Crowding in Brassica rapa. Deanna Hall

Size: px
Start display at page:

Download "Crowding in Brassica rapa. Deanna Hall"

Transcription

1 Crowding in Brassica rapa Deanna Hall Bio 493 March 24, 26

2 Crowding in Brassica rapa Deanna Hall Abstract Wisconsin Fast plants (Brassica rapa) were grown in four different densities of one, two, three and four plants per pot to determine the effects of crowding on reproduction. Each density was separated by trays and each tray held 12 pots. The plants were provided with equal amounts of light, water and fertilizer for the entire growing process. Measurements were taken of the plant height, the amount of light available, the number of flowers, seed pods and seeds produced. The weight per seed was also recorded. Significant differences were found in the number of seeds pods, seeds and the weight per seed between each density. There was no significant difference found in the height per plant or in the number of flowers produced by each plant. INTRODUCTION Brassica rapa, commonly known as the Wisconsin Fast Plant. Fast plants have a short life-cycle of about days with the tallest plants reaching about 3cm. The Fast Plants are members of the crucifer family of plants, which include cabbage, turnips, broccoli and other vegetables. According to Harley and Bertness (1996) clumping in plant distribution is a common ecological phenomenon. Nearly all of the research found on both interspecific and intraspecific competition from crowding suggests that when plants are crowded, they result in taller, thinner plants. Shading by neighboring plants reduces energy for photosynthesis and lowers the ratios of red: far-red light which triggers a stem elongation response in herbaceous plants (Collins and Wein 2). Plant stems are kept short, unless the plant faces competition for light. Phytochrome refers to a group of photoreceptors that absorb light and control developmental effects in plants. 1

3 Phytochrome inhibitis cell elongation when stimulated by red-light (78-62nm). When a plant is shaded it receives primarily far-red light and cell elongation resumes (Nabors 24). Smaller plants within areas of high local densities were more likely to die than larger plants due to competition (Suzuki et al 23, Bender et al 22). Cresswell et al. (21) found that plant size was strongly affected by plant density; plants in the lowest density pots developed ten-times more biomass per plant than individuals in the highest density pots. Sanders et al. (1998) found that plant productivity is indirectly correlated with plant density. Plants can have different responses to crowding. Reproduction in some plants is stimulated by stress (personal conversation with Dr. Winget). In the Lemna minor, it was found that size of the reproductive parts is more important for success in competition than is the number of the parts produced (Vasseur et al. 1995). Cresswell et al. (21) found that none of the observed individual attributes of Brassica napus L. flowers varied with density, but the number of flowers per plant declined as density increased. In resource scarcity the plants conserved flower size rather than number (Cresswell et al. 21). Harley and Bertness (1996) found that marsh plants that developed in a crowded area became structurally dependent upon one another; when the crowded plants were thinned they fell over. Crowding of Brassica rapa was found to affect plant size and the number of flowers produced (Gurevitch et al 1996). The purpose of this research was to find how crowding effected the reproductive capability of Brassica rapa as gauged by average height per plant, number of seed pods and seeds produced per plant, and the weight per seed. 2

4 MATERIALS AND METHODS Wisconsin Fast Plants were grown in five and a half centimeter pots with varying densities of one, two, three, or four plants per pot using a commercial vermiculite/perlite/peatmoss mix potting soil. Each pot was provided three granules of slow release fertilizer ( ) containing trace elements. The pots were arranged in four different trays corresponding with plant density, twelve pots for each plant density, for a total of forty-eight pots. All plants were provided with the same amount of light which was provided by four 3-watt florescent Grow-Lux lamps (1.2m), placed twenty centimeters above the trays. The light was provided 24 hours a day throughout the entire growing process. Water was provided in the tray underneath the pots. Each pot had a hole in the bottom to allow the roots to have constant contact with the water to ensure that moisture was not a limiting factor to the plants growth. The soil was kept damp, but not soggy. Height, number of flowers, number of seed pods, number of seeds produced in each pod and weight per seed (mg) on multiple occasions. Light intensity was measured above the plants and at soil level twice during the growing process. The plants were hand-pollinated daily during the flowering stage. A dried bee glued to a stick was used for pollination. The bee was rubbed on the anthers of several open flowers and then rolled on the stigmas of flowers of other plants. Plants were crosspollinated only with other plants from the same density. Pollination continued every day until three to four days after the last flowers opened. 3

5 Seeds were harvested approximately 2 days after the last pollination. Water was removed from the plants when the ends of the pods began to change color from green to brown. The plants were allowed to dry for about seven days or until the seed pods were brown and crisp. The seed pods were broken open and the seeds counted and weighed to the nearest.1 mg using a Mettler analytical balance. Analysis of variance (ANOVA) for each of the densities were performed for the height per plant, the number of seed pods per plant, the number of seeds per plant and the average weight per seed. RESULTS AND DISCUSSION The number of seed pods per plant tended to be inversely related to the number of plants per pot. In the one plant per pot density the average number of seed pods per plant was 8.8 +/ For the two plants per pot density the average number was 5.8 +/-2.48 pods, in the three plant density the average was 4.1 +/- pods and in the four plant density the average number of seed pods per plant was 3.2 +/ (Figure 1). The ANOVA showed significant differences (p<.1) in average number of seed pods per plant between one plant per pot and all three other densities, between two plants per pot and four plants per pot, and between three and four plants per pot. The difference between two and three plants per pot was not significant 4

6 14 Average number of seed pods per plant Number of plants per pot FIGURE 1 The average number of seed pods per plant for the densities of one, two, three and four plants per pot. +/- SD are also given. The number of seeds per plant tended to be inversely related to the number of plants per pot. The average number of seeds per plant was 11 +/-2.73 for the one per pot density, 68 +/-2.25 for the two plants per pot density, 38 +/-2.14 in the three per pot density, and 3 +/-1.41 in the four per pot density (Figure 2). The ANOVA showed significant differences (p<.1) in the average number of seeds per plant between the one per pot density and all three other densities, and between the two plants per pot and both the three and four plants per pot. There was no significant difference between the three and four plants per pot in the average number of seeds per plant. 5

7 16 14 Average number of seeds per plant plants per pot FIGURE 2 The average number of seeds per plant for densities of one, two, three, and four plants per pot. +/- SD is given. The weight per seed was recorded at the completion of the growing cycle and was found to be inversely related to the number of plants per pot. In the one plant per pot density the average weight per seed was 185mg +/-37.2, 117mg +/ for the 2 plants per pot density, 62mg +/ for the 3 plants per pot density, and 42mg +/ for the four plants per pot density (Figure 3). The ANOVA showed a significant difference (p<.1) between the one per pot density and the two three and four per pot densities and between the two per pot and the three and four per pot densities. There was no significant difference in the weight per seed of the three and four per pot densities. 6

8 25 2 Weight per seed (mg) Number of plants per pot FIGURE 3 The average weight per seed in mg for the densities of one, two, three and four plants per pot. +/- SD are shown. Heights of the plants were measured on days 13, 17, and 21 of the growth cycle (figure 4). There was no significant difference found for the height of the plants in relationship to crowding. 7

9 3 25 day13 day 17 day /pot 2/pot 3/pot 4/pot density FIGURE 4 Average height (cm) per plant measured at three different intervals throughout the growth cycle for the densities of one, two, three, and four plants per pot. Standard deviations of +/- SD are given. The number of flowers per plant was measured on four different occasions throughout the growth cycle (Figure 5). The ANOVA showed there was no significant difference between the number of flowers per plant on any of the days counted perhaps due to the extreme variation within each density. Day 17 8

10 Ave. No. Flowers Per Plant Day 15 Day 21 Day 23 Day Plants Per Pot FIGURE 5 The average number of flowers per plant per density of one, two, three and four plants per pot on four different intervals throughout the growth cycle. +/- 1 SD is given. Light intensity was measured at the canopy level of all plants on days 13 and 21. On day 13 the average lux at the canopy level was 466. and on day 21 it was lux. The increase was due to the rise of the canopy with relation to the light source. Light intensity was also measured at the soil level for all of the plant densities. Averages were calculated for each density. The one plant per pot density had an average lux of 281 on day 13 and on day 21. The two plants per pot density had an average of 285 lux on day 13 and 98.9 lux on day 21. The average lux for the three plants per pot density on day 13 was 211 and 86.5 on day 21. The four per plant density had an average of 188 lux on day 13 and 65.4 on day 21. (Figure 6) 9

11 12 Day canopy Lux 12 1 Day Number of plants per pot canopy FIGURE 6 Bars one through four represent the average lux per density of plants measured at soil level. Bar five represents the light at the canopy level. +/- 1 SD is given for day 21. 1

12 DISCUSSION The results of this study show a significant correlation between crowding and the number of seed pods and seeds produced per plant and the weight per seed for the Wisconsin Fast plant. When faced with competition the plants produced fewer numbers of seed pods, seeds and the weight per seed decreased. There was no significant difference found between the number of flowers produced for each density, but the number of flowers that set pods and matured seeds was greater in the lower densities. This study has shown that the height and number of flowers produced per plant was not significantly different between the densities used in this study. This is inconsistent with the study performed by Gurevitch et al. (1996) who found that the number of flowers produced and plant size were negatively affected by crowding. Perhaps if densities were higher in this study, results might have agreed with Gurevitch s findings. 11

13 SOURCES CITED Bender, M.H., J.M. Baskin, and C.C. Baskin. 22. Role of intraspecific competition in mass seeding and senescence in Polymnia canadensis, a primarily monocarpic species. Journal of the Torrey Botanical Society 129(2): Collins, B., and G. Wein. 2. Stem elongation response to neighbor shade in sprawling and upright Polygonum species. Annals of Botany 86(4): Cresswell, J.E., C. Hagen, and J.M. Woolnough. 21. Attributes of individual flowers of Brassica napas L. are affected by defoliation but not by intraspecific competition. Annals of Botany 88(1): Gurevitch, J., D.R. Taub, T.C. Morton, P.L. Gomez, and I.N. Wang Competition and genetic background in rapid-cycling cultivar of Brassica rapa (Brassiacaceae). American Journal of Botany 83(7): Harley, C.D.G., and M.D. Bertness Structural interdependence: An ecological consequence of morphological responses to crowding in marsh plants. Functional Ecology 1(5): Nabors, M.W., 24. Introduction to Botany. San Francisco: Pearson Benjamin Cummings. P Sanders, D.C., J.D. Cure, W.J. Sperry, J.C. Gilsanz, C.A. Prince, and O. Bandele Long-term effects of rows per bed and i-row spacing on yield and spear size of asparagus. Hortscience 33(4): Suzuki, R.O., H. Kudoh, and N. Kachi. 23. Spatial and temporal variations in mortality of the biennial plant, Lysimachia rubida: Effects of intraspecific competition and environmental heterogeneity. Journal of Ecology 91(1): Winget, R. Professor of Biology at Brigham Young University Hawaii (25). Personal Communication. Vasseur L., D.L. Irwin, and L.W. Aarssen Size versus number of offspring as predictors of success under competition in Lemna minor (Lemnaceae). Annales Botanici Fennici 32(3):

Sex, Bugs, and Pollen s Role

Sex, Bugs, and Pollen s Role Sex, Bugs, and Pollen s Role Principle of Plant Biology #4 Reproduction in flowering plants takes place sexually, resulting in the production of a seed. Reproduction can also occur via asexual reproduction.

More information

Plant Growth as a Function of LED Lights

Plant Growth as a Function of LED Lights Plant Growth as a Function of LED Lights Authors' Names Redacted Abstract: In most lab settings the Brassica Rapa plant can be efficiently grown under a 32-watt fluorescent light bulb. In this experiment

More information

Laboratory III Quantitative Genetics

Laboratory III Quantitative Genetics Laboratory III Quantitative Genetics Genetics Biology 303 Spring 2007 Dr. Wadsworth Introduction Mendel's experimental approach depended on the fact that he chose phenotypes that varied in simple and discrete

More information

Biology 164 Laboratory

Biology 164 Laboratory Biology 164 Laboratory Artificial Selection in Brassica, Part I (Based on a laboratory exercise developed by Professor Bruce Fall, University of Minnesota) I. Objectives 1. Gain familiarity with the process

More information

MY BACKGROUND. Saeid since 1998

MY BACKGROUND. Saeid since 1998 Plant Productivity in Response to LEDs Light Quality Saeid H. Mobini, Ph.D. (saeid.mobini@gov.ab.ca) Greenhouse Research Scientist, Crop Research and Extension Branch, AF MY BACKGROUND Saeid since 1998

More information

Stem Elongation Response to Neighbour Shade in Sprawling and Upright Polygonum Species

Stem Elongation Response to Neighbour Shade in Sprawling and Upright Polygonum Species Annals of Botany 86: 739±744, 2 doi:1.16/anbo.2.1233, available online at http://www.idealibrary.com on Stem Elongation Response to Neighbour Shade in Sprawling and Upright Polygonum Species BEVERLY COLLINS*

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Plant Growth & Development. Growth Processes Photosynthesis. Plant Growth & Development

Plant Growth & Development. Growth Processes Photosynthesis. Plant Growth & Development Plant Growth & Development Growth Processes Growth Requirements Types of Growth & Development Factors Growth Processes Photosynthesis Creating carbohydrates (stored energy) from CO 2 + water + sunlight

More information

Chapter 4. Biology of Flowering Plants. Regulation of Plant Growth by Plant Hormones

Chapter 4. Biology of Flowering Plants. Regulation of Plant Growth by Plant Hormones BOT 3015L (Sherdan/Outlaw/Aghoram); Page 1 of 8 Chapter 4 Biology of Flowering Plants Regulation of Plant Growth by Plant Hormones Objectives Plant Growth Regulators. Know the names of the plant growth

More information

Forage Growth and Its Relationship. to Grazing Management

Forage Growth and Its Relationship. to Grazing Management 1 of 5 4/9/2007 8:31 AM Forage Growth and Its Relationship to Grazing Management H. Alan DeRamus Department of Renewable Resources University of Southwestern Louisiana, Lafayette Introduction All green

More information

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands

Control of Plant Height and Branching in Ornamentals. Ep Heuvelink. Horticulture and Product Physiology group, Wageningen University, the Netherlands Control of Plant Height and Branching in Ornamentals Ep Heuvelink Horticulture and Product Physiology group, Wageningen University, the Netherlands Compact plants = desired external quality Currently often

More information

CRITICAL PETIOLE POTASSIUM LEVELS AS RELATED TO PHYSIOLOGICAL RESPONSES OF CHAMBER- GROWN COTTON TO POTASSIUM DEFICIENCY

CRITICAL PETIOLE POTASSIUM LEVELS AS RELATED TO PHYSIOLOGICAL RESPONSES OF CHAMBER- GROWN COTTON TO POTASSIUM DEFICIENCY Summaries of Arkansas Cotton Research 23 CRITICAL PETIOLE POTASSIUM LEVELS AS RELATED TO PHYSIOLOGICAL RESPONSES OF CHAMBER- GROWN COTTON TO POTASSIUM DEFICIENCY D.L. Coker, D.M. Oosterhuis, M. Arevalo,

More information

Federal State Educational Institution of Higher Professional Education M.V.Lomonosov Moscow State University

Federal State Educational Institution of Higher Professional Education M.V.Lomonosov Moscow State University 1 Federal State Educational Institution of Higher Professional Education M.V.Lomonosov Moscow State University 2 State Scientific Centre of the Russian Federation Institute of Bio-Medical Problems, Russian

More information

Plants can be either herbaceous or woody.

Plants can be either herbaceous or woody. Plant Structure Plants can be either herbaceous or woody. Herbaceous plants are plants with growth which dies back to the ground each year, in contrast with woody plants Most herbaceous plants have stems

More information

AP Biology Plant Control and Coordination

AP Biology Plant Control and Coordination AP Biology Plant Control and Coordination 1. What is the effect of the plant hormone ethylene on fruit ripening? 2. How does fruit change as it ripens? 3. What is the mechanism behind ripening? 4. Why

More information

Mendel and the Gene Idea. Biology Exploring Life Section Modern Biology Section 9-1

Mendel and the Gene Idea. Biology Exploring Life Section Modern Biology Section 9-1 Mendel and the Gene Idea Biology Exploring Life Section 10.0-10.2 Modern Biology Section 9-1 Objectives Summarize the Blending Hypothesis and the problems associated with it. Describe the methods used

More information

Fundamental Plant Processes - Plant Parts & Functions

Fundamental Plant Processes - Plant Parts & Functions Fundamental Plant Processes - Plant Parts & Functions irections: nswer the following questions. 1. Which of the following plant parts supports the stem?. Roots B. tem C. Leaves. Flowers 2. Which structure

More information

What is competition? Competition among individuals. Competition: Neutral Theory vs. the Niche

What is competition? Competition among individuals. Competition: Neutral Theory vs. the Niche Competition: Neutral Theory vs. the Niche Reading assignment: Ch. 10, GSF (especially p. 237-249) Optional: Clark 2009 9/21/09 1 What is competition? A reduction in fitness due to shared use of a limited

More information

Hairy s Inheritance: Investigating Variation, Selection, and Evolution with Wisconsin Fast Plants

Hairy s Inheritance: Investigating Variation, Selection, and Evolution with Wisconsin Fast Plants Introduction Hairy s Inheritance: Investigating Variation, Selection, and Evolution with Wisconsin Fast Plants Daniel Lauffer Wisconsin Fast Plants Program University of Wisconsin - Madison Since the dawn

More information

1 Rice Growth and Development

1 Rice Growth and Development 1 Rice Growth and Development Karen Moldenhauer and Nathan Slaton Rice is an annual grass (Figure 1-1) with round, hollow, jointed culms; narrow, flat, sessile leaf blades joined to the leaf sheaths with

More information

BIOL 305L Spring 2018 Laboratory Seven

BIOL 305L Spring 2018 Laboratory Seven Please print Full name clearly: BIOL 305L Spring 2018 Laboratory Seven Flowering and reproduction Introduction Flowers are not simple structures, and the diversity of flower shape, color, and fragrance

More information

1 Mendel and His Peas

1 Mendel and His Peas CHAPTER 6 1 Mendel and His Peas SECTION Heredity 7.2.d California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: What is heredity? Who was

More information

Lanthanum Effects on Gravitropic Response of Cut Tulip Flowers

Lanthanum Effects on Gravitropic Response of Cut Tulip Flowers Lanthanum Effects on Gravitropic Response of Cut Tulip Flowers Hye-Ji Kim, E. Jay Holcomb and Kathleen M. Brown Department of Horticulture, Penn State University, University Park, PA 16802 USA Keywords:

More information

https://syukur16tom.wordpress.com/ Password: LECTURE 02: PLANT AND ENVIRONMENT

https://syukur16tom.wordpress.com/ Password: LECTURE 02: PLANT AND ENVIRONMENT http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: LECTURE 02: PLANT AND ENVIRONMENT Plant and Environment drive plant growth that causes plant variation as the core

More information

Hacking Hybrid Plants and Seeds Dr. Art Trese, Ohio University. Presentation Credit: Dr. Art Trese, Ohio University

Hacking Hybrid Plants and Seeds Dr. Art Trese, Ohio University. Presentation Credit: Dr. Art Trese, Ohio University Hacking Hybrid Plants and Seeds Dr. Art Trese, Ohio University Hybrid: In biology, hybrid means something different when applied to animals versus plants A) hybrid animals progeny of two different species

More information

EFFECTS OF SEED SIZE AND EMERGENCE TIME ON SUBSEQUENT GROWTH OF PERENNIAL RYEGRASS

EFFECTS OF SEED SIZE AND EMERGENCE TIME ON SUBSEQUENT GROWTH OF PERENNIAL RYEGRASS Phytol (980) 84, 33-38 EFFECTS OF SEED SIZE AND EMERGENCE TIME ON SUBSEQUENT GROWTH OF PERENNIAL RYEGRASS BY ROBERT E. L. NAYLOR School of Agriculture, The University, Aberdeen {Accepted 2 January 979)

More information

POST-TRIP LESSON: PLANT PARTS BINGO

POST-TRIP LESSON: PLANT PARTS BINGO POST-TRIP LESSON: PLANT PARTS BINGO Overview: Students play a game to reinforce vocabulary and concepts learned in the Plant Parts, Seed to Harvest, and Pollination modules during the field trip. Sauvie

More information

Objectives. ROGH Docent Program Week 2: Plant Anatomy

Objectives. ROGH Docent Program Week 2: Plant Anatomy Objectives To introduce general botany for subjects on display To provide knowledge of general plant anatomy To provide general understanding of orchid anatomy & biology To introduce concepts of plant-pollinator

More information

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING R. D. Heins and H. F. Wilkins Department of Horticultural Science University of

More information

Plant Anatomy and Life Processes Study Guide

Plant Anatomy and Life Processes Study Guide Plant Anatomy and Life Processes Study Guide Science SOL 4.4 Please use this study guide to study daily for your test! Please keep this study guide in your HOMEWORK FOLDER so that you can use it to study

More information

Greenhouse Supplemental Light Quality for Vegetable Nurseries

Greenhouse Supplemental Light Quality for Vegetable Nurseries Greenhouse Supplemental Light Quality for Vegetable Nurseries Chieri Kubota and Ricardo Hernández The University of Arizona LED Symposium (Feb 20, 2015) Supplemental lighting from late fall to early spring

More information

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers)

Shoot System. Root System. below-ground organs (roots) Dermal Tissue. Ground Tissue. Vascular Tissue. above-ground organs (leaves, stems, flowers) Shoot System above-ground organs (leaves, stems, flowers) Root System below-ground organs (roots) Dermal Tissue type of plant tissue that is the outer covering of the plant and serves as a protective barrier

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

The Wheat Plant and Its Life Cycle

The Wheat Plant and Its Life Cycle The Wheat Plant and Its Life Cycle Week 1 Day 4 Lesson Overview The purpose of this lesson is to introduce students to the specific structures and functions of a wheat plant as well as to the wheat life

More information

STOLLER ENTERPRISES, INC. World leader in crop nutrition

STOLLER ENTERPRISES, INC. World leader in crop nutrition A new paradigm for crop production - Page 1 of 6 A NEW PARADIGM FOR CROP PRODUCTION Most agronomists are taught about the chemical process of manufacturing photosynthates (PS). The plants breathe in carbon

More information

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE Electromagnetic radiation Energy emitted by a light source Measured in watts Visible

More information

Plant responses to climate change in the Negev

Plant responses to climate change in the Negev Ben-Gurion University of the Negev Plant responses to climate change in the Negev 300 200 150? Dr. Bertrand Boeken Dry Rangeland Ecology and Management Lab The Wyler Dept. of Dryland Agriculture Jacob

More information

Plant Lifecycle 3 rd 5 th Grade

Plant Lifecycle 3 rd 5 th Grade Key Understandings Students will understand that each plant has a lifecycle and the plant lifecycle is a continual process A lifecycle is a continuous cycle that contains: birth, growth, reproduction,

More information

1 Mendel and His Peas

1 Mendel and His Peas CHAPTER 5 1 Mendel and His Peas SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is heredity? How did Gregor Mendel study heredity? National

More information

Light. Bedding Plants

Light. Bedding Plants Temperature and Light on Bedding Plants Michigan State University research shows what effects temperature and light intensity have on bedding plant production. By Lee Ann Pramuk and Erik Runkle Figure

More information

Plant Structure and Organization - 1

Plant Structure and Organization - 1 Plant Structure and Organization - 1 In our first unit of Biology 203 we will focus on the structure and function of the higher plants, in particular the angiosperms, or flowering plants. We will look

More information

Fast Plant Project by Jerilyn Myers

Fast Plant Project by Jerilyn Myers Fast Plant Project by Jerilyn Myers The Life Cycle of a Flowering Plant 5 th Grade Science Standards 5 th Grade Students will: 1. Explain the functions of the four plant parts; seeds, stem, leaves, and

More information

Plant Water Stress Frequency and Periodicity in Western North Dakota

Plant Water Stress Frequency and Periodicity in Western North Dakota Plant Water Stress Frequency and Periodicity in Western North Dakota Llewellyn L. Manske PhD, Sheri Schneider, John A. Urban, and Jeffery J. Kubik Report DREC 10-1077 Range Research Program Staff North

More information

UNIT 3. PLANTS. PRIMARY 4/ Natural Science Pedro Antonio López Hernández

UNIT 3. PLANTS. PRIMARY 4/ Natural Science Pedro Antonio López Hernández UNIT 3. PLANTS PRIMARY 4/ Natural Science Pedro Antonio López Hernández They help to keep it in place. Roots They take in the water and minerals a plant needs to make its food. They support the leaves.

More information

2. Pollination experiments were conducted with Serr and Chico trees in the DC

2. Pollination experiments were conducted with Serr and Chico trees in the DC PISTILLATE FLOWER ABSCISSION - 1990 P.B. Catlin, Gale McGranahan, and D. Voyatzis ABSTRACT Evaluation of the pistillate flower abscission (PFA) potential of UC-67-13 and UC-67-11 was continued at two sites.

More information

(A) Ethylene (B) Absisic acid (C) Auxin (D) Gibberellin (E) Cytokinin

(A) Ethylene (B) Absisic acid (C) Auxin (D) Gibberellin (E) Cytokinin College Biology - Problem Drill 17: Plant Function Question No. 1 of 10 1. Which of the following plant hormones is responsible for phototropism? Question #01 (A) Ethylene (B) Absisic acid (C) Auxin (D)

More information

Introduction This experiment explores the effect of light color on chlorophyll levels in Wisconsin Fast Plant leaves. The rationale of this project is

Introduction This experiment explores the effect of light color on chlorophyll levels in Wisconsin Fast Plant leaves. The rationale of this project is Maylin, Victoria, Sam, Prahlad The Effect of Light Color on Chlorophyll Levels in Wisconsin Fast Plant Leaves 11/20/2015 Teacher: Mr. Roche Mentor: Mr. Schultz Introduction This experiment explores the

More information

Chap 5. Differentiation and Development. 1. General Information 2. Plant Growth Hormones 3. Vegetative Physiology 4. Reproductive Physiology

Chap 5. Differentiation and Development. 1. General Information 2. Plant Growth Hormones 3. Vegetative Physiology 4. Reproductive Physiology Chap 5. Differentiation and Development 1. General Information 2. Plant Growth Hormones 3. Vegetative Physiology 4. Reproductive Physiology 1. Process of Differentiation Differential growth in cell and

More information

Growth of Garlic Mustard (Alliaria petiolata) in Native Soils of Different Acidity

Growth of Garlic Mustard (Alliaria petiolata) in Native Soils of Different Acidity Transactions of the Illinois State Academy of Science (1995), Volume 88, 3 and 4, pp. 91-96 Growth of Garlic Mustard (Alliaria petiolata) in Native Soils of Different Acidity Roger C. Anderson and Timothy

More information

PLP 6404 Epidemiology of Plant Diseases Spring 2015

PLP 6404 Epidemiology of Plant Diseases Spring 2015 PLP 6404 Epidemiology of Plant Diseases Spring 2015 Ariena van Bruggen, modified from Katherine Stevenson Lecture 8: Influence of host on disease development - plant growth For researchers to communicate

More information

Ethephon in Sugarcane Cultivation

Ethephon in Sugarcane Cultivation Ethephon in Sugarcane Cultivation by M. Edmond Lewis Sugar Industry Research Institute ABSTRACT Sugarcane remains an important commercial crop in Jamaica, and in spite of improved technology in production,

More information

Is that artificial turf or real grass? Its thicker than Bermuda!

Is that artificial turf or real grass? Its thicker than Bermuda! Is that artificial turf or real grass? Its thicker than Bermuda! 1 Using Plant Growth Regulators Growth regulators DO NOT interfere with plant respiration, photosynthesis, or other internal plant functions

More information

LEDStorm Grow Spectrum Light (with EMS Technology) Light Comparison Testing Spokane, WA. A New Natural Approach to Lighting.

LEDStorm Grow Spectrum Light (with EMS Technology) Light Comparison Testing Spokane, WA. A New Natural Approach to Lighting. Grow Spectrum Light 1.0 Light Comparison Testing Spokane, WA April 12-15th 2016 This was a test to show that the LEDStorm PL11, 75w (Grow Spectrum Light w/ems Technology), with its special array, can be

More information

Aeroponic Growth vs. Natural Growth. Katie Evans 9 th Grade Berwick Area High School

Aeroponic Growth vs. Natural Growth. Katie Evans 9 th Grade Berwick Area High School Aeroponic Growth vs. Natural Growth Katie Evans 9 th Grade Berwick Area High School Research: Aeroponics A technique for growing plants without soil or hydroponic media The plants are held above a system

More information

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem

Snapdragon Lighting. Harrison Flint. Cornell University. ing mid-winter. Several good approaches to this problem Snapdragon Lighting Harrison Flint Department of Floriculture Cornell University One of the greatest problems in the commercial pro duction of winter snapdragons has been the expense brought about by extremely

More information

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel

11-1 The Work of Gregor Mendel. The Work of Gregor Mendel 11-1 The Work of Gregor Mendel The Work of Gregor Mendel Gregor Mendel s Peas! Gregor Mendel s Peas Genetics is the scientific study of heredity. " Gregor Mendel was an Austrian monk. His work was important

More information

PLANT LIFECYCLES. Name: Class:

PLANT LIFECYCLES. Name: Class: PLANT LIFECYCLES Name: Class: Directions: Match the words with the big ideas by writing the letter beside the idea. Use the same words in the short article below. Use key words and phrases from the article

More information

Assessment Schedule 2017 Biology: Demonstrate understanding of biological ideas relating to the life cycle of flowering plants (90928)

Assessment Schedule 2017 Biology: Demonstrate understanding of biological ideas relating to the life cycle of flowering plants (90928) NCEA Level 1 Biology (90928) 2017 page 1 of 5 Assessment Schedule 2017 Biology: Demonstrate understanding of biological ideas relating to the life cycle of flowering plants (90928) Evidence Statement QUESTION

More information

8 Reproduction in flowering plants

8 Reproduction in flowering plants Self-assessment questions 8.01 8 Reproduction in flowering plants 1 Which is the most accurate statement? The principal role of a flower in the life cycle of a plant is: (a) attracting insects (b) producing

More information

Name Date Block. Plant Structures

Name Date Block. Plant Structures Name Date Block What are the Functions of Roots, Stems, and Leaves? Plant Structures Each part of a plant plays an important role in its structure and function. Roots, stems, and leaves are just three

More information

INVESTIGATING YIELD AND YIELD COMPONENT OF WINTER RAPESEED CULTIVARS AT BOJNORD-IRAN

INVESTIGATING YIELD AND YIELD COMPONENT OF WINTER RAPESEED CULTIVARS AT BOJNORD-IRAN Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231 6345 (Online) INVESTIGATING YIELD AND YIELD COMPONENT OF WINTER RAPESEED CULTIVARS AT BOJNORD-IRAN Souri Khabazan, *Amir Behzad Bazrgar,

More information

Experimental Design and Statistical Analysis: Bt Corn, Lignin, and ANOVAs

Experimental Design and Statistical Analysis: Bt Corn, Lignin, and ANOVAs Experimental Design and Statistical Analysis: Bt Corn, Lignin, and ANOVAs Part I "Abstract" This case is based on a recent publication Saxena and Stotzky entitled "Bt Corn Has a Higher Lignin Content Than

More information

NAME ONE THING we have in common with plants. If

NAME ONE THING we have in common with plants. If Cellular Respiration NAME ONE THING we have in common with plants. If you said cellular respiration, you are right. That is one thing we have in common with plants, slugs, slime mold, and spiders. Living

More information

SCI-4 BNES 4.4 Summative Exam not valid for Paper Pencil Test Sessions

SCI-4 BNES 4.4 Summative Exam not valid for Paper Pencil Test Sessions SCI-4 BNES 4.4 Summative Exam not valid for Paper Pencil Test Sessions [Exam ID:1LEHLS 1 Which seed is carried by the wind? A B C D 2 Which section of the plant is the roots? A Section 3 B Section 1 C

More information

Mendelian Genetics. Introduction to the principles of Mendelian Genetics

Mendelian Genetics. Introduction to the principles of Mendelian Genetics + Mendelian Genetics Introduction to the principles of Mendelian Genetics + What is Genetics? n It is the study of patterns of inheritance and variations in organisms. n Genes control each trait of a living

More information

Quantitative characters III: response to selection in nature

Quantitative characters III: response to selection in nature Quantitative characters III: response to selection in nature Selection occurs whenever there is a nonrandom relationship between phenotypes (performances) and fitnesses. But evolution occurs only when

More information

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy Dr.Hamidah Ahmad Plant Classifications is based on : Purpose of classifying plants: 1. botanical type 2. values or geographical

More information

TOPIC 9.4 REPRODUCTION OF PLANTS

TOPIC 9.4 REPRODUCTION OF PLANTS TOPIC 9.4 REPRODUCTION OF PLANTS INTRO https://media1.britannica.com/eb-media/41/62941-004-e3f5377b.jpg IB BIO 9.4 2 Flowers are reproductive structures found in flowering plants. Their function is to

More information

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS HOS 6545 ADVANCED CITRICULTURE I Regulation of Vegetative Growth L. GENE ALBRIGO Smith, P.F. 1976. Collapse of Murcott tangerine trees. J. Amer. Soc.

More information

Big Green Lessons. Key Understandings. Standards Alignment. Plant Lifecycle: 3 rd -5 th Grade

Big Green Lessons. Key Understandings. Standards Alignment. Plant Lifecycle: 3 rd -5 th Grade Big Green Lessons Plant Lifecycle: 3 rd -5 th Grade Key Understandings Standards Alignment In this lesson, students will understand that each plant has a lifecycle and the plant lifecycle is a continual

More information

ROLE OF THE ALLELOPATHY IN MIXED VEGETABLE CROPS IN THE ORGANIC FARMING

ROLE OF THE ALLELOPATHY IN MIXED VEGETABLE CROPS IN THE ORGANIC FARMING Abstract Scientific Papers. Series A. Agronomy, Vol. LVI, 2013 ISSN 2285-5785; ISSN CD-ROM 2285-5793; ISSN Online 2285-5807; ISSN-L 2285-5785 ROLE OF THE ALLELOPATHY IN MIXED VEGETABLE CROPS IN THE ORGANIC

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

Plant Growth and Development Part I. Levels of Organization

Plant Growth and Development Part I. Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules 1

More information

EFFECT OF CUTTING HEIGHT ON TILLER POPULATION DENSITY AND HERBAGE BIOMASS OF BUFFEL GRASS

EFFECT OF CUTTING HEIGHT ON TILLER POPULATION DENSITY AND HERBAGE BIOMASS OF BUFFEL GRASS EFFECT OF CUTTING HEIGHT ON TILLER POPULATION DENSITY AND HERBAGE BIOMASS OF BUFFEL GRASS ID # 01-32 L.S. Beltrán, P.J. Pérez, G.A. Hernández, M.E. García, S.J. Kohashi and H.J.G. Herrera Instituto de

More information

Jeopardy. Final Jeopardy. Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400

Jeopardy. Final Jeopardy. Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400 Jeopardy Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 Final Jeopardy 1 - $100 n Although

More information

Structures of Seed Plants

Structures of Seed Plants CHAPTER 12 SECTION 4 Introduction to Plants Structures of Seed Plants BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the functions of roots and stems?

More information

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants.

The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants. INTRODUCTION TO PLANTS The Plant Kingdom If you were to walk around a forest, what would you see? Most things that you would probably name are plants. Plants are abundant in almost every environment that

More information

Introduction to Horticulture 4th Edition, 2009

Introduction to Horticulture 4th Edition, 2009 A Correlation of Introduction to Horticulture 4th Edition, 2009 To the Georgia Performance Standards for General Horticulture and Plant Science FORMAT FOR CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS

More information

EVIDENCE OF DOWNWARD TRANSPORT OF 'SOLANACEOUS' ALKALOIDS* BY PAMELA M. WARREN WILSON

EVIDENCE OF DOWNWARD TRANSPORT OF 'SOLANACEOUS' ALKALOIDS* BY PAMELA M. WARREN WILSON EVIDENCE OF DOWNWARD TRANSPORT OF 'SOLANACEOUS' ALKALOIDS* BY PAMELA M. WARREN WILSON Botany Department, University of Reading {Received 5 November 1958) (With Plate 6 and i figure in the text) It IS now

More information

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV is the process of evolution by which new species arise. The key factor causing speciation is the appearance of genetic differences between two populations, which result from evolution by natural selection.

More information

Effects of bulb temperature on development of Hippeastrum

Effects of bulb temperature on development of Hippeastrum Effects of bulb temperature on development of Hippeastrum J.C. Doorduin and W. Verkerke Research Station for Floriculture and Glasshouse Vegetables PBG Kruisbroekweg 5 2670 AA Naaldwijk The Netherlands

More information

Hand Pollination Effects in the Cheyrimoya (Annona cherimola)

Hand Pollination Effects in the Cheyrimoya (Annona cherimola) California Avocado Society 1941 Yearbook 26: 94-98 Hand Pollination Effects in the Cheyrimoya (Annona cherimola) C. A. Schroeder University of California, Los Angeles Although the cherimoya was introduced

More information

Flowers Seeds Pollination Germination

Flowers Seeds Pollination Germination * Flowers Seeds Pollination Germination *In order for plants to be successful in many different environments they must be able to reproduce themselves. *The reproductive patterns of plants reflect the

More information

Photosynthesis and Cellular Respiration Understanding the Basics of Bioenergetics and Biosynthesis 1

Photosynthesis and Cellular Respiration Understanding the Basics of Bioenergetics and Biosynthesis 1 Photosynthesis and Cellular Respiration Understanding the Basics of Bioenergetics and Biosynthesis 1 This figure shows the processes that plant cells use to provide the energy needed for many of the activities

More information

Ch Plants.Biology.Landis

Ch Plants.Biology.Landis Nom de plume Chapt2 Chapter 22 - Plant Diversity Section 22 1 Introduction to Plants (pages 551 555) This section explains what a plant is and describes what plants need to survive. It also explains how

More information

Outcomes of Evolution: Species and Ecotypes. Reading Assignment: Chapter 6 in GSF 9/8/2009

Outcomes of Evolution: Species and Ecotypes. Reading Assignment: Chapter 6 in GSF 9/8/2009 Outcomes of Evolution: Species and Ecotypes Reading Assignment: Chapter 6 in GSF Objectives 9/2/2009 1. Observe, describe, and measure phenotypic variation among individuals in a population. 2. Characterize

More information

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida Meriam G. Karlsson Associate Professor of Horticulture Agricultural and Forestry Experiment Station

More information

PLANT GROWTH. IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31

PLANT GROWTH. IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31 PLANT GROWTH IB Topic 9.3 & 9.4 Urry text ref: Ch 28 & 31 INDETERMINATE GROWTH = throughout life meristems like stem cells in humans Shoot tip (shoot apical meristem and young leaves) lateral Axillary

More information

Part 2: Adaptations and Reproduction

Part 2: Adaptations and Reproduction Part 2: Adaptations and Reproduction Review: Plants need 6 things to grow 1. Air (Carbon Dioxide) 2. Water 3. Light 4. Nutrients 5. Proper Temperature 6. Space Adaptations Adaptations are characteristics

More information

The effect of temperature on the germination of Arabidopsis thaliana seeds

The effect of temperature on the germination of Arabidopsis thaliana seeds The effect of temperature on the germination of Arabidopsis thaliana seeds Tina Afshar, Nikeisha Dass, Caron Lau, Alana Lee Abstract Arabidopsis thaliana is a model organism widely used by researchers

More information

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN November 2018 Weather Summary Lower than normal temperatures occurred for the second month. The mean temperature for November was 22.7 F, which is 7.2 F below the average of 29.9 F (1886-2017). This November

More information

Lab I: Three-Point Mapping in Drosophila melanogaster

Lab I: Three-Point Mapping in Drosophila melanogaster Lab I: Three-Point Mapping in Drosophila melanogaster Makuo Aneke Partner: Christina Hwang BIO 365-004: Genetics with Laboratory TA: Dr. Hongmei Ma February 18, 2016 Abstract The purpose of this experiment

More information

Ecology Test Biology Honors

Ecology Test Biology Honors Do Not Write On Test Ecology Test Biology Honors Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The study of the interaction of living organisms with

More information

Yuma County Broccoli Trials,

Yuma County Broccoli Trials, Yuma ounty Broccoli Trials, 1984-85 Item Type text; Article Authors Butler, Marvin; Oebker,. F. Publisher ollege of Agriculture, University of Arizona (Tucson, AZ) Journal Vegetable Report Download date

More information

In this lab, you and your partners will try to devise a strategy that will allow your plant to thrive and reproduce (make flowers).

In this lab, you and your partners will try to devise a strategy that will allow your plant to thrive and reproduce (make flowers). The Plant Game credit: Elena DiMuzio at the Cornell Institute for Plant Biology Teachers I rewrote some of the explanatory material but the game idea is hers. Rules: First of all, to win at any game, players

More information

Levels of Organization

Levels of Organization Plant Growth and Development Part I Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Levels of Organization Whole Plant Organs Tissues Cells Organelles Macromolecules Plant

More information

2 Numbers in parentheses refer to literature cited.

2 Numbers in parentheses refer to literature cited. A Genetic Study of Monogerm and Multigerm Characters in Beets V. F. SAVITSKY 1 Introduction Monogerm beets were found in the variety Michigan Hybrid 18 in Oregon in 1948. Two of these monogerm plants,

More information

Basic Botany Master Gardener and Horticulture Training. Mark Heitstuman. WSU Asotin and Garfield County Director January 12, 2016

Basic Botany Master Gardener and Horticulture Training. Mark Heitstuman. WSU Asotin and Garfield County Director January 12, 2016 Basic Botany 2016 Master Gardener and Horticulture Training Mark Heitstuman WSU Asotin and Garfield County Director January 12, 2016 Topics we ll discuss in Chapter 1- Basic Botany Plant life cycles Internal

More information

GREEN LIFE. Plants and Photosynthesis W 398

GREEN LIFE. Plants and Photosynthesis W 398 W 398 GREEN LIFE Plants and Photosynthesis Savannah Webb, Former 4-H Extension Agent, Maury County Jennifer Richards, Assistant Professor, 4-H Youth Development MANAGEMENT OF APHIDS AND BYD IN TENNESSEE

More information