SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 DOI: /NCHEM.1421 Understanding and Controlling the Substrate Effect on Graphene Electron-Transfer Chemistry via Reactivity Imprint Lithography Qing Hua Wang, Zhong Jin, Ki Kang Kim, Andrew J. Hilmer, Geraldine L.C. Paulus, Chih-Jen Shih, Moon-Ho Ham, Javier D. Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Jing Kong, Pablo Jarillo-Herrero, and Michael S. Strano Contents CVD graphene sample characterization: optical images and Raman spectra... 2 Grain boundary area contribution... 3 Octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) formation on SiO Raman spatial map of graphene on hbn flake... 4 OTS stripes under graphene... 5 Diazonium reagent stability... 6 Fitting of spatial D/G profile... 7 Estimation of nitrobenzene coverage on graphene... 8 Electrochemical functionalization References NATURE CHEMISTRY 1

2 CVD graphene sample characterization: optical images and Raman spectra The graphene used in this work was grown by chemical vapour deposition (CVD) on Cu foils. The Cu foil was approximately 3 inches x 1 inch, and after CVD growth the graphene-on-cu was cut to smaller sample sizes using scissors before transferring the graphene onto the various substrates. The same large piece of graphene-on-cu was used to generate all the samples used in this work, and all the samples are single continuous sheets of polycrystalline monolayer graphene with some bilayer and multilayer islands. The optical images in Figure S1a show graphene after transfer onto the various substrates. Monolayer graphene appears as a uniform change in colour on most of the substrates (e.g. slightly purple on 300 nm SiO 2 ), and higher layer numbers (bilayer, trilayer, etc.) are visible as regions of different contrast (e.g. darker purple on 300 nm SiO 2 ). For Raman mapping, care was taken to choose uniform monolayer graphene areas with no visible tears or multilayer islands. Supplementary Figure 1. Characterization of CVD-grown graphene samples on various substrates. a, Optical microscope images with white light illumination of CVD monolayer graphene on the different substrates. The NATURE CHEMISTRY 2

3 square indicates a 10 µm x 10 µm area in which Raman mapping was conducted. Care was taken to choose uniform monolayer graphene areas with no visible tears or multilayer islands. A bilayer island is indicated by a red arrow, and a wrinkle in the graphene that formed during the transfer process is indicated by a blue arrow. b, Raman spectra from Raman map of graphene on plasma-cleaned SiO 2, taken from locations 0.5 µm apart between adjacent spectra, showing uniform monolayer graphene (due to shape of 2D peak and 2D/G intensity ratio) and low defect concentration (due to lack of D peak). c, Raman spectra from Raman map of the same sample as (b) after diazonium functionalization. A significant increase in the D peak indicates a high degree of reaction has occurred. Grain boundary area contribution The CVD-grown graphene used in our work is polycrystalline. To determine the contribution of grain boundaries, which may behave differently under diazonium functionalization conditions and may have different contributions to the overall Raman spectrum, we geometrically estimated the fractional area of grain boundaries within the overall graphene sample area, assuming that spectral contributions are proportionate to the area. In this calculation, we assume closely packed hexagonal grains of side length L with a region of width w at each boundary that may have a different behavior than the bulk graphene lattice, as shown in Figure S2. The fractional area of the grain boundary is: AA!" = 2 ww AA!"! 3 LL Supplementary Figure 2. Grain boundary contribution. Grains are approximated as hexagons of side length L, and a region of width w around each grain boundary that has behavior that may differ from that of the bulk graphene crystal. Typical grain sizes for CVD graphene grown on Cu foil from the literature range from 250 nm 1 to 3-5 µm, 2 and the width of the disrupted lattice region is 1-2 nm from atomically resolved TEM images. 1 NATURE CHEMISTRY 3

4 Therefore, for L ranging from 125 nm to 2.5 µm, and for w = 2 nm, A gb /A tot = 0.09% to 1.8%. Thus the overall contribution of the grain boundaries to the Raman spectroscopy results is expected to be quite low, and the spectra are dominated by the contribution of the bulk graphene lattice. Octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) formation on SiO 2 Supplementary Figure 3. Reaction scheme of OTS on SiO 2. A freshly oxygen plasma cleaned surface with many OH terminations is necessary for full coverage of OTS on SiO 2. The resulting SAM is covalently linked to the SiO 2 substrate, and covalent linkages between molecules also exist. As a result, this SAM layer is very stable. NATURE CHEMISTRY 4

5 Raman spatial map of graphene on hbn flake Supplementary Figure 4. a, Schematic illustration showing a flake of hbn on SiO 2, and a sheet of CVD graphene covering the hbn and extending onto the SiO 2. b, Optical microscope image of a flake of hbn (green region) deposited on SiO 2 (purple-grey background) with CVD graphene covering the entire area. The marked square is approximately 10 µm x 10 µm. c, Raman spatial map of the ratio of graphene D peak intensity to G peak intensity after diazonium functionalization, taken in the area indicated by the square in (b). The region of low functionalization in the upper right corner corresponds to graphene that is over the hbn flake, while the remaining areas of high functionalization over the SiO 2 substrate. OTS stripes under graphene Supplementary Figure 5. Atomic force microscopy (AFM) images of graphene that has been transferred to a substrate with narrower stripes of OTS and wider gaps of SiO 2. The OTS stripes are still clearly visible under the NATURE CHEMISTRY 5

6 graphene, showing the graphene conformally covering the patterned substrate. The thin lines across the sample are wrinkles in the graphene sheet that form during the graphene transfer process. Diazonium reagent stability The stability of the 4-nitrobenzenediazonium reagent in aqueous solution with sodium dodecyl sulfate (SDS) was studied as a function of time under our reaction conditions by NMR and optical absorbance spectroscopy. For the NMR spectra, deuterium oxide was used as the solvent, and for the optical absorbance spectra, deionized water was the solvent. The solutions were kept at the same reaction temperature (35 C) as was used for graphene functionalization. In Figure S6a, the NMR spectrum of the initial solution shows four peaks (or two pairs of peaks) associated with the protons in the diazonium ion. After 1.5 hr and 24 hr, the peaks have not significantly changed, indicating the diazonium is fairly stable over that time. However, after 3 days (72 hr), the four initial peaks have become significantly weaker and several additional peaks have appeared at lower chemical shifts. We attribute these changes to the formation of azo dye molecules from two diazonium molecules joining together, as well as some possible short-chain oligomers. In Figure S6b, optical absorbance spectra are shown. The optical absorbance spectra show a prominent peak at about 255 nm and a smaller peak at about 310 nm. Over the duration that was used for the graphene functionalization reactions, the spectra are fairly constant. At the longest time, an additional broad but weak peak near 400 nm appears as an azo product. These spectra are consistent with time- and surfactant-dependent spectra reported in the literature. 3 NATURE CHEMISTRY 6

7 Supplementary Figure 6. 4-nitrobenzenediazonium stability over time. Nuclear magnetic resonance (NMR) spectra and optical absorbance spectra (UV-vis) were obtained for the 4-nitrobenzenediazonium tetrafluoroborate in aqueous solution with sodium dodecyl sulfate at the graphene functionalization reaction concentrations as a function of time. Between each spectrum, the solution was kept at the same reaction temperature in the same location in which the graphene samples were reacted. a, NMR spectra of proton chemical shift showing four peaks from the four protons in the 4-nitrobenzenediazonium cation. After 1.4 hr and 24 hr, the peaks have not significantly changed. After 3 days (72 hrs) the main diazonium peaks are significantly reduced, and additional side product peaks have appeared. b, Optical absorbance spectra of the diazonium solution over time, normalized to the peak at 255 nm, showing the diazonium reagent is fairly stable over time. At the longest solution aging times, a broad feature around 400 nm corresponding to azo product formation can be observed. NATURE CHEMISTRY 7

8 Fitting of spatial D/G profile The I D / I G ratio profiles of the OTS stripes (Figure 3 in main text) were fit to integrated Gaussian distributions, D(x): DD xx =!!! = 1 σσ 2ππ PP vv dddd!!! exp vv μμ! 2σσ! = erf xx μμ σσ 2 where P(x) is the Gaussian distribution function, µ is the mean, σ is the variance, and erf is the error function. After fitting the profiles, we obtain σ = 0.85 µm for the OTS stripes, and σ = 0.76 µm for the BN edge. dddd NATURE CHEMISTRY 8

9 Estimation of nitrobenzene coverage on graphene The surface concentration of nitrobenzene groups on graphene after functionalization was estimated using equation 4 of the main text based on the work of Lucchese et al, 4 with the change of r s = 0.07 nm and r a = 1 nm to account for covalent functionalization sites being less disruptive to the graphene lattice than ion bombardment sites. The plot of I D /I G vs. L D is shown in Figure S7. Using this relation, we obtain the following estimates of covalent functionalization site concentrations: I D / I G L D (nm) σ (cm -2 ) SiO2, pristine x SiO2, functionalized x OTS, pristine x OTS, functionalized x h-bn, pristine x h-bn, functionalized x Al 2 O 3 (sapphire), pristine ~0 ~inf ~0 Al 2 O 3 (sapphire), functionalized x Supplementary Table 1. Values of distance between reaction sites (L D ) and concentration of reaction sites (σ) calculated using equation (4) of main text. NATURE CHEMISTRY 9

10 I D /I G L D (nm) Supplementary Figure 7. Effect of reaction site density on Raman D/G ratio. Plot of I D /I G vs. L D (distance between covalent reaction sites) from equation (4) in manuscript, with distances and constants modified for covalent functionalization rather than physical damage from ion bombardment. Electrochemical functionalization To further test the implications of our substrate-dependent graphene reactivity results and model, we conducted electrochemical functionalization experiments where the graphene was electrically doped by an applied back gate voltage. The samples consisted of sheets of CVD-grown graphene ~5 mm x 5 mm in area transferred to Si substrates with both 100 nm and 300 nm SiO 2 layers, with silver paste applied at the graphene boundaries as grounding contacts (see schematic diagram in Figure S8a). One sample was used for reaction at each value of back voltage. By using these two thicknesses of the dielectric layer, we can apply the same back gate voltages but achieve different amounts of Fermi level change in graphene. That is, for a given back gate voltage, the graphene on 100 nm SiO 2 has a bigger Fermi level shift than on 300 nm SiO 2. The carrier density n scales with the inverse of the dielectric thickness d bg, n = (V g -V 0 ) ϵϵ 0 / (d bg e), where ϵ is the SiO 2 dielectric constant, ϵ 0 is the permittivity of free space, V g is the back gate voltage, and V 0 is the voltage at the conductivity minimum. The Fermi level is E F (n) = ħ v F (πn), where the Fermi velocity v F = 1.1 x 10 6 m/s. NATURE CHEMISTRY 10

11 The reactant solution was an aqueous mixture of 10 mm 4-nitrobenzenediazonium tetrafluoroborate in 0.5 wt% sodium dodecyl sulfate, and was deposited onto the graphene samples in a droplet. The solution droplet was in contact with the graphene and grounding contacts, but not the back contact. The effect of positive and negative back voltages on both the Fermi level of graphene and the charged diazonium ions is schematically illustrated in Figure S8b. At increasingly positive (negative) back gate voltages, the Fermi level of graphene shifts up (down), resulting in increasing (decreasing) reactivity toward diazonium functionalization due to the change in overlap of states between graphene and diazonium. However, the positively charged diazonium ions are repelled (attracted) by the charged substrate, so that the effective concentration of the diazonium reagent at the graphene surface is lower (higher) than in the bulk solution. The presence of a charged electrode also introduces the electrochemical reduction of diazonium ions to diazonium radicals, in addition to the change in concentration. Raman spectroscopy was used to verify the pristine graphene samples before reaction, and to evaluate the degree of covalent functionalization after reaction. For each sample, the back gate voltage was applied for 1 min while the other two electrodes were kept at ground (0 V). The samples were rinsed in ultrapure water before Raman spectroscopy, during which multiple spectra in different locations were taken. Figures S9a-b show representative Raman spectra of the samples after electrochemical functionalization, and Figure S9c shows the D/G ratios plotted as a function of gate voltage. In general, the effect of the change in diazonium ion concentration due to the electric field from the biased substrate is quite strong, but we are still able to see the effect of the Fermi level shift. In the results of Figure S9, at zero applied bias the amount of reaction is very small. At positive bias, the Fermi level of graphene shifts up, implying more reactivity, but the charged substrate repels the diazonium cations for a reduced concentration at the surface. The combined effect is an increased amount of reaction compared to 0 V, and higher reactivity at 40 V than at 20 V, suggesting that the shift in the Fermi level has allowed more functionalization to occur, even though the diazonium concentration is lower. The overall reactivity for 100 nm oxide samples being lower than that on 300 nm oxide is likely explained by the thinner oxide screening the electric field less strongly, so that the diazonium cations are repelled more and the surface concentration is decreased. At negative bias, the Fermi level of graphene shifts down, implying less reactivity, but the charged substrate here attracts the diazonium cations for an increased concentration at the surface. The Raman data shows that the amount of reaction is much higher, suggesting that the higher diazonium concentration plays a bigger role than the Fermi level. However, for the 100 nm oxide samples, the +40 V sample is less reacted than the +20 V, suggesting that the Fermi level has shifted farther down at +40 V and the influence of the Fermi level on reactivity has begun to overcome the effect of the increased diazonium concentrating. We also note that the minimum conductivity point of our graphene is likely NATURE CHEMISTRY 11

12 between V, so all our data points are likely within the hole conduction (p-doped) region. However, because of electron-hole charge puddles, there are local regions that are n-doped, and the increasing positive bias makes these regions more n-doped and shifts the Fermi level of other regions enough to be n-doped. These experiments also show that electrochemical control of the reactivity of graphene is possible but rather complex, so that the ability to control the reactivity via substrate engineering as shown in the main text is valuable. Supplementary Figure 8. Electrochemical functionalization of graphene. a, Schematic illustration of sample and electrode setup for experiments. Pieces of CVD graphene ~5 mm x 5 mm were transferred to Si substrates with 100 nm or 300 nm SiO 2. Contacts were made from silver paint along two opposite edges of the graphene sample. A droplet of diazonium solution was placed over the sample and contacts. The contacts and solution were kept at ground (0 V) while different back gate voltages were applied to different samples for 1 min each. b, Schematic illustrations of Fermi level modulation in graphene with positive and negative gate voltage (top row) and ionic NATURE CHEMISTRY 12

13 displacement in the solution (bottom row). The diazonium concentration at the surface is decreased or increased depending on the sign and magnitude of the applied back gate voltage. Supplementary Figure 9. Results of electrochemical functionalization of graphene. a, Representative Raman spectra for functionalized graphene on 100 nm SiO 2 /Si. b, Representative Raman spectra for functionalized graphene on 300 nm SiO 2 /Si. c, D/G intensity ratio from Raman spectra of functionalized graphene as function of gate voltage. All samples were reacted for 1 min. References 1 Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, , (2011). 2 Kim, K. et al. Grain Boundary Mapping in Polycrystalline Graphene. ACS Nano 5, , (2011). 3 Blanch, A. J., Lenehan, C. E. & Quinton, J. S. Dispersant Effects in the Selective Reaction of Aryl Diazonium Salts with Single-Walled Carbon Nanotubes in Aqueous Solution. J. Phys. Chem. C 116, , (2011). 4 Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, , (2010). NATURE CHEMISTRY 13

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

Edge conduction in monolayer WTe 2

Edge conduction in monolayer WTe 2 In the format provided by the authors and unedited. DOI: 1.138/NPHYS491 Edge conduction in monolayer WTe 2 Contents SI-1. Characterizations of monolayer WTe2 devices SI-2. Magnetoresistance and temperature

More information

Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC

Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC Supplementary Figure 1: A potential scheme to electrically gate the graphene-based metamaterial. Here density. The voltage equals, where is the DC permittivity of the dielectric. is the surface charge

More information

A new method of growing graphene on Cu by hydrogen etching

A new method of growing graphene on Cu by hydrogen etching A new method of growing graphene on Cu by hydrogen etching Linjie zhan version 6, 2015.05.12--2015.05.24 CVD graphene Hydrogen etching Anisotropic Copper-catalyzed Highly anisotropic hydrogen etching method

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Spin-Conserving Resonant Tunneling in Twist- Supporting Information

Spin-Conserving Resonant Tunneling in Twist- Supporting Information Spin-Conserving Resonant Tunneling in Twist- Controlled WSe2-hBN-WSe2 Heterostructures Supporting Information Kyounghwan Kim, 1 Nitin Prasad, 1 Hema C. P. Movva, 1 G. William Burg, 1 Yimeng Wang, 1 Stefano

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Stable, Dual-Gated MoS 2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact Resistance and Threshold Voltage Gwan-Hyoung Lee, Xu Cui,

More information

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before conversion. Most of the graphene sample was folded after

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Graphene Annealing: How Clean Can It Be?

Graphene Annealing: How Clean Can It Be? Supporting Information for Graphene Annealing: How Clean Can It Be? Yung-Chang Lin, 1 Chun-Chieh Lu, 1 Chao-Huei Yeh, 1 Chuanhong Jin, 2 Kazu Suenaga, 2 Po-Wen Chiu 1 * 1 Department of Electrical Engineering,

More information

Large Single Crystals of Graphene on Melted. Copper using Chemical Vapour Deposition.

Large Single Crystals of Graphene on Melted. Copper using Chemical Vapour Deposition. Supporting information for Large Single Crystals of Graphene on Melted Copper using Chemical Vapour Deposition. Yimin A. Wu 1, Ye Fan 1, Susannah Speller 1, Graham L. Creeth 2, Jerzy T. Sadowski 3, Kuang

More information

Supplementary Figures Supplementary Figure 1

Supplementary Figures Supplementary Figure 1 Supplementary Figures Supplementary Figure 1 Optical images of graphene grains on Cu after Cu oxidation treatment at 200 for 1m 30s. Each sample was synthesized with different H 2 annealing time for (a)

More information

Extrinsic Origin of Persistent Photoconductivity in

Extrinsic Origin of Persistent Photoconductivity in Supporting Information Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors Yueh-Chun Wu 1, Cheng-Hua Liu 1,2, Shao-Yu Chen 1, Fu-Yu Shih 1,2, Po-Hsun Ho 3, Chun-Wei

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct Visualization of Large-Area Graphene Domains and Boundaries by Optical Birefringency Dae Woo Kim 1,*, Yun Ho Kim 1,2,*, Hyeon Su Jeong 1, Hee-Tae Jung 1 * These authors contributed equally to this

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride Kun Ba 1,, Wei Jiang 1,,Jingxin Cheng 2, Jingxian Bao 1, Ningning Xuan 1,Yangye Sun 1, Bing Liu 1, Aozhen

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Novel Tooling for Scaling of High Quality CVD Graphene Production. Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright

Novel Tooling for Scaling of High Quality CVD Graphene Production. Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright Novel Tooling for Scaling of High Quality CVD Graphene Production Karlheinz Strobl, Mathieu Monville, Riju Singhal and Samuel Wright 1 Commercialization of Nano Materials Commercialization Volume production

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Engineered Flexible Conductive Barrier Films for Advanced Energy Devices

Engineered Flexible Conductive Barrier Films for Advanced Energy Devices The 13 th Korea-U.S. Forum on Nanotechnology Engineered Flexible Conductive Barrier Films for Advanced Energy Devices Jinsung Kwak 1, Yongsu Jo 1, Soon-Dong Park 2, Na Yeon Kim 1, Se-Yang Kim 1, Zonghoon

More information

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University Graphene The Search For Two Dimensions Christopher Scott Friedline Arizona State University What Is Graphene? Single atomic layer of graphite arranged in a honeycomb crystal lattice Consists of sp 2 -bonded

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Wafer-Scale Single-Domain-Like Graphene by Defect-Selective Atomic Layer Deposition of Hexagonal

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Supporting Information. Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures

Supporting Information. Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures Supporting Information Nanoscale control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures Jairo Velasco Jr. 1,5,, Long Ju 1,, Dillon Wong 1,, Salman Kahn 1, Juwon Lee

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were Nano Letters (214) Supplementary Information for High Mobility WSe 2 p- and n-type Field Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts Hsun-Jen Chuang, Xuebin Tan, Nirmal

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201503131 Tuning the Excitonic States in MoS 2 /Graphene van

More information

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process SUPPORTING INFORMATION Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process Taeshik Yoon 1, Woo Cheol Shin 2, Taek Yong Kim 2,

More information

Large scale growth and characterization of atomic hexagonal boron. nitride layers

Large scale growth and characterization of atomic hexagonal boron. nitride layers Supporting on-line material Large scale growth and characterization of atomic hexagonal boron nitride layers Li Song, Lijie Ci, Hao Lu, Pavel B. Sorokin, Chuanhong Jin, Jie Ni, Alexander G. Kvashnin, Dmitry

More information

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links

Journal Name. Supporting Information. Significant enhancement in blue emission and electrical conductivity of N-doped graphene. Dynamic Article Links Journal Name Dynamic Article Links Cite this: DOI:.39/c0xx00000x www.rsc.org/xxxxxx Supporting Information Significant enhancement in blue emission and electrical conductivity of N-doped graphene Tran

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in all-fibre graphene devices. a.

Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in all-fibre graphene devices. a. Supplementary Figure 1: Experimental measurement of polarization-dependent absorption properties in all-fibre graphene devices. a. Schematic of experimental set-up including an amplified spontaneous emission

More information

Supplementary Information

Supplementary Information Supplementary Information a b Supplementary Figure 1. Morphological characterization of synthesized graphene. (a) Optical microscopy image of graphene after transfer on Si/SiO 2 substrate showing the array

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1211384/dc1 Supporting Online Material for Hot Carrier Assisted Intrinsic Photoresponse in Graphene Nathaniel M. Gabor, Justin C. W. Song, Qiong Ma, Nityan L.

More information

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2 Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2 Kha Tran 1, Akshay Singh 1,*, Joe Seifert 1, Yiping Wang 1, Kai Hao 1, Jing-Kai Huang 2, Lain-Jong Li 2, Takashi Taniguchi 4, Kenji

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

Supplementary Figure 1. Crystal packing of pentacene.

Supplementary Figure 1. Crystal packing of pentacene. t 3 t 4 t 1 t 2 Supplementary Figure 1. Crystal packing of pentacene. The largestholecharge transfer integrals are shown in red:t 1 = 75 mev, t 2 = 32 mev, t 3 = 20 mev, t 4 = 6 mev. Note that IRactive

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Information Vertical Heterostructures of MoS2 and Graphene Nanoribbons

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa Experiment Atmosphere Temperature #1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1,

More information

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Supplementary information Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Hak Ki Yu 1,2, Kannan Balasubramanian 3, Kisoo Kim 4,

More information

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating Atomic Force icroscopy Characterization of Room- Temperature Adlayers of Small Organic olecules through Graphene Templating Peigen Cao, Ke Xu,2, Joseph O. Varghese, and James R. Heath *. Kavli Nanoscience

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Multilayer graphene shows intrinsic resistance peaks in the carrier density dependence.

Multilayer graphene shows intrinsic resistance peaks in the carrier density dependence. Multilayer graphene shows intrinsic resistance peaks in the carrier density dependence. Taiki Hirahara 1, Ryoya Ebisuoka 1, Takushi Oka 1, Tomoaki Nakasuga 1, Shingo Tajima 1, Kenji Watanabe 2, Takashi

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Supporting Information Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Zhongbo Yan, Ming Xia, Pei Zhang, and Ya-Hong Xie* Department of

More information

Supplementary Information

Supplementary Information Emiss. Inten. (arb. unit) Emiss. Inten. (arb. unit) Supplementary Information Supplementary Figures S-S a b..5. c.2 d.2 (6,5) (7,5) (6,5).8 (7,6).8.6.4.2 (9,) (8,4) (9,4) (8,6) (,2).6.4.2 (7,5) (7,6)(8,4)

More information

Supporting Information. Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers

Supporting Information. Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers Supporting Information Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers Sefaattin Tongay 1,, Wen Fan 1,2,, Jun Kang 3, Joonsuk Park 4,Unsal Koldemir 4,Joonki

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaar3899/dc1 Supplementary Materials for Molecular engineering of Rashba spin-charge converter Hiroyasu Nakayama, Takashi Yamamoto, Hongyu An, Kento Tsuda,

More information

Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers

Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers Supporting Information Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers Yiling Yu 1,2, Yifei Yu 1, Lujun Huang 1, Haowei Peng 3, Liwei Xiong 1,4 and Linyou

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological insulator nanostructures for near-infrared transparent flexible electrodes Hailin Peng 1*, Wenhui Dang 1, Jie Cao 1, Yulin Chen 2,3, Di Wu 1, Wenshan Zheng 1, Hui Li 1, Zhi-Xun Shen 3,4, Zhongfan

More information

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics Supporting Information for Continuous, Highly Flexible and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics Lewis Gomez De Arco 1,2, Yi Zhang 1,2, Cody W. Schlenker 2,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Flexible, high-performance carbon nanotube integrated circuits Dong-ming Sun, Marina Y. Timmermans, Ying Tian, Albert G. Nasibulin, Esko I. Kauppinen, Shigeru Kishimoto, Takashi

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 AFM and Raman characterization of WS 2 crystals. (a) Optical and AFM images of a representative WS 2 flake. Color scale of the AFM image represents 0-20

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Original phys. stat. sol. (b), 1 5 (2006) / DOI 10.1002/pssb.200669179

More information

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan Supporting Materials High Quality Thin Graphene Films from Fast Electrochemical Exfoliation Ching-Yuan Su, Ang-Yu Lu #, Yanping Xu, Fu-Rong Chen #, Andrei N. Khlobystov $ and Lain-Jong Li * Research Center

More information

Graphene: Plane and Simple Electrical Metrology?

Graphene: Plane and Simple Electrical Metrology? Graphene: Plane and Simple Electrical Metrology? R. E. Elmquist, F. L. Hernandez-Marquez, M. Real, T. Shen, D. B. Newell, C. J. Jacob, and G. R. Jones, Jr. National Institute of Standards and Technology,

More information

Center for Integrated Nanostructure Physics (CINAP)

Center for Integrated Nanostructure Physics (CINAP) Center for Integrated Nanostructure Physics (CINAP) - Institute for Basic Science (IBS) was launched in 2012 by the Korean government to promote basic science in Korea - Our Center was established in 2012

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/7/e1600322/dc1 Supplementary Materials for Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering Simin Feng, Maria Cristina

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information

Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information Thiti Taychatanapat, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero Department of

More information

Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene

Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene Supporting Information Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene Ruisong Ma 1,2, Qing Huan 1, Liangmei Wu 1,2, Jia-Hao Yan 1,2, Wei Guo 3, Yu-Yang

More information

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO Supplementary Figures GO Supplementary Figure S1 1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO Schematic illustration of synthesis of Au square sheets on graphene oxide sheets.

More information

Electrical control of near-field energy transfer between. quantum dots and 2D semiconductors

Electrical control of near-field energy transfer between. quantum dots and 2D semiconductors Electrical control of near-field energy transfer between quantum dots and 2D semiconductors Supporting Information Dhiraj Prasai, Andrey Klots #, AKM Newaz #, $, J. Scott Niezgoda, Noah J. Orfield, Carlos

More information