Supplementary Materials for

Size: px
Start display at page:

Download "Supplementary Materials for"

Transcription

1 advances.sciencemag.org/cgi/content/full/4/3/eaar3899/dc1 Supplementary Materials for Molecular engineering of Rashba spin-charge converter Hiroyasu Nakayama, Takashi Yamamoto, Hongyu An, Kento Tsuda, Yasuaki Einaga, Kazuya Ando This PDF file includes: Published 23 March 2018, Sci. Adv. 4, eaar3899 (2018) DOI: /sciadv.aar3899 section S1. Atomic force microscopy section S2. Infrared reflection-absorption spectroscopy section S3. Field ADMR in SAM-decorated Bi/CoFeB bilayers section S4. Field strength dependence of MR in SAM-decorated Bi/Ag/CoFeB trilayers section S5. Charge transfer at organic-inorganic interface fig. S1. AFM images of the Bi/Ag/CoFeB trilayer and SAM-decorated Bi/Ag/CoFeB trilayers. fig. S2. IRRAS spectra of SAM-decorated Bi/Ag/CoFeB trilayers and infrared absorption spectra of bulk materials. fig. S3. Field ADMR in SAM-decorated Bi/CoFeB bilayers. fig. S4. Charge transfer at organic-inorganic interface. table S1. Field strength dependence of MR.

2 section S1. Atomic force microscopy In order to investigate the surface morphology of the Bi/Ag/CoFeB trilayer and SAMdecorated Bi/Ag/CoFeB trilayers used in the present study, atomic force microscopy (AFM) measurements were carried out with a NaioAFM (Nanosurf, Switzerland) by using the dynamic force mode. As shown in figs. S1A-D, all the films exhibit continuous surfaces. In all the films, the average surface roughness, R a, is lower than 1 nm, indicating the smooth surface of the Bi/Ag/CoFeB trilayer and SAM-decorated Bi/Ag/CoFeB trilayers.

3 section S2. Infrared reflection-absorption spectroscopy We conducted the infrared reflection-absorption spectroscopy (IRRAS) for SAMs of ODT, PFDT, and AZ-SAM formed on the Bi/Ag/CoFeB trilayers. For ODT-SAM, the peak frequency of ν as (CH 2 ) was found at 2918 cm 1, which is consistent with the infrared absorption spectrum of crystalline ODT (see fig. S2A). For PFDT-SAM, we monitored the peak frequency of the asymmetric CF 2 stretching vibration. The peak frequency of ν as (CF 2 ) was found at 1242 cm 1, which is almost consistent with that of the infrared absorption spectrum of PFDT (1243 cm 1 ) (see fig. S2B). For AZ-SAM, the peak frequency of ν as (CH 2 ) was found at 2922 cm 1, which is almost consistent with that of the infrared absorption spectrum of crystalline AZ (2924 cm 1 ) (see fig. S2C). Therefore, the IRRAS results suggest that ODT-, PFDT-, and AZ-SAMs are well-packed on the Bi surface.

4 section S3. Field-angle-dependent magnetoresistance in SAM-decorated Bi/CoFeB bilayers Figures S3A-C show the change in the longitudinal resistance, R, of Bi/CoFeB bilayers during rotation of an applied magnetic field µ 0 H = 6 T in the xy, zy, and zx planes. As shown in Fig. S3A, we observed the ADMR in all three orthogonal planes for the pristine Bi/CoFeB bilayer. This result shows that the sign of R(β) in the Bi/CoFeB bilayer is opposite to that in the Bi/Ag/CoFeB trilayer, showing that the the ADMR in the Bi/CoFeB bilayer is dominated by the geometrical size effect of the AMR in the CoFeB layer (23). Figures S3A-C demonstrate that, in contrast to the ADMR in the SAM-decorated Bi/Ag/CoFeB trilayers, the ADMR in the Bi/CoFeB bilayer is not influenced by the surface decoration with ODT and PFDT. This result also supports that the observed change in the ADMR in the Bi/Ag/CoFeB trilayer originates from the modulation of the REMR induced by the molecular self-assembly.

5 section S4. Field-strength dependence of magnetoresistance in SAM-decorated Bi/Ag/CoFeB trilayers In the Bi/Ag/CoFeB trilayers, the Hanle magnetoresistance (HMR) as well as the REMR can be modulated by the SAM decoration (23). In table S1, we show MR [ R(β = 0) R(β = 90 )]/R for the Bi/Ag/CoFeB trilayers measured at different external magnetic field strengths µ 0 H. Here, the field-strength-independent component of MR arises from the REMR, whereas the field-strength-dependent component of MR arises from the HMR, because the magnetization in the CoFeB layer is saturated at µ 0 H > 2 T. The result shown in table S1 indicates that the change of MR in the Bi/Ag/CoFeB trilayer due to the SAM formation is almost independent of the magnetic field strength: (MR ODT-Bi/Ag/CoFeB MR Bi/Ag/CoFeB )/MR Bi/Ag/CoFeB = 17.5% at µ 0 H = 2 T and 17.5% at µ 0 H = 6 T, and (MR PFDT-Bi/Ag/CoFeB MR Bi/Ag/CoFeB )/MR Bi/Ag/CoFeB = 23.5% at µ 0 H = 2 T and 24.6% at µ 0 H = 6 T. This indicates that the SAM formation changes the field-independent magnetoresistance in the Bi/Ag/CoFeB trilayers. The field-independent change of MR due to the SAM formation is consistent with the fact that the HMR at µ 0 H < 6 T is an order of magnitude smaller than the REMR. These results show that the change of the magnetoresistance due to the SAM formation is dominated by the molecular tuning of the REMR.

6 section S5. Charge transfer at organic-inorganic interface In figs. S4A-C, we show schematics of the charge rearrangement in the SAM-decorated Bi/Ag/CoFeB trilayers, which is known as the cooperative molecular field effect (26). The charge rearrangement reduces the dipole-dipole repulsion within the quasi-2d layer of the dipoles, resulting the well-oriented and close-packed organic layers on the metallic heterostructures. Due to this rearrangement, the magnitude of calculated molecular dipole moments for a single molecule is different from that of the dipole moments of the SAM. If the distance between two molecules in the layer is smaller than the length of dipole, and if the size of the molecular domains is much larger than the dipole length, the system can be approximated to behave as an infinite 2D dipole layer with uniform electrostatic drop over the width of the layer (26). As shown in figs. 4B and 4C, the ODT(PFDT) formation results in the electron(hole) transfer from the molecules to the Bi layer. Thanks to the long screening length of bismuth ( 30 nm) (27), the charge transfer affects the electric potential at the Bi/Ag interface. As shown in fig. S4, the interfacial electric field at the Bi/Ag interface is enhanced(suppressed) with the formation of ODT(PFDT) due to the charge transfer. The change in the interfacial electric field results in the enhanced (suppressed) Rashba-Edelstein effect due to the formation of ODT(PFDT).

7 A Bi/Ag/CoFeB 0 20 nm B ODT-Bi/Ag/CoFeB 0 20 nm 0 0 C PFDT-Bi/Ag/CoFeB 1 µm D AZ-Bi/Ag/CoFeB 1 µm 0 20 nm 0 20 nm µm 1 µm fig. S1. AFM images of the Bi/Ag/CoFeB trilayer and SAM-decorated Bi/Ag/CoFeB trilayers. (A) The AFM image of the Bi/Ag/CoFeB trilayer, where the average surface roughness R a is 0.65 nm. (B) The AFM image of the ODT-Bi/Ag/CoFeB, where R a = 0.98 nm. (C) The AFM image of the PFDT-Bi/Ag/CoFeB, where R a = 9 nm. (D) The AFM image of the AZ-SAM-Bi/Ag/CoFeB, where R a = 0.88 nm.

8 A B C Absorbance ODT-SAM ODT-bulk Absorbance PFDT-SAM PFDT-bulk AZ-SAM Absorbance AZ-bulk wavenumber (cm -1 ) wavenumber (cm -1 ) wavenumber (cm -1 ) fig. S 2. IRRAS spectra of SAM-decorated Bi/Ag/CoFeB trilayers and infrared absorption spectra of bulk materials. (A) The IRRAS spectrum of the ODT-Bi/Ag/CoFeB and infrared absorption spectrum of ODT-bulk. (B) The IRRAS spectrum of the PFDT-Bi/Ag/CoFeB and infrared absorption spectrum of PFDT-bulk. (C) The IRRAS spectrum of the AZ-SAM- Bi/Ag/CoFeB and infrared absorption spectrum of AZ-bulk.

9 A B C R/R (%) Bi/CoFeB ODT-Bi/CoFeB PFDT-Bi/CoFeB R ( γ ) R ( α) R ( β ) α, β, γ(deg.) α, β, γ(deg.) α, β, γ(deg.) fig. S3. Field-angle-dependent magnetoresistance in SAM-decorated Bi/CoFeB bilayers. The change in the longitudinal resistance, R, of (A) the Bi(5 nm)/cofeb(2.5 nm), (B) ODT-Bi(5 nm)/cofeb(2.5 nm), and (C) PFDT-Bi(5 nm)/cofeb(2.5 nm), as a function of the rotation of the magnetic field of 6 T, where R is the longitudinal resistance at µ 0 H = 0.

10 A k y Bi Ag Interfacial electric field E0 k x CoFeB k B ODT Bi Ag CoFeB ODT Bi Ag CoFeB E(ODT) > E0 k y k x C k PFDT Bi Ag CoFeB PFDT Bi Ag CoFeB E(PFDT) < E0 k y k k x fig. S4. Charge transfer at organic-inorganic interface. (A) A schematic illustration of the Bi/Ag/CoFeB trilayer and the Fermi contours of the Bi/Ag interface under an external electric field. E 0 denotes the interfacial electric field at the Bi/Ag interface. (B) A schematic illustration of the charge rearrangement due to the ODT formation on the Bi/Ag/CoFeB trilayer. The ODT formation results in the electron transfer from the molecules to the Bi layer. Due to the charge transfer, the dipole moment of the isolated molecules (left) is different from that of the 2D dipole layer (right). The charge transfer enhances the interfacial electric field, resulting in the enhanced Rashba-Edelstein effect as shown in the Fermi contours. (C) A schematic illustration of the charge rearrangement due to the PFDT formation on the Bi/Ag/CoFeB trilayer.

11 table S 1. Field-strength dependence of magnetoresistance. The magnetoresistance ratio MR [ R(β = 0) R(β = 90 )]/R measured at different external magnetic field strengths µ 0 H for the Bi/Ag/CoFeB trilayers. MR (%) µ 0 H (T) Bi/Ag/CoFeB ODT-Bi/Ag/CoFeB PFDT-Bi/Ag/CoFeB

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Edge conduction in monolayer WTe 2

Edge conduction in monolayer WTe 2 In the format provided by the authors and unedited. DOI: 1.138/NPHYS491 Edge conduction in monolayer WTe 2 Contents SI-1. Characterizations of monolayer WTe2 devices SI-2. Magnetoresistance and temperature

More information

Supporting Information. Correlation of surface pressure and hue of planarizable. push pull chromophores at the air/water interface

Supporting Information. Correlation of surface pressure and hue of planarizable. push pull chromophores at the air/water interface Supporting Information for Correlation of surface pressure and hue of planarizable push pull chromophores at the air/water interface Frederik Neuhaus 1,2, Fabio Zobi 1, Gerald Brezesinski 3, Marta Dal

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater

Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater Supplemental Information Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oilwater interface Mingxiang Luo, Gloria K. Olivier, and Joelle Frechette* Department of

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures

Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures Qing Lin He 1 *, Xufeng Kou 1, Alexander J. Grutter 2, Gen Yin 1, Lei Pan 1, Xiaoyu Che 1, Yuxiang Liu 1,

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/24306 holds various files of this Leiden University dissertation Author: Verhagen, T.G.A. Title: Magnetism and magnetization dynamics in thin film ferromagnets

More information

Supplementary Information to. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles.

Supplementary Information to. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles. Supplementary Information to Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles authored by Miriam Varón, Marco Beleggia, Jelena Jordanovic, Jakob Schiøtz, Takeshi

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI:.38/NMAT4855 A magnetic heterostructure of topological insulators as a candidate for axion insulator M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki,

More information

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results. Chapter 11: Measurement and data processing and analysis 11.1 Uncertainty and error in measurement and results All measurement has a limit of precision and accuracy, and this must be taken into account

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or CHEM 241 UNIT 5: PART B INFRA-RED RED SPECTROSCOPY 1 Spectroscopy of the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) Analysis The samples were also characterized by scanning electron

Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) Analysis The samples were also characterized by scanning electron Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) Analysis The samples

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

2. Infrared spectroscopy

2. Infrared spectroscopy 2. Infrared spectroscopy 2-1Theoretical principles An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer.

More information

Achieve a deeper understanding of polymeric systems

Achieve a deeper understanding of polymeric systems The nanoscale spectroscopy company The world leader in nanoscale IR spectroscopy Achieve a deeper understanding of polymeric systems nanoir spectroscopy uniquely and unambiguously identifies the chemical

More information

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography Lecture 11 IR Theory Next Class: Lecture Problem 4 due Thin-Layer Chromatography This Week In Lab: Ch 6: Procedures 2 & 3 Procedure 4 (outside of lab) Next Week in Lab: Ch 7: PreLab Due Quiz 4 Ch 5 Final

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy Unit 11 Instrumentation Mass, Infrared and NMR Spectroscopy Spectroscopic identification of organic compounds Qualitative analysis: presence but not quantity (i.e. PEDs) Quantitative analysis: quantity

More information

Homework Assignment #3

Homework Assignment #3 Chemistry 12600 Spring 2016 Homework Assignment #3 1. Determine whether each of the following statements is true or false. If the statement is false, modify and rewrite it so that it is a true statement.

More information

Supplementary Figure 1. Crystal packing of pentacene.

Supplementary Figure 1. Crystal packing of pentacene. t 3 t 4 t 1 t 2 Supplementary Figure 1. Crystal packing of pentacene. The largestholecharge transfer integrals are shown in red:t 1 = 75 mev, t 2 = 32 mev, t 3 = 20 mev, t 4 = 6 mev. Note that IRactive

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

ROPERS Marie-Hélène 1, MEISTER Annette 2, RALET Marie-Christine 1

ROPERS Marie-Hélène 1, MEISTER Annette 2, RALET Marie-Christine 1 ROPERS Marie-élène 1, MEISTER Annette 2, RALET Marie-Christine 1 1 Institut National de la Recherche Agronomique, Unité Biopolymères, Interactions, Assemblages, Nantes (France 2 Institute of Physical Chemistry,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Chemistry 213 Practical Spectroscopy

Chemistry 213 Practical Spectroscopy Chemistry 213 Practical Spectroscopy Dave Berg djberg@uvic.ca Elliott 314 A course in determining structure by spectroscopic methods Different types of spectroscopy afford different information about molecules

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/1/11/e1501264/dc1 Supplementary Materials for All-polymeric control of nanoferronics Beibei Xu, Huashan Li, Asha Hall, Wenxiu Gao, Maogang Gong, Guoliang Yuan,

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012 Symmetry and Group Theory for Computational Chemistry Applications Chemistry 5325/5326 Angelo R. Rossi Department of Chemistry The University of Connecticut angelo.rossi@uconn.edu January 17-24, 2012 Infrared

More information

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2

Supplementary Information. depending on the atomic thickness of intrinsic and chemically doped. MoS 2 Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information Confocal absorption spectral imaging of MoS 2 : Optical transitions

More information

Infrared Spectroscopy (IR)

Infrared Spectroscopy (IR) IR Infrared Spectroscopy (IR) Introduction to Infrared Spectroscopy (IR) IR Infrared Spectroscopy (IR) One of the first scientists to observe infrared radiation was William Herschel in the early 19th

More information

Tuning Rashba Spin-Orbit Coupling in Gated Multi-layer InSe

Tuning Rashba Spin-Orbit Coupling in Gated Multi-layer InSe Supporting Information Tuning Rashba Spin-Orbit Coupling in Gated Multi-layer InSe Kasun Premasiri, Santosh Kumar Radha, Sukrit Sucharitakul, U. Rajesh Kumar, Raman Sankar,, Fang-Cheng Chou, Yit-Tsong

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

Abstract. The vibrational properties of pentane, neopentane, polyethylene and polyvinylchloride are

Abstract. The vibrational properties of pentane, neopentane, polyethylene and polyvinylchloride are Computational Infrared Spectroscopy: Pentane, Neopentane, Polyethylene and Polyvinylchloride Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering MSE 255 Lab

More information

Infrared spectroscopy Basic theory

Infrared spectroscopy Basic theory Infrared spectroscopy Basic theory Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Importance of IR spectroscopy in catalysis IR Raman NMR XAFS UV-Vis EPR 0 200 400 600 800 1000

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1421 Understanding and Controlling the Substrate Effect on Graphene Electron-Transfer Chemistry via Reactivity Imprint Lithography Qing Hua Wang, Zhong Jin, Ki Kang Kim, Andrew J. Hilmer,

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

VIBRATION-ROTATION SPECTRUM OF CO

VIBRATION-ROTATION SPECTRUM OF CO Rice University Physics 332 VIBRATION-ROTATION SPECTRUM OF CO I. INTRODUCTION...2 II. THEORETICAL CONSIDERATIONS...3 III. MEASUREMENTS...8 IV. ANALYSIS...9 April 2011 I. Introduction Optical spectroscopy

More information

Supplementary Figure S1. Raman M bands of few-layer graphene. (a) The M band for the pristine bilayer, trilayer and tetralayer graphene.

Supplementary Figure S1. Raman M bands of few-layer graphene. (a) The M band for the pristine bilayer, trilayer and tetralayer graphene. Supplementary Figure S1. Raman M bands of few-layer graphene. (a) The M band for the pristine bilayer, trilayer and tetralayer graphene. (b) The M band for the triazine decorated trilayer graphene. (c)

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 2 Today s Topics 2.1 Anomalous Hall effect and spin Hall effect 2.2 Spin Hall effect measurements 2.3 Interface effects Anomalous Hall

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Flexible, high-performance carbon nanotube integrated circuits Dong-ming Sun, Marina Y. Timmermans, Ying Tian, Albert G. Nasibulin, Esko I. Kauppinen, Shigeru Kishimoto, Takashi

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/7/e1700704/dc1 Supplementary Materials for Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies Yaxin Zhai,

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201503131 Tuning the Excitonic States in MoS 2 /Graphene van

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Structure-Thermal Property Correlation of Aligned Silicon. Dioxide Nanorod Arrays

Structure-Thermal Property Correlation of Aligned Silicon. Dioxide Nanorod Arrays Supplementary Material for Structure-Thermal Property Correlation of Aligned Silicon Dioxide Nanorod Arrays S. Dynamic shadowing growth (DSG) technique Figure S depicts a schematic of the DSG setup. For

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier

Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Supporting Information for Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Transport Jun Li,, Qi Pei, Ruyi Wang,, Yong Zhou,, Zhengming Zhang,, Qingqi Cao,, Dunhui Wang,*,,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/8/e1716/dc1 Supplementary Materials for Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells Lijian Zuo, Hexia

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Biomimetic Honeycomb-patterned Surface as the Tunable Cell Adhesion

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

I 1. YIG CoO Pt. φ=0 o φ=90 o I 3. XAS (a.u.) E φ. X-ray Photon energy (ev) T=78 K T=230 K ΔR L

I 1. YIG CoO Pt. φ=0 o φ=90 o I 3. XAS (a.u.) E φ. X-ray Photon energy (ev) T=78 K T=230 K ΔR L a YIG CoO Pt φ= o φ=9 o I 1 I 3 H X-ray E φ XAS (a.u.) 778 779 11 112 111 775 78 785 Photon energy (ev) c.1 T=78 K T=23 K d.2 R L3 ΔR L3.1 ΔR L3 -.1 3 6 φ (deg.) 9 1 2 3 T (K) Supplementary Figure 1: a.

More information

Current-induced switching in a magnetic insulator

Current-induced switching in a magnetic insulator In the format provided by the authors and unedited. DOI: 10.1038/NMAT4812 Current-induced switching in a magnetic insulator Can Onur Avci, Andy Quindeau, Chi-Feng Pai 1, Maxwell Mann, Lucas Caretta, Astera

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Supporting Information

Supporting Information Supporting Information Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-Controlled Silver Nanoparticles Decorated Silicon Nanowire Building Blocks Xue Mei Han, Hui Wang, Xue Mei Ou,

More information

Chemistry 21b Final Examination

Chemistry 21b Final Examination Chemistry 21b Final Examination Out: 11 March 2011 Due: 16 March 2011, 5 pm This is an open book examination, and so you may use McQuarrie or Harris and Bertolucci along with the posted Lecture Notes and

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Supporting Information The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Jason K. Cooper, a,b Soren B. Scott, a Yichuan Ling, c Jinhui Yang, a,b Sijie Hao, d Yat Li, c Francesca

More information

Absorbance (a.u.) Energy (wavenumber)

Absorbance (a.u.) Energy (wavenumber) 1000 900 Absorbance (a.u.) 800 700 600 500 400 2500 2000 1500 1000 500 0 Energy (wavenumber) Animate the Normal Modes of PF 5 Selection Rule for Raman Spectroscopy The Raman selection rule is based upon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author.   ciac - Shanghai P. R. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Supplementary Information For Journal of Materials Chemistry A Perovskite- @BiVO

More information

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II Subject Chemistry Paper No and Title Module No and Title Module Tag 12 : rganic Spectroscopy 30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass Part-II CHE_P12_M30 TABLE F CNTENTS 1. Learning utcomes

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule Infrared Spectroscopy Provides information about the vibraions of functional groups in a molecule Therefore, the functional groups present in a molecule can be deduced from an IR spectrum Two important

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e151117/dc1 Supplementary Materials for Quantum Hall effect in a bulk antiferromagnet EuMni2 with magnetically confined two-dimensional Dirac fermions Hidetoshi

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Jaroslav Hamrle. October 21, 2014

Jaroslav Hamrle. October 21, 2014 Magneto-optical Kerr effect (MOKE) Jaroslav Hamrle (jaroslav.hamrle@vsb.cz) October 21, 2014 Photon-photon spectroscopies (absorption) I: Type of investigations (polarized light x non-polarized light,

More information

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries.

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supplementary Information Unique Behaviour of Nonsolvents for Polysulphides

More information

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO BASIC INFORMATION Spectroscopy uses light to analyze substances or products by describing the energy transfer between light and

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups 1 The Electromagnetic Spectrum Infrared Spectroscopy I. Physics Review Frequency, υ (nu), is the number of wave cycles that

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Please do not adjust margins. Fig. S1 Schematic representation of fabrication of polymer network entwined GO thin-film composite membrane.

Please do not adjust margins. Fig. S1 Schematic representation of fabrication of polymer network entwined GO thin-film composite membrane. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2016 not adjust margins Received 00th January 20xx, Accepted 00th

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Lecture 14 Organic Chemistry 1

Lecture 14 Organic Chemistry 1 CHEM 232 Organic Chemistry I at Chicago Lecture 14 Organic Chemistry 1 Professor Duncan Wardrop February 25, 2010 1 CHEM 232 Organic Chemistry I at Chicago Mass Spectrometry Sections: 13.24-13.25 2 Spectroscopy

More information

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes

High-Performance Flexible Asymmetric Supercapacitors Based on 3D. Electrodes Supporting Information for: High-Performance Flexible Asymmetric Supercapacitors Based on 3D Porous Graphene/MnO 2 Nanorod and Graphene/Ag Hybrid Thin-Film Electrodes Yuanlong Shao, a Hongzhi Wang,* a

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

Foundations of Condensed Matter Physics

Foundations of Condensed Matter Physics Foundations of Condensed Matter Physics PHY1850F 2005 www.physics.utoronto.ca/~wei/phy1850f.html Physics 1850F Foundations of Condensed Matter Physics Webpage: www.physics.utoronto.ca/~wei/phy1850f.html

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

1 Which of the following cannot be used to detect alcohol in a breathalyser test? Fractional distillation. Fuel cell. Infrared spectroscopy

1 Which of the following cannot be used to detect alcohol in a breathalyser test? Fractional distillation. Fuel cell. Infrared spectroscopy 1 Which of the following cannot be used to detect alcohol in a breathalyser test? Fractional distillation Fuel cell Infrared spectroscopy Reduction of dichromate(vi) ions 2 Propanal, H 3 H 2 HO, and propanone,

More information

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T. University of Groningen Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.; van Wees, Bart Published in: Physical Review. B: Condensed

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09776 Supplementary Information for Unnaturally high refractive index terahertz metamaterial Muhan Choi, Seung Hoon Lee, Yushin Kim, Seung Beom Kang, Jonghwa Shin, Min Hwan Kwak, Kwang-Young

More information