PLASTIDS IN THE ROOTS OF PHASEOLUS VULGARIS

Size: px
Start display at page:

Download "PLASTIDS IN THE ROOTS OF PHASEOLUS VULGARIS"

Transcription

1 New Phytol. (1983) 94, PLASTIDS IN THE ROOTS OF PHASEOLUS VULGARIS BY J. M. WHATLEY Botany School, South Parks Road, Oxford OXl 3RA {Accepted 10 February 1983) SUMMARY In roots of Phaseolus vulgaris plastid development takes place from the apical meristem both upwards into the root proper and downwards into the root cap. The maximum state of plastid development seems to be achieved in the cortical cells of that part of the primary root associated with mature root hairs. However in these cortical cell plastids the thylakoid system is very limited in extent and no true prolamellar bodies are formed. Farther from the apex of the root proper, in the zone of mature lateral roots, the plastids appear to have undergone dedifferentiation and to have lost whatever thylakoids they once contained.both the rate of plastid development and the patterns of production of ancillary plastid structures, including starch and membrane-bound bodies, vary in different cellfiles. The differential distribution of these and other plastid features are summarized in the accompanying diagrams. INTRODUCTION Little is known about the ultrastructure or the function of plastids in roots. Most ultrastructural investigations have been confined to the root tip (Newcomb, 1967) or have been concerned either with the starch-containing statoliths in root caps and their role in geoperception (GrifiSths and Audus, 1964; Juniper and French, 1970; Barlow and Grundwag, 1974), or with the conversion of root proplastids into chloroplasts during greening (Heltne and Bonnett, 1970; Salema, 1971; Oliveira, 1982) a process which has been shown in excised roots, to have different light requirements from those in leaves (summarized in Bjorn, 1980). It has long been known that in most roots cellular differentiation follows a bidirectional course, the first sequence extending from the apical meristem upwards through the root p-roper and the second downwards through the root cap (Esau, 1965). The progress of cellular differentiation in roots can be identified by following individual cell files which display successive stages of development as a spatial sequence. The small green root of the water fern, Azolla pinnata, develops from a single apical cell by means of a limited number of precise divisions and these have recently been described in some detail by Gunning and his associates (Gunning, 1978; Gunning, Hughes and Hardham, 1978). It is therefore comparatively easy in roots of this species to determine the exact developmental age and relative stage of differentiation of each individual cell within the root proper.whatley and Gunning (1981) found that, in the root proper of A. pinnata, chloroplast development, like cell development, followed a spatial sequence extending upwards from the apical cell. The state of chloroplast development was judged on the basis of plastid size and the extent of the thylakoid system; the number of plastid profiles within each cell section was also assessed. The maturing chloroplasts within each cell file were distinctive in their rates of development and in the sizes and numbers finally X/83/07038H-11 S03.00/ The New Phytologist

2 382 J. M. WHATLEY achieved. The spatial sequence of plastid development observed in individual roots of Azolla could also be followed as a temporal sequence in roots of increasing age. Spatial sequences of plastid development have also been identified in roots of Convolvulus arvensis during greening (Heltne and Bonnett, 1970) and in the sieve elements in roots of several species (Esau and Gill, 1973) as well as in temporal sequence during root cap regeneration in Zea mays (Barlow and Grundwag, 1974). However, few details are available about how plastids in non-green roots (i.e. most roots) vary in structure during development or in cells at different sites within individual roots. The purpose of this study has been to map the distribution of a number of plastid features within a young non-green root and to assess the developmental pathways which gave rise to these patterns of distribution. The criteria used to assess the state of plastid development in the non-green roots of Phaseolus vulgaris are the five sequential basic stages of plastid development which it has been suggested elsewhere are common to plastid differentiation in all organs (Whatley, 1977, 1978): Stage 1, the more or less spherical eoplast, with stroma but little thylakoid membrane; stage 2, the amyloplast, in which starch begins to accumulate; stage 3, the amoeboid or pleomorphic plastic, from which much of the starch has often been lost; stage 4, the pre-granal plastid, usually discoid in shape with an extending system of single, perforated thylakoids and incipient grana or bithylakoids; stage 5, the mature chloroplast, with continuous thylakoids and true grana. This basic pathway has been identified as a temporal sequence in several organs of P. vulgaris grown in the light or in the darkness, as both a temporal sequence and as a spatial sequence extending upwards from the basal meristem in leaves of the grass Z. mays (Whatley, 1977, 1978, unpublished results) and as a spatial sequence in the leaves oi Hordeum vulgare (Wellburn, Robinson and Wellburn, 1982). When different environmental conditions are experienced either externally (e.g. absence of light) or internally (e.g. in different organs or in different types of cell) plastid development may be diverted from its normal course and thylakoid extension may be temporarily or permanently blocked. Ancillary structures such as the proiamellar bodies of dark-grown leaves may then be formed, probably as a result of the production of some precursor materials in excess of requirements (Whatley, 1977). Evidence relating to the universality of this single, basic morphogenetic pathway of plastid development and the various light- or dark-induced disturbances which may affect it has recently been reviewed by Klein (1982). MATERIALS AND METHODS Seeds of P. vulgaris, cv. Canadian Wonder were soaked for 5 h in distilled water, stripped of their seed coats, planted in soil and kept in a growth cabinet at 24 C under a regime of 12 h light and 12 h dark. After 5 days, the tips of ten and upper segments of five primary roots were detached and prepared for examination under the electron microscope. From these roots the basal 2-5 to 3 mm, including the cap, and segments of cortex 1 mm in length from the zones of mature root hairs and lateral roots were removed. The tissue was fixed in 3% glutaraldehyde in cacodylate buffer, ph 7 2, post-fixed in 1 % osmium tetroxide, dehydrated in a graded ethanol series, transferred to acetone and embedded in Epon 812. The embedded root segments were examined in either longitudinal section (most samples) or in transverse section. Data shown in the tip portion of the distribution diagrams presented in the Results section were compiled from information

3 Plastids in roots 383 obtained from consecutive sequences of transverse sections cut at intervals of 0*2 mm upwards from the cap. Data obtained from median longitudinal sections of other root tips were in agreement with that from the root selected for illustration. RESULTS In the roots of P. vulgaris there can be distinguished two spatial sequences of plastid development which parallel those of cell differentiation [Figs 1; 2(a) to (h); 3(a), (b)]. The first sequence (stages 1 to 4) extends upwards through the root from Laterol root _ zone Root hoir zone I5r 10 Root tip_ (2-5 mm) Section level I Fig. 1. The sequence of plastid development in a root of P. vulgaris. 1, Eoplast; 1', dediflerentiated plastid = eoplast; 2, amyloplast; 3, amoeboid plastid; 4, pre-granal plastid; -, direction of plastid differentiation; -, direction of plastid dedifferentiation;, level of earliest sieve element plastids. a core of cells at the extreme tip of the root proper; the second sequence (stages 1 to 3) extends downwards and outwards through the root cap. The same basic sequence of developmental stages was found in all the roots examined, but there was some variation between roots in the levels at which particular plastid stages were attained. Plastids at the same stage of development in different roots also showed quantitative differences, e.g. in the sizes of their membrane-bound bodies or in the numbers and sizes of their starch grains. In each root proper, the same sequence of development could be identified in all cellfiles,though within different files, transformation of plastids from one stage of development to the next was found at different distances from the apex. Preliminary observations on older and younger roots of Phaseolus suggest that, as in the Azolla roots, the older the root, the closer to the meristem is a particular stage of development first attained, i.e. there is acropetal drift. In roots of Phaseolus the stage 1 eoplasts [Fig. 2(a)l and, initially, also, the stage 2 amyloplasts [Fig. 2(b), (e)] may be either rod-shaped or spherical and the 13 ANP 94

4 J. M. WHATLEY 384 i. \ -1 ' I. < : : r.' Fig. 2 -

5 Plastids in roots 385 succeeding stage 3 amoeboid or pleomorphic phase [Fig. 2(c), (f), (g)] seems to be much less transitory than it is in leaves. Serial sectioning shows that the amoeboid plastids in the cortical cells of the root proper are generally of much greater length than those in the root cap or in leaves and are often ' branched' and highly convoluted. These root plastids usually contain starch which tends to be concentrated in distended pockets (frequently at the ends of branches) and these pockets are linked by narrower strands containing only stroma. Towards the upper part of the root tip segment the plastids are no longer markedly pleomorphic [Fig. 2(h)]. Within the root cap, the maximum development achieved by plastids is stage 3 [Fig. 2(c)]; the cells in which these plastids are found have reached the periphery of the cap and are being sloughed off. Within the root proper the maximum state of plastid development seems to be found in the cortex of the root hair zone where it approaches that of stage 4 [Fig. 3(a)]. The discoid plastids of the root hair zone have an apparently extending system of single, perforated thylakoids with incipient grana which, however, lacks both the extent and the characteristic more or less spiral, spatial organization of stage 4 plastids of both green and non-green leaves [Fig. 3(d), (e)]. Farther from the root tip, in the cortex of the lateral root zone, the plastids are spherical in shape and are unusual in that they seem to be quite devoid of thylakoids [Fig. 3(b)]. Though I have examined many sections (including serial sections) I have not observed a single plastid profile within this zone in which there is even the smallest fragment of thylakoid membrane. However, cells in this zone are highly vacuolated and each thin section contains few plastid profiles, so further investigation is required before a complete absence of thylakoid material can be confirmed. Other plastid components In the roots, as in the leaves, there are superimposed upon the basic stages of plastid development variations associated with the accumulation of other plastid components, viz. phytoferritin, starch, thylakoid or tubular complexes and membrane-bound bodies. The pattern of distribution within the root differs for each of these components (Figs 4 and 5), and this diversity emphasizes the individuality of plastid populations in different types of cell. In the small Azolla roots previously examined it was possible to analyse variations along individual cell files. Analysis of the larger Phaseolus roots was less detailed but plastids in cells of the inner and outer cortex, for example, clearly differ in their relative rates and patterns of development, though the overall sequence is the same in cells of the two regions. Phytoferritin (Fig. 5) seems to be present in more or less equal amounts in plastids of all cells, from the root cap to the lateral root zone. Because other components are absent from the stroma of plastids in the cortex of the lateral root Fig. 2. (a) An eoplast (perhaps dividing) from the root apex, x (b) An amyloplast from the centre of the root cap. X (c) An amoehoid plastid with typical electron-dense stroma from the periphery of the root cap. x (d) A maturing sieve element plastid. x (e) A developing amyloplast from the inner cortex (Section level 6 in Fig. 1). x (f) A 'branched' amoeboid plastid from the outer cortex (Section level 11. x (g) All the plastid profiles (arrows) in this group belong to the same amoeboid plastid. x (h) A plastid from the outer cortex (Section level 15); it is not markedly amoeboid and it contains less starch than plastids at immediately lower section levels, x mg. Membrane-bound body with granular contents; p, phytoferritin; t, thylakoid complex. 13-2

6 386 J. M. WHATLEY N vr \ Cb>.. - -; /' \ V..-- "' * '; 'A cn-^' i,. : -..! ; ' : Fig ' : ;

7 Plastids in roots 387 (Fig. 4) (Fig. 5) Fig. 4. A representation of the distribution of starch and membrane-bound bodies in a Phaseolus root.y., Starch;!, membrane-bound bodies. Fig. 5. A representation of the distribution of phytoferritin and thylakoid complexes in a Phaseolus root.:;., Phytoferritin;, thylakoid complexes. zone [Fig. 3(b), the phytoferritin here is particularly conspicuous and it may well occupy a larger proportion of the total stromal volume than in plastids in other parts of the root. The initiation of starch accumulation marks the onset of the second stage of plastid development. However the extent to which starch is accumulated during stage 2, or is retained or lost during later stages, varies in different types of cell. Figure 6 shows the differing quantities of starch present in plastids of the inner and outer cortex, the stele parenchyma and the root cap at different distances from the cap junction. The accumulation and loss of starch in cells of the outer cortex at levels closer to the apex than in cells of the inner cortex (Fig. 4) may well reflect the greater developmental age of the cells of the outer cortex (Esau, 1965). Starch is scarce in cortical cell plastids of the root hair zone and absent from plastids in the lateral root zone. The pattern of starch distribution within the root is shown Fig. 3. (a) A pre-granal plastid with a poorly developed system of perforated thylakoids and incipient grana (arrows), from the cortex of the root hair zone. Unusually this plastid contains some starch, x (b) An eoplast from the cortex of the lateral root zone, x (c) A thylakoid complex in a plastid from the apex of the root proper, x (d) thylakoid complex in a leaf plastid from a 5-day Phaseolus seedling grown in the light, x (e) A true prolamellar body in a leaf etioplast from a 5-day Phaseolus seedling grown in the dark, x (f) A thylakoid complex in a hypocotyl plastid from a 5-day Phaseolus seedling grown in the dark, x (g) Membrane-bound bodies with crystalline contents linked to a thylakoid complex in a plastid from the outer cortex, x (h) A membrane-bound body with granular contents in a root cap plastid. X me. Membrane bound body with crystalline contents; mg, membrane-bound body with granular contents; p, phytoferritin; plb, prolammellar body; t, thylakoid complex.

8 388 J. M. WHATLEY Section number Root cap Section number Root proper Fig. 6. The numbers of starch grains and the areas occupied by starch grains in plastids in different parts of the root proper, o, number of starch grains per plastid profile in the outer cortex;, number of starch grains per plastid profile in the inner cortex;, number of starch grains per plastid profile in the stelar parenchyma;, number of starch grains per plastid profile in the root cap; O. area occupied by starch grains per plastid profile in the outer cortex; #, area occupied by starch grains per plastid profile in the inner cortex; Q. area occupied by starch grains per plastid profile in the root cap. hoir in Figure 4 which also emphasizes the marked accumulation of starch in plastids in the central cells of the root cap. Small thylakoid or tubular complexes [Fig. 3(c), (g)], which somewhat resemble a true proiamellar body but lack its paracrystalline organization [Fig. 3(e)], are present in some plastids of the root cap and in many plastids at the apex of the root paper. The frequency with which these complexes are found appears to decline from the apex upwards through the root. Few complexes have been observed in plastids of the root hair zone and none in plastids of the lateral root zone (Fig. 5). Membrane-bound bodies containing crystalline [Fig. 3(g)] or, more commonly, granular [Fig. 3(h) material, which may be proteinaceous, are present in plastids of cells towards the periphery of the root cap and, within the root tip proper, in plastids entering or at stage 3. These bodies, like the thylakoid complexes, appear to decline in frequency upwards through the root tip segment: membrane-bound bodies are not found in plastids of either the root hair or the lateral root zone (Fig. 4). In the root proper, the membrane-bound bodies appear to be acquired only a short distance from the apex by plastids in the epidermis and outer cortex but further from the apex by plastids of the inner cortex. In the upper part of the root tip these bodies are retained only by epidermal plastids and by plastids of the inner cortex. By contrast, thylakoid complexes are present in plastids of cells throughout the apex of the root proper and in some plastids of the inner cortex even in the root hair zone but are absent from epidermal cell plastids close to the apex. No membrane-bound bodies and few thylakoid complexes have been observed in plastids of any type of cell within the stele. In general, plastid differentiation within the stele takes place farther from the tip, and plastids are conspicuously smaller than in cortical cells. However, maturing sieve element plastids [Figs 1; 2(d)], indistinguishable from their counterparts in Phaseolus leaves, can first be identified in cells quite close to the apex of the root proper and adjacent to other

9 Plastids in roots 389 cells of the stele in which plastids have not yet differentiated beyond stage 1. This observation is in agreement with that of Esau (e.g. Esau and Gill, 1973) and others that development of these distinctive plastids is the first visible sign of differentiation of the cells which will later become sieve elements. DISCUSSION In the non-green roots of P. vulgaris., the five successive basic stages of plastid development can be traced as a spatial sequence of differentiation extending along individual cell files from the apical meristem upwards into the root proper and downwards into the root cap. These two sequences parallel the bidirectional course of cellular differentiation characteristic of most roots. The transformation of both plastids and cells from one stage of development to the next takes place at different distances from the apex in different cell files. For plastids this is most apparent with respect to the accumulation and loss of starch. Starch is abundant both in the central cells of the rootcap and in cortical cells a short distance above the tip of the root proper but it appears to decline upwards through the root and to be absent from cortical cell plastids in the lateral root zone. Clearly, starch is not always, as is sometimes supposed, a universal constituent of plastids in roots. The plastids of the root hair zone are discoid in shape and have the most extensive (though still limited) thylakoid system so far seen in Phaseolus roots. The plastids of the lateral root zone are spherical in shape and appear to be devoid of thylakoids. If the spatial sequence of plastid development observed as a continuum within the the tip region of the root is continued without interruption into the root hair and lateral root zones, and if this sequence is, as in other organs and in Azolla roots, a direct refiection of an earlier temporal sequence, then both the spherical shape and the scarcity of thylakoids in plastids of the lateral root zone suggest that these plastids have undergone dedifferentiation and lost what internal membrane they had contained during earlier stages of root growth, i.e. that these plastids have regressed from stage 4 to a state resembling stage 1. In roots of P. vulgaris cv. Canadian Wonder grown in soil, membrane-bound bodies were poorly developed compared with those described by Newcomb in roots of the cultivar Dwarf Horticulture grown in nutrient solution in diffuse light. Newcomb suggested that the tubular (thylakoid) complexes and the membranebound bodies might be developmentally linked and that the many invaginations of the inner plastid envelope might also contribute to the formation of membranebound bodies. In the cultivar Canadian Wonder, the membrane-bound bodies were seldom linked to tubular complexes [but see Fig. 3(g)] and invaginations of the inner plastid envelope were comparatively few. However the patterns of distribution within the roots of the two ancillary structures (Figs 4 and 5) would be in general agreement with the concept of their sequential development. When seedlings of P. vulgaris are grown in the dark, plastid development in the root proper, in the hypocotyls and in the primary leaves is always blocked at stage 4 when the plastids lose their pleomorphic shape and the system of single, perforated thylakoids with incipient grana is increasing in extent. However the plastids in the three organs differ considerably in the ancillary structures (like thylakoid complexes) which are produced prior to this stage being reached or at stage 4 itself [Fig. 3(c), (e), (f)]. Many different forms of the tubular or thylakoid complexes have been described in the literature. These complexes show some similarity to, but lack the precise

10 39O J. M. WHATLEY paracrystalline organization of, the prolamellar bodies of leaf etioplasts [Fig. 3(c) to (f)]. Complexes have been observed in many different organs of plants grown both in the light and in the dark. It is sometimes assumed that these various complexes and prolamellar bodies all represent disturbances at different points along the single, tightly-integrated pathway of thylakoid development. The evidence in favour of this assumption is discussed in the recent review by Klein (1982). If the assumption is true, the different forms and relative sizes and rates of development of the various thylakoid complexes and true prolamellar bodies in seedlings of Phaseolus point to a decline downwards through the plant, from the primary leaves towards the root, in the capacity of plastids to produce true prolamellar bodies (and to form thylakoids). In dark-grown seedlings oi Phaseolus this 'gradient' is marked: (1) in the primary leaves, by an extensive and well-organized thylakoid system and by the rapid, uninterrupted production of large paracrystalline prolamellar bodies; (2) in the hypocotyls, by a less extensive thylakoid system and by the much slower production of true prolamellar bodies, a process interrupted, first, by the transitory accumulation of large amounts of phytoferritin, and later, by the transitory formation [Fig. 3(f)] of an unusual thylakoid complex (Whatley, 1978); (3) in the roots, by the production of very few thylakoids and small irregular thylakoid complexes, the latter first appearing as early as stage 1. When seedlings of P. vulgaris grown in the dark for 5 days are exposed to light, the leaves (with true etioplasts) rapidly become green and the hypocotyls (with plastids containing the transitory complex) do so somewhat more slowly. Attempts to induce the roots to green have so far been unsuccessful. These different responses to being transferred from darkness to light by plastids in the three organs appear to reinforce the suggestion that, in adjacent organs of young seedlings, there is a general decline downwards through the plant in the capacity of their plastids to form thylakoids. They also point to the importance (especially in roots) of factors other than light in the control of plastid development. REFERENCES BARLOW, P. W. & GRUNDWAG, M. (1974). The development of amyloplasts in cells of the quiescent centre of Zea roots in response to removal of the root cap. Zeitsckrift fiir Pflanzenphysiologie, 73, BJORN, L. O. (1980). Blue light effects on plastid development in higher plants. In: The Blue Light Syndrome (Ed. by H. Senger), pp Springer-Verlag, Berlin, Heidelberg. ESAU, K. (1965). Plant anatomy. John Wiley and Sons, New York, London, Sydney. ESAU, K. & GILL, R. H. (1973). Correlations in differentiation of protophloem sieve elements in Allium cepa roots. Journal of Ultrastructure Research, 44, GRIFFITHS, H. L. & AUDUS, L, J. (1964). Organelle distribution in the statocyte cells of the tip of Vicia faba in relation to geotropic stimulation. New Phytologist, 63, GUNNING, B. E. S. (1978). Age-related and origin-related control of the number of plasmodesmata in cell walls of developing Azolla roots. Planta, 143, GUNNING, B. E. S., HUGHES, J. E. & HARDHAM, A. R. (1978). Formative and proliferative cell divisions, cell differentiation, and developmental changes in the meristem of Azolla roots. Planta, 143, HELTNE, J. & BONNETT, H. T. (1970). Chloroplast development in isolated roots oi Convolvulus arvensis (L.). Planta, 92, JUNIPER, B. E. & FRENCH, A. (1970). The fine structure of the cells that perceive gravity in the root tip of maize. Planta, 95, KLEIN, S. (1982). Diversity of chloroplast structure. In On the Origins of Chloroplasts (Ed. by J. A. Schiff), pp Elsevier North-Holland, New York.

11 Plastids in roots 391 NEWCOMB, E. H. (1967). Fine structure of protein-storing plastids in bean root tips. Journal of Cell Biology, 33, OLIVEIRA, L. (1982). The development of chloroplasts in root meristematic tissue of Secale cereale L. seedlings. New Phytologist, 91, SALEMA, R. (1971). The production of thylakoids in the roots of a Triticale. Anais de Faculdade de Ciencias {Porto), 54, 1-9. WELLBURN, A. R., ROBINSON, D. C. & WELLBURN, F. A. M. (1982). Chloroplast development in low light-grown barley seedlings. Planta, 154, WHATLEY, J. M. (1977). Variations in the basic pathway of chloroplast development. New Phytologist, 78, 407^20. WHATLEY, J. M. (1978). A suggested cycle of plastid developmental interrelationships. New Phytologist, 80, WHATLEY, J. M. & GUNNING, B. E. S. (1981). Chloroplast development in Azolla roots. New Phytologist, 89,

12

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L.

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. New Phytol (1974) 73, 139-142. THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. BY JEAN M. WHATLEY Botany School, University of Oxford (Received 2 July 1973) SUMMARY Cells in

More information

INFLUENCE OF LEAF DIFFERENTIATION ON THE DEVELOPMENTAL PATHWAY OF COLEUS CHLOROPLASTS

INFLUENCE OF LEAF DIFFERENTIATION ON THE DEVELOPMENTAL PATHWAY OF COLEUS CHLOROPLASTS New Phytol. (1982) 92, 273-278 277 INFLUENCE OF LEAF DIFFERENTIATION ON THE DEVELOPMENTAL PATHWAY OF COLEUS CHLOROPLASTS BY P. JACOB VARKEY AND MATHEW J. NADAKAVUKAREN Biological Sciences Department, Illinois

More information

Parenchyma Cell. Magnification 2375X

Parenchyma Cell. Magnification 2375X Parenchyma Cell The large size of parenchyma cells is due in part to their relatively large vacuole (V) and in part also to the large number of chloroplasts (Cp) they contain. From a crimson clover, Trifolium

More information

FINE STRUCTURE OF THE ENDOTHECIUM AND DEVELOPING XYLEM IN PHASEOLUS VULGARIS

FINE STRUCTURE OF THE ENDOTHECIUM AND DEVELOPING XYLEM IN PHASEOLUS VULGARIS New Phytol. (1982) 91, 561-570 561 FINE STRUCTURE OF THE ENDOTHECIUM AND DEVELOPING XYLEM IN PHASEOLUS VULGARIS BY JEAN M. WHATLEY Botany School, South Farks Road, Oxford, OXl 3RA, U.K. {Accepted 1 January

More information

Non Permanent Tissues - Meristematic Tissue

Non Permanent Tissues - Meristematic Tissue PLANT TISSUES Non Permanent Tissues - Meristematic Tissue Undifferentiated plant cells that are continually dividing by mitosis Large thin walled cells No vacuole Dense cytoplasm Large nucleus Found at

More information

13.2 The Vascular Plant Body (textbook p )

13.2 The Vascular Plant Body (textbook p ) 13.2 The Vascular Plant Body (textbook p544 550) Learning Goal: Label and explain the anatomy of the Vascular Plant and it's Tissue Types Plants are classified into two main groups: and. Vascular plants

More information

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS 6.1 Plant Tissues A tissue is a group of cells with common function, structures or both. In plants we can find 2 types of tissues: Meristem Permanent tissues Meristem is found in regions with continuous

More information

Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark the regions where active cell division and rapid division

More information

MONOCOT ROOT FIBROUS ROOT SYSTEM

MONOCOT ROOT FIBROUS ROOT SYSTEM A MONOCOT FIBROUS SYSTEM ^ MONOCOT FIBROUS SYSTEM ADVENTITIOUS S A ADVENTITIOUS S ADVENTITIOUS FIBROUS- SYSTEM ADVENTITOUS NON-EMBRYONIC DERIVED FROM STEM OR LEAF FIBROUS- SYSTEM ADVENTITOUS D MONOCOT

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

Primary Plant Body: Embryogenesis and the Seedling

Primary Plant Body: Embryogenesis and the Seedling BIOL 221 Concepts of Botany Primary Plant Body: Embryogenesis and the Seedling (Photo Atlas: Figures 1.29, 9.147, 9.148, 9.149, 9.150, 9.1, 9.2) A. Introduction Plants are composed of fewer cell types,

More information

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems.

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Fig. 35.8 Plant Cells pp.798-802 Types of plant cells Include:

More information

Class XI Chapter 6 Anatomy of Flowering Plants Biology

Class XI Chapter 6 Anatomy of Flowering Plants Biology Class XI Chapter 6 Anatomy of Flowering Plants Biology Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark

More information

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots.

Exercise 12. Procedure. Aim: To study anatomy of stem and root of monocots and dicots. Aim: To study anatomy of stem and root of monocots and dicots. Principle: The study of internal morphology, i.e., cells of various tissues in an organ of a living body is called Anatomy. Tissue, which

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

STRUCTURE AND ULTRASTRUCTURE OF PLASTIDS IN LIGHT-AND DARK-GROWN ZAMIA FLORIDANA DC. SEEDLING ROOTS IN VITRO

STRUCTURE AND ULTRASTRUCTURE OF PLASTIDS IN LIGHT-AND DARK-GROWN ZAMIA FLORIDANA DC. SEEDLING ROOTS IN VITRO New Phytol. (1982) 91, 721-725 721 STRUCTURE AND ULTRASTRUCTURE OF PLASTIDS IN LIGHT-AND DARK-GROWN ZAMIA FLORIDANA DC. SEEDLING ROOTS IN VITRO BY DAVID T. WEBB Department of Biology, University of Puerto

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Roots and Soil Chapter 5

Roots and Soil Chapter 5 Roots and Soil Chapter 5 Plant Organs Plant organs are groups of several types of tissues that together perform a particular function. Vegetative organs roots, stems, leaves make and use food, absorb water

More information

Biology Slide 1 of 36

Biology Slide 1 of 36 Biology 1 of 36 2 of 36 Types of Roots Types of Roots What are the two main types of roots? 3 of 36 Types of Roots The two main types of roots are: taproots, which are found mainly in dicots, and fibrous

More information

Bio Factsheet. Transport in Plants. Number 342

Bio Factsheet. Transport in Plants.   Number 342 Number 342 Transport in Plants This Factsheet: Explains why plants need a transport system Describes what plants transport Describes the tissues which carry out transport Outlines the position of the xylem

More information

Anatomy of Flowering Plants. K C Meena PGT Biology

Anatomy of Flowering Plants. K C Meena PGT Biology Anatomy of Flowering Plants K C Meena PGT Biology Tissues A group of similar cells performing same function. Types of plant tissues - Meristematic tissues and permanent tissues. Meristematic tissues Have

More information

2.5 : Cells are grouped into tissue

2.5 : Cells are grouped into tissue 2.5 : Cells are grouped into tissue 1 CELL STRUCTURE AND FUNCTIONS Prokaryotic and eukaryotic cells Structures & functions: Cell membrane and organelles Animal Cells are grouped into tissue Plant Cell

More information

Fig (1):Layers of seconday cell wall

Fig (1):Layers of seconday cell wall Dr. Alaa J. Taha, Dr. Rana Alroomi and Dr. Hadeel Al-Newani :Secondary cell wall Although the secondary wall commonly is thought of as being deposited after the increase in surface area of the primary

More information

Plant Structure and Growth

Plant Structure and Growth Plant Structure and Growth A. Flowering Plant Parts: The flowering plants or are the most diverse group of plants. They are divided into 2 classes and. Examples of monocots: Examples of dicots: The morphology

More information

(Ficus cayica ) Changes of Chloroplast Ultrastructure. Greening under Light in Etiolated. Fig Leaves

(Ficus cayica ) Changes of Chloroplast Ultrastructure. Greening under Light in Etiolated. Fig Leaves J. Japan. Soc. Hort. Sci. 59 (2) : 333-340. 1990. Changes of Chloroplast Ultrastructure and Plastid Nucleoids during Greening under Light in Etiolated Fig Leaves (Ficus cayica ) Naosuke N1i1 and Tsuneyoshi

More information

23 2 Roots Slide 2 of 36

23 2 Roots Slide 2 of 36 2 of 36 Types of Roots Types of Roots What are the two main types of roots? 3 of 36 Types of Roots The two main types of roots are: taproots, which are found mainly in dicots, and fibrous roots, which

More information

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip Topic 14. The Root System Introduction. This is the first of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

THE CHLOROPLASTS OF EQUISETUM TELMATEIA ERHR.: A POSSIBLE DEVELOPMENTAL SEQUENCE

THE CHLOROPLASTS OF EQUISETUM TELMATEIA ERHR.: A POSSIBLE DEVELOPMENTAL SEQUENCE Keu- Phytol. (1971) 70, 1095-1102. THE CHLOROPLASTS OF EQUISETUM TELMATEIA ERHR.: A POSSIBLE DEVELOPMENTAL SEQUENCE BY JEAN M. WHATLEY Botany Department, University of London, King's College, Strand, London,

More information

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions 1. The perception of gravity by a root is thought to take place in a) root hairs b) the region

More information

Honors Biology I Ch 29 Plant Structure & Function

Honors Biology I Ch 29 Plant Structure & Function 3 Basic types of plant cells Honors Biology I Ch 29 Plant Structure & Function 1) Parenchyma cells- loosely packed or cells with a and thin, Involved in metabolic functions 2) Collenchyma cells- thicker

More information

Ontogeny of Chloroplast in Satsuma Mandarin Young Leaves Sprayed with Urea

Ontogeny of Chloroplast in Satsuma Mandarin Young Leaves Sprayed with Urea Pakistan Journal of Biological Sciences, 2 (2): 571-574, 1999 Research Article Ontogeny of Chloroplast in Satsuma Mandarin Young Leaves Sprayed with Urea S.E. Aguja, P. Mohammad, M. Shiraishi* and T. Saga*

More information

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves Biology II Vascular plants have 3 tissue systems: Dermal Protective outer layer of plant Vascular Forms strands that conduct water, minerals, and organic compounds Ground Much of the inside of nonwoody

More information

2.1 PLANT TISSUE HALIMAHTUN SAEDIAH BT ABU BAKAR KOLEJ TEKNOLOGI TIMUR

2.1 PLANT TISSUE HALIMAHTUN SAEDIAH BT ABU BAKAR KOLEJ TEKNOLOGI TIMUR 2.1 PLANT TISSUE HALIMAHTUN SAEDIAH BT ABU BAKAR KOLEJ TEKNOLOGI TIMUR GENERAL Plant cell are differentiated possessing structural adaptations that make specific functions possible. Modifications of cell

More information

13.4 Roots Figure 2 primary root: primary root secondary root: secondary root taproots fibrous taproots: roots. fibrous roots: adventitious roots

13.4 Roots Figure 2 primary root: primary root secondary root: secondary root taproots fibrous taproots: roots. fibrous roots: adventitious roots 10. Why is it not surprising that many hydrophytes have little or no tissue? 11. The leaves of many underwater plants are finely divided, dramatically increasing the surface area that is in contact with

More information

Downloaded from

Downloaded from POINTS TO REMEMBER : 6. Anatomy of Flowering Plants Study of internal structure of plant is called anatomy. In plants cells are the basic unit. Cells organized into tissues and tissues organized into organs.

More information

Question 1: What are the factors affecting the rate of diffusion? Diffusion is the passive movement of substances from a region of higher concentration to a region of lower concentration. Diffusion of

More information

NOTES: CH 35 - Plant Structure & Growth

NOTES: CH 35 - Plant Structure & Growth NOTES: CH 35 - Plant Structure & Growth In their evolutionary journey, plants adapted to the problems of a terrestrial existence as they moved from water to land ANGIOSPERMS (flowering plants) -most diverse

More information

Plant Anatomy. By Umanga Chapagain

Plant Anatomy. By Umanga Chapagain Plant Anatomy By Umanga Chapagain PLANT ANATOMY The science of the structure of the organized plant body learned by dissection is called Plant Anatomy. In general, Plant Anatomy refers to study of internal

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Transport of substances in plants

Transport of substances in plants Transport of substances in plants We have already looked at why many organisms need transport systems with special reference to surface area and volume. The larger the volume : surface area ratio, the

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 KEY CONCEPTS In this session we will focus on summarising what you need to know about: - Anatomy of dicotyledonous plants Root and stem: distribution

More information

* ' ION UPTAKE IN RELATION TO THE '''-'"u.n v DEVELOPMENT OF A ROOT HYPODERMIS

* ' ION UPTAKE IN RELATION TO THE '''-'u.n v DEVELOPMENT OF A ROOT HYPODERMIS New Phytol. (igj6) JJ, 11-14. '-^ ^^ ' '''-: ^i'i^ J i.. * ' ION UPTAKE IN RELATION TO THE '''-'"u.n v DEVELOPMENT OF A ROOT HYPODERMIS :?m::,^^ BY I. B. FERGUSON* AND D. T. CLARKSON '" ' 'I ARC Letcombe

More information

Chapter C3: Multicellular Organisms Plants

Chapter C3: Multicellular Organisms Plants Chapter C3: Multicellular Organisms Plants Multicellular Organisms Multicellular organisms have specialized cells of many different types that allow them to grow to a larger size than single-celled organisms.

More information

Plant Structure and Function

Plant Structure and Function Plant Structure and Function A Meridian Biology AP Study Guide by John Ho and Tim Qi Plant Terms Growth: Growth Types Type Location Description Primary Primary Vertical growth (up-down), dominant direction

More information

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals: Chapter 28 The plant body has a hierarchy of organs, tissues, and cells Plants, like multicellular animals: o Have organs composed of different tissues, which are in turn composed of cells 3 basic organs:

More information

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS ANATOMY OF FLOWERING PLANTS 27 27 CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS 1. A transverse section of stem is stained first with safranin and then with fast green following the usual

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS Chapter-6 ANATOMY OF FLOWERING PLANTS POINTS TO REMEMBER Anatomy : Anatomy is the study of internal structure of organisms. Plant anatomy includes organisation and structure of tissues. Tissue : A group

More information

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, )

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, ) BIOL 221 Concepts of Botany Fall 2007 Topic 07: Primary Plant Body: The Root System (Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, 9.5 9.23) A. Introduction The root has the primary functions of

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

PLANT TISSUES 12 MARCH 2014

PLANT TISSUES 12 MARCH 2014 PLANT TISSUES 12 MARCH 2014 Lesson Description In this lesson we: Identify the different types of plant tissue Be able to relate the different structures with the different functions Plant Tissue Summary

More information

SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH

SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH [ 292 ] SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH BY E. D. BRAIN [Received ii April 1954) (With 2 figures in the text) In the previous

More information

ARE YOU familiar with the sayings Get to

ARE YOU familiar with the sayings Get to Root Anatomy ARE YOU familiar with the sayings Get to the root of the problem or the root of all evil? Both these sayings suggest that the root is an essential part of something. With plants, the essential

More information

Parasitic plants. form follows function. Background. Parasitism occurs in at least 17 different families. 8 of which are considered weedy pests

Parasitic plants. form follows function. Background. Parasitism occurs in at least 17 different families. 8 of which are considered weedy pests Parasitic plants form follows function Background Parasitism occurs in at least 17 different families. 8 of which are considered weedy pests degrees of parasitism: hemi-parasite or semi-parasite holo-parasite

More information

Translocation 11/30/2010. Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and

Translocation 11/30/2010. Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and Translocation Translocation is the transport of products of photosynthesis, mainly sugars, from mature leaves to areas of growth and storage. Phloem is the tissue through which translocation occurs. Sieve

More information

REGENERATION OF CHLOROPLAST STRUCTURE IN TALBOTIA ELEGANS: A DESICCATION TOLERANT PLANT

REGENERATION OF CHLOROPLAST STRUCTURE IN TALBOTIA ELEGANS: A DESICCATION TOLERANT PLANT New Phytol. (1918)81,651-662. REGENERATION OF CHLOROPLAST STRUCTURE IN TALBOTIA ELEGANS: A DESICCATION TOLERANT PLANT By N. D. HALLAM and D. F. GAFF Botany Department, Monash University, Gay ton, Victoria

More information

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots BOT 3015L (Outlaw/Sherdan/Aghoram); Page 1 of 6 Chapter 6 Biology of Flowering Plants Anatomy Seedlings, Meristems, Stems, and Roots Objectives Seedling germination and anatomy. Understand meristem structure

More information

Primary Internal structure & Normal Secondary growth in Sunflower stem

Primary Internal structure & Normal Secondary growth in Sunflower stem Primary Internal structure & Normal Secondary growth in Sunflower stem B. Sc. II - Botany Dr. (Miss) Kalpana R. Datar Assistant Professor DEPARTMENT OF BOTANY Willingdon College, Sangli. kalpana_datar@yahoo.com.

More information

AN ATYPICAL CRISTA RESEMBLING A "TIGHT JUNCTION" IN BEAN ROOT MITOCHONDRIA

AN ATYPICAL CRISTA RESEMBLING A TIGHT JUNCTION IN BEAN ROOT MITOCHONDRIA Published Online: 1 October, 1968 Supp Info: http://doi.org/10.1083/jcb.39.1.35 Downloaded from jcb.rupress.org on December 24, 2018 AN ATYPICAL CRISTA RESEMBLING A "TIGHT JUNCTION" IN BEAN ROOT MITOCHONDRIA

More information

ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION.

ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION. ABSORPTION OF WATER MODE OF WATER ABSORPTION ACTIVE AND PASSIVE ABSORPTION AND FACTORS AFFECTING ABSORPTION. PRELUDE OF WATER POTENTIAL Most organisms are comprised of at least 70% or more water. Some

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany.

Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. The Ultrastructure of the Quiescent Center in the Apex of Cultured Roots of Convolvulus arvensis L. Author(s): Harry L. Phillips, Jr. and John G. Torrey Source: American Journal of Botany, Vol. 61, No.

More information

Chapter 29: Plant Tissues

Chapter 29: Plant Tissues Chapter 29: Plant Tissues Shoots and Roots Shoots (Leaves and Stem) Produce food by photosynthesis Carry out reproductive functions Roots Anchor the plant Penetrate the soil and absorb water and dissolved

More information

Chapter 23 Notes Roots Stems Leaves

Chapter 23 Notes Roots Stems Leaves Chapter 23 Notes Roots Stems Leaves I. Specialized tissue in plants - effective way to ensure the plant s survival A. Seed plant structure 1. Roots - a. Absorbs water and dissolves nutrients b. anchors

More information

LEAF STRUCTURE AND PLANT TISSUE LAB

LEAF STRUCTURE AND PLANT TISSUE LAB Name Period LEAF STRUCTURE AND PLANT TISSUE LAB Objectives: Use this lab handout and your textbook (Campbell, Chapter 35) to familiarize yourself with the different cell and tissue types found in plant

More information

ENDODERMIS & POLARITY

ENDODERMIS & POLARITY https://en.wikipedia.org/wiki/casparian_strip ENDODERMIS & POLARITY Niloufar Pirayesh 13.01.2016 PCDU SEMINAR 2 What is Endodermis? It helps with Regulate the movement of water ions and hormones. (in and

More information

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS

2/25/2013. o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS ROOTS o Plants take up water and minerals from below ground o Plants take up CO2 and light from above ground THREE BASIC PLANT ORGANS o Roots o Stems o Leaves ROOTS o Anchor plant o Absorb water and minerals

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

ROOT STRUCTURE: EXTERNAL ROOT

ROOT STRUCTURE: EXTERNAL ROOT ROOT STRUCTURE: EXTERNAL ROOT Material: Botany I cards #9 - #12, #13 - #18, #19 - # 23 Presentation: 1. The external parts of the root have been introduced to the children: the root hairs, the root tips,

More information

The Vascular Plant Body

The Vascular Plant Body The Vascular Plant Body Like animals, plants are made up of specialized cells that are organized into tissues, which are themselves organized into systems of organs. The various parts of plants are adapted

More information

PLANT STRUCTURE: PARTS (ORGANS) Roots Leaves Stems

PLANT STRUCTURE: PARTS (ORGANS) Roots Leaves Stems PLANT STRUCTURE: PARTS (ORGANS) Roots Leaves Stems ROOTS El Hiquieron. Strangulating Plant Ficusjimenezii The trees you see growing on the wall are the Higueron. The Higueronsare plants that can grow in

More information

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants The Science of Plants in Agriculture Pl.Sci 102 Getting to Know Plants Growth and Development of Plants Growth and Development of Plants Why it s important to have knowledge about plant development. What

More information

SPECIALIZED ENTITIES WITHIN CYTOSOL

SPECIALIZED ENTITIES WITHIN CYTOSOL ORGANELLES ORGANELLES + SPECIALIZED ENTITIES WITHIN CYTOSOL ORGANELLES ORGANELLES SPECIALIZED ENTITIES WITHIN CYTOSOL --- ISOLATE NON-COMPATIBLE BIO-CHEMICAL REACTIONS ORGANELLES TRUE PLANT CYTOLOGY INTERCELLULAR

More information

THE ROOTS OF WILD RICE. ZIZANIA AQUATICA L.

THE ROOTS OF WILD RICE. ZIZANIA AQUATICA L. THE ROOTS OF WILD RICE. ZIZANIA AQUATICA L. E. L. STOVER, Eastern Illinois State Teachers College. This grass grows from Maine to Minnesota in aquatic habitats (2 and 5). It is common in marsh lands all

More information

PLANT STRUCTURE AND FUNCTION Read pages Re-read and then complete the questions below.

PLANT STRUCTURE AND FUNCTION Read pages Re-read and then complete the questions below. PLANT STRUCTURE AND FUNCTION Read pages 600-602. Re-read and then complete the questions below. 1. PLANT TISSUES - plant tissues are made up of 3 basic cell types: Parenchyma, Collenchyma or Sclerenchyma

More information

ULTRASTRUCTURAL CHANGES OF PLASTIDS IN FLAX EMBRYOS CULTIVATED IN VITRO

ULTRASTRUCTURAL CHANGES OF PLASTIDS IN FLAX EMBRYOS CULTIVATED IN VITRO New Phytol. (1981) 87, 473 479 473 ULTRASTRUCTURAL CHANGES OF PLASTIDS IN FLAX EMBRYOS CULTIVATED IN VITRO BY MILADA CIAMPOROVA AND ANNA PRETOVA Slovak Acadetny of Sciences, Institute of Experimental Biology

More information

Chapter 36~ Transport in Plants

Chapter 36~ Transport in Plants Chapter 36~ Transport in Plants Structural Features Used for Resource Acquistion Roots and stems to do transport of resources Diffusion, active transport, and bulk flow Work in vascular plants to transport

More information

C MPETENC EN I C ES LECT EC UR U E R

C MPETENC EN I C ES LECT EC UR U E R LECTURE 7: SUGAR TRANSPORT COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the pathway of sugar transport in plants 2. To explain the mechanism

More information

A CRYSTALLINE INCLUSION IN SIEVE ELEMENT NUCLEI OF AMSINCKIA

A CRYSTALLINE INCLUSION IN SIEVE ELEMENT NUCLEI OF AMSINCKIA J. Cell Sci. 38, 1-10 (1979) Printed in Great Britain Company of Biologists Limited A CRYSTALLINE INCLUSION IN SIEVE ELEMENT NUCLEI OF AMSINCKIA I. THE INCLUSION IN DIFFERENTIATING CELLS KATHERINE ESAU

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004 IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004 A. Shoot apex -plants have an open system of growth, therefore the ability (at least potentially) to continue growth because there is a meristem

More information

This exam is the property of CR Hardy. It may not be sold or distributed in any manner.

This exam is the property of CR Hardy. It may not be sold or distributed in any manner. Relevant Sample Questions for Exam 1 from an old exam. Bio 221 Concepts of Botany Dr. Hardy Relevant bits from Exam 1 (Spring 2013) Name: Instructions: -Please do not turn this page over until Prof. Hardy

More information

Today: Plant Structure Exam II is on F March 31

Today: Plant Structure Exam II is on F March 31 Next few lectures are on plant form and function Today: Plant Structure Exam II is on F March 31 Outline Plant structure I. Plant Cells structure & different types II. Types of meristems Apical meristems:

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT Root, stem leaves, flower, fruits and seeds arise in orderly manner in plants. The sequence of growth is as follows-

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 3.3: Transport in plants Notes Plants require a transport system to ensure that all the cells of a plant receive a sufficient amount of nutrients. This is achieved through

More information

Chapter 36: Transport in Vascular Plants - Pathways for Survival

Chapter 36: Transport in Vascular Plants - Pathways for Survival Chapter 36: Transport in Vascular Plants - Pathways for Survival For vascular plants, the evolutionary journey onto land involved differentiation into roots and shoots Vascular tissue transports nutrients

More information

Roots anchor plants and absorb water and minerals in solution. A germinating seed radicle becomes the first root. Four zones, or regions, of young

Roots anchor plants and absorb water and minerals in solution. A germinating seed radicle becomes the first root. Four zones, or regions, of young Roots anchor plants and absorb water and minerals in solution. A germinating seed radicle becomes the first root. Four zones, or regions, of young roots are recognized: (1) A protective root cap that also

More information

The mode of development in animals and plants is different

The mode of development in animals and plants is different The mode of development in animals and plants is different Outcome of animal embryogenesis is a mini edition of the adult Outcome of plant embryogenesis is a simple structure with -root apical meristem

More information

Plant Structure, Growth, and Development

Plant Structure, Growth, and Development Plant Structure, Growth, and Development Plant hierarchy: Cells Tissue: group of similar cells with similar function: Dermal, Ground, Vascular Organs: multiple kinds of tissue, very diverse function Organ

More information

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23 Plant Histology Early development, cells & tissues Chapters 22 & 23 Early Development Formation of the embryo The Mature Embryo & Seed Requirements for seed germination Embryo to Adult Apical meristems

More information

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E The development of a plant the series of progressive changes that take place throughout its life is regulated in complex ways. Factors take part

More information

23 1 Specialized Tissues in Plants Slide 1 of 34

23 1 Specialized Tissues in Plants Slide 1 of 34 23 1 Specialized Tissues in Plants 1 of 34 Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. These organs perform functions such as the transport of nutrients,

More information

Aberrant Mitochondria with Longitudinal Cristae Observed in the Normal Rat Hepatic Parenchymal Cell. Takuma Saito and Kazuo Ozawa

Aberrant Mitochondria with Longitudinal Cristae Observed in the Normal Rat Hepatic Parenchymal Cell. Takuma Saito and Kazuo Ozawa Okajimas Fol. anat. jap., 44 : 357-363, 1968 Aberrant Mitochondria with Longitudinal Cristae Observed in the Normal Rat Hepatic Parenchymal Cell By Takuma Saito and Kazuo Ozawa Department of Anatomy, Kansai

More information

Stems of Allium cepa L. contain starch

Stems of Allium cepa L. contain starch New Phytol. (1994), 128, 403-406 Stems of Allium cepa L. contain starch BY M. ERNST AND G. BUFLER Institut fiir Obst-, Gemiise- und Weinbait, Universitdt Hohenheim, D-70593 Stuttgart, Germany {Received

More information

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell?

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell? Today s materials: 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote Achadiah Rachmawati What is a cell? Cell Structure and Function All living things are made of cells

More information

CELL DIVISION IN THE FORMATION OF THE STOMATAL COMPLEX OF THE YOUNG LEAVES OF WHEAT

CELL DIVISION IN THE FORMATION OF THE STOMATAL COMPLEX OF THE YOUNG LEAVES OF WHEAT J. Cell Sci. I, 121-128 (1966) 121 Printed in Great Britain CELL DIVISION IN THE FORMATION OF THE STOMATAL COMPLEX OF THE YOUNG LEAVES OF WHEAT J. D. PICKETT-HEAPS AND D. H. NORTHCOTE Department of Biochemistry,

More information

Introduction to Botany. Lecture 25

Introduction to Botany. Lecture 25 Introduction to Botany. Lecture 25 Alexey Shipunov Minot State University November 2, 2015 Shipunov (MSU) Introduction to Botany. Lecture 25 November 2, 2015 1 / 33 Outline 1 Questions and answers 2 Stem

More information

Transport in Vascular Plants

Transport in Vascular Plants Chapter 36 Transport in Vascular Plants PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Vascular tissue Transports nutrients throughout a plant; such

More information

II. SIMPLE TISSUES Bot 404--Fall A. Introduction to Tissues (DIAGRAM allow a full page)

II. SIMPLE TISSUES Bot 404--Fall A. Introduction to Tissues (DIAGRAM allow a full page) II. SIMPLE TISSUES Bot 404--Fall 2004 A. Introduction to Tissues (DIAGRAM allow a full page) B. Definitions Adaxial = facing the axil; upper surface of leaf Abaxial = facing away from the axil; lower surface

More information

Respiration and Carbon Partitioning. Thomas G Chastain CROP 200 Crop Ecology and Morphology

Respiration and Carbon Partitioning. Thomas G Chastain CROP 200 Crop Ecology and Morphology Respiration and Carbon Partitioning Thomas G Chastain CROP 200 Crop Ecology and Morphology Respiration Aerobic respiration is the controlled oxidation of reduced carbon substrates such as a carbohydrate

More information