information

Thermodynamics - Energy Relationships in Chemical Reactions:

Thermodynamics - Energy Relationships in Chemical Reactions: Thermodynamics - Energy Relationships in Chemical Reactions: energy - The capacity to do work. Types of Energy: radiant-energy from the sun. potential-energy due to an objects position. chemical-energy

More information

Downloaded from

Downloaded from THERMODYNAMICS Thermodynamics: is the branch of science which deals with deals with the study of different forms of energy and the quantitative relationship between them. Significance of Thermodynamics:

More information

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C

_ + Units of Energy. Energy in Thermochemistry. Thermochemistry. Energy flow between system and surroundings. 100º C heat 50º C Units of Energy Like we saw with pressure, many different units are used throughout the world for energy. SI unit for energy 1kg m 1J = 2 s 2 Joule (J) calorie (cal) erg (erg) electron volts (ev) British

More information

Thermodynamics 1. Thermodynamics means flow of heat. This deals with the quantitative relationship existing between heat and other forms of energy in physicochemical transformations. 2. The four laws are

More information

Section 9: Thermodynamics and Energy

Section 9: Thermodynamics and Energy Section 9: Thermodynamics and Energy The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 9.01 Law of Conservation of Energy Chemistry (11)(A)

More information

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names:

Chemistry Lab Fairfax High School Invitational January 7, Team Number: High School: Team Members Names: Chemistry Lab Fairfax High School Invitational January 7, 2017 Team Number: High School: Team Members Names: Reference Values: Gas Constant, R = 8.314 J mol -1 K -1 Gas Constant, R = 0.08206 L atm mol

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin)

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin) Chapter 5 Thermochemistry 許富銀 ( Hsu Fu-Yin) 1 Thermodynamics The study of energy and its transformations is known as thermodynamics The relationships between chemical reactions and energy changes that

More information

Calorimetry &Thermochemistry

Calorimetry &Thermochemistry Lecture 6 Calorimetry &Thermochemistry Suggested Reading Thermochemistry Chemistry 3, Chapter 14, Energy and Thermochemistry, pp.658-700. Elements of hysical Chemistry, 5 th edition, Atkins & de aula,

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

A First Course on Kinetics and Reaction Engineering Unit 2. Reaction Thermochemistry

A First Course on Kinetics and Reaction Engineering Unit 2. Reaction Thermochemistry Unit 2. Reaction Thermochemistry Overview This course is divided into four parts, I through IV. Part I reviews some topics related to chemical reactions that most students will have encountered in previous

More information

Lecture Presentation. Chapter 5. Thermochemistry. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 5. Thermochemistry. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Thermochemistry Thermodynamics is the study of energy and its transformations. Thermochemistry

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Chapter 17: Energy and Kinetics

Chapter 17: Energy and Kinetics Pages 510-547 S K K Chapter 17: Energy and Kinetics Thermochemistry: Causes of change in systems Kinetics: Rate of reaction progress (speed) Heat, Energy, and Temperature changes S J J Heat vs Temperature

More information

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat Chapter 6 Dec 19 8:52 AM Intro vocabulary Energy: The capacity to do work or to produce heat Potential Energy: Energy due to position or composition (distance and strength of bonds) Kinetic Energy: Energy

More information

Lecture 7 Enthalpy. NC State University

Lecture 7 Enthalpy. NC State University Chemistry 431 Lecture 7 Enthalpy NC State University Motivation The enthalpy change ΔH is the change in energy at constant pressure. When a change takes place in a system that is open to the atmosphere,

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts Section 3.0. The 1 st Law of Thermodynamics (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities 3.2. Definitions and Concepts 3.3. The First Law of THERMODYNAMICS 3.4. Enthalpy 3.5. Adiabatic Expansion

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Thermochemistry. Enthalpy

Thermochemistry. Enthalpy Thermochemistry Enthalpy Hess s Law: The enthalpy change (ΔH) of an overall or net process is the sum of the enthalpy changes for the individual steps in that process. Types of reactions: Endothermic Reactions

More information

8.6 The Thermodynamic Standard State

8.6 The Thermodynamic Standard State 8.6 The Thermodynamic Standard State The value of H reported for a reaction depends on the number of moles of reactants...or how much matter is contained in the system C 3 H 8 (g) + 5O 2 (g) > 3CO 2 (g)

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax.

4/19/2016. Chapter 17 Free Energy and Thermodynamics. First Law of Thermodynamics. First Law of Thermodynamics. The Energy Tax. Chemistry: A Molecular Approach, 2nd Ed. Nivaldo Tro First Law of Thermodynamics Chapter 17 Free Energy and Thermodynamics You can t win! First Law of Thermodynamics: Energy cannot be created or destroyed

More information

8 Energetics I. Enthalpy* change Enthalpy (H) is the heat content of a system.

8 Energetics I. Enthalpy* change Enthalpy (H) is the heat content of a system. * Inner warmth 8 Energetics I Enthalpy* change Enthalpy (H) is the heat content of a system. In a reaction this may increase or decrease and produce an enthalpy change (ΔH). ΔH = H2 - H1 where H1 = enthalpy

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Thermodynamics 1. Hot Milk in a thermos flask is an example for 1) Isolated system ) Open system 3) Closed system 4) Adiabatic system. In open system, system and surroundings exchange 1) Energy only )

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 148 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. 1 - Convert the volume of oxygen gas to moles using IDEAL GAS EQUATION 2 - Convert moles oxygen gas to mass using formula

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Thermochemistry. Mr.V

Thermochemistry. Mr.V Thermochemistry Mr.V Introduction to Energy changes System Surroundings Exothermic Endothermic Internal energy Enthalpy Definitions System A specified part of the universe which is under investigation

More information

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13

Chemical Thermodynamics. Chemical Thermodynamics. Changes of State. Chemical Thermodynamics. State Functions. State Functions 11/25/13 Chemical Thermodynamics n Thermodynamics is the study of the energetics and order of a system. n A system is the thing we want to study it can be a chemical reaction, a solution, an automobile, or the

More information

Energy Changes in Chemical Reactions

Energy Changes in Chemical Reactions Unit 3 Energetics Unit 3-1 Section 3.1 Energy Changes in Chemical Reactions ( 1 ) Conservation of energy An object which is capable of doing work is said to possess energy. There are many forms of energy:

More information

THERMODYNAMICS. Energy can be neither created nor destroyed but it can be converted from one form to another.

THERMODYNAMICS. Energy can be neither created nor destroyed but it can be converted from one form to another. Chemical Energetics 1 TERMODYNAMICS First Law Energy can be neither created nor destroyed but it can be converted from one form to another. all chemical reactions are accompanied by some form of energy

More information