TMSEG Michael Bernhofer, Jonas Reeb pp1_tmseg

Size: px
Start display at page:

Download "TMSEG Michael Bernhofer, Jonas Reeb pp1_tmseg"

Transcription

1 title: short title: TMSEG Michael Bernhofer, Jonas Reeb pp1_tmseg lecture: Protein Prediction 1 (for Computational Biology) Protein structure TUM summer semester

2 Last time 2

3 3

4 Yet another transmembrane predictor? More data available Re-training old methods is viable but no one does it Less extensive machine learning Runtime 4

5 Dataset Transmembrane helices I 166 membrane protein sequences (TMP166) TMH assignment from 3D-structure by OPM & PDBTM Assignments differ, both used for training Map to UniProt sequence using SIFTS Redundancy reduction with Uniqueprot at HVAL>0 Lomize et al., 2006, Bioinformatics Kozma et al., 2013, NAR Velankar et al., 2013, NAR Mika et al., 2003, NAR 5

6 Dataset Transmembrane helices II Inside/Outside topology assignment OPM Lomize et al., 2006, Bioinformatics 6

7 Dataset Proteins w/ and w/o signal peptides Derived from the SignalP 4.0 training set Redundancy reduced against set of 166 TMPs at HVAL>0 Redundancy reduced within at HVAL>0 Soluble: 1142 (452 w/ SP) Membrane: 299 (25 w/ SP) SP1441 7

8 Dataset Split Split into 4 subsets, maintaining distribution of TMPs, SPs and sequence lengths Use 3 sets for cross-validation, keep one for final independent evaluation (Blind set) Blind Blind TMP SP Train Train 8

9 Classification trees Given N training samples and M input features find the best recursive partitioning to predict the class labels in the leaf nodes Splitting, pruning, balancing... approaches differentiate algorithms 9

10 Classification trees example Loh, 2011, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10

11 Random forests Ensemble method: grow T trees for a forest For M input features, choose m < M For each t T: Select N training samples with replacement from all N samples At every split, choose m random features. Use the best split among those for building the tree 11

12 Random forests - Popularity Fast No black box Intuitive to interpret Good performance Jensen et al., 2011, Bioinformatics 12

13 TMSEG step 1 Initial prediction Random Forest (T = 100, m = 9) Sliding window of 19 residues (w = 19) 3 scores for each residue (0-1000): Signal peptide Transmembrane helix Soluble Scores scaled from to

14 TMSEG overview Step 1 14

15 TMSEG step 1 - Feature set I Global features: Global amino acid composition Protein length Local features: PSSM score Distance to N- and C-terminus Average hydrophobicity (Kyte-Doolittle) % hydrophobic % charged (positive & negative) w = 9 % polar 15

16 TMSEG step 1 - Feature set II Adjusting for conservation Substitutions with score > 0 = 16 Substitutions with score < 0 = 79 16

17 TMSEG step 1 - Feature set III Adjusting for conservation Amino acid composition M (PSSM>0) = 1/16 17

18 TMSEG step 1 - Feature set IV Adjusting for conservation Amino acid composition M (PSSM>0) = 1/16 Amino acid composition M (PSSM<0) = 3/79 18

19 TMSEG step 1 - Feature set V Adjusting for conservation % positive charge (PSSM>0) = 2/16 % positive charge (PSSM<0) = 8/79 19

20 TMSEG step 1 - Feature set VI Global features: PSSM 0 Global amino acid composition 2*20 Protein length (binned) 1 Local features: PSSM score 21*19 Distance to N- and C-terminus 2 PSSM 0 PSSM 0 PSSM 0 PSSM 0 Average hydrophobicity (Kyte-Doolittle) 2*1 % hydrophobic 2*1 % charged (positive & negative) 2*2 % polar 2*1 20

21 TMSEG step 2 Empirical filter Smooth scores with median filter (w = 5) Adjust scores to avoid overprediction soluble: -185 TMH: -60 Assign each residue to state with highest score Remove signal peptides with <4 residues Remove TMHs with <7 residues 21

22 TMSEG step 2 Example SEQ: M G P R A R P A L L L L... SIG: SOL: TMH: à Median filter SIG: SOL: TMH: à Adjust for overprediction SIG: SOL: TMH: OUT: S S S S S S S S S S... 22

23 TMSEG overview Step 1 & 2 23

24 TMSEG step 3 Refine TMH prediction I Neural Network (25 hidden nodes) Input: TMH segments of variable length Features: PSSM 0 PSSM 0 PSSM 0 PSSM 0 Amino acid composition 2*20 Average hydrophobicity (Kyte-Doolittle) 2*1 % hydrophobic 2*1 % charged 2*1 Segment length (exact) 1 24

25 TMSEG step 3 Refine TMH prediction II Split long TMHs ( 35 residues) into two shorter TMHs ( 17 residues) Keep two TMHs if higher average score after split Adjust TMH endpoints by up to 3 residues in either direction 25

26 TMSEG overview Step

27 TMSEG step 4 Topology prediction I Random Forest (T = 100, m = 7) Assign soluble segments to side 1 or 2 Features: PSSM 0 PSSM 0 PSSM 0 Amino acid composition 2*2*20 % positive charge 2*2*1 % abs. difference of pos. charge side1/side2 2*1 27

28 TMSEG step 4 Topology prediction II Consider only residues close to TMHs 15 residues next to TMHs and 8 residues into TMHs Predict topology of N-terminus and extrapolate If SP predicted à Residues after SP outside 28

29 TMSEG overview Step

30 Performance measures I Per-residue measures often misleading à Score by TMH segments instead Whole-protein scores: Q ok and Q top 30

31 Performance measures II r i : #correctly predicted TMHs B #observed TMHs p i : #correctly predicted TMHs B #predicted TMHs Q ok : L 100 N C 1, if pi = ri = 100% x i ; xi = G 0, else MNO 31

32 Performance measures III What is a correctly predicted TMH? Strict criteria Endpoint deviation 5 residues Overlap at least 50% 32

33 Performance measures IV t i : 100% if toplogy is correct, otherwise 0% Q top : L 100 N C 1, if ti = pi = ri = 100% y i ; yi = G 0, else MNO 33

34 Performance of TMH predictions 34

35 Performance measures TMP classification FPR: 100 # of incorrectly predicted TMPs # of soluble proteins Sensitvity: 100 # of correctly predicted TMPs # of observed TMPs Compare to a simple predictor ( Baseline ) Uses only hydrophobicity scale and positive-inside rule 35

36 TMP classification Very low misclassification rates Method TMP sensitivity TMP FPR Topology correct Misclassified in human More mistakes than TMSEG in human TMSEG 98 ± 2 3 ± 1 93 ± PolyPhobius 100 ± 0 5 ± 1 78 ± MEMSAT3 100 ± 0 28 ± 2 93 ± 4 4,313 3,755 MEMSAT-SVM 98 ± 2 14 ± 2 88 ± 5 2,253 1,695 Baseline 95 ± 3 31 ± 2 75 ± 7 5,015 4,457 36

37 Dataset of 12 new proteins How to get more data? Use what was published since starting work à Data unknown by any method From 07/2013 to 2016/02: Only 12 new TMPs published Very small dataset TMSEG predicts every TMH of the 10 recognized TMPs 37

38 Applying TMSEG to other methods I High modularity (steps 1-4) Apply steps 3 and 4 to other methods Step3: NN-based TMH prediction improvement Step4: RF-based topology prediction Can this improve other methods? 38

39 Applying TMSEG to other methods II 39

40 Potential extensions Re-entrant regions not modelled (little data) Idea: Check abnormal TMH segments for reentrant Does not switching topology increase scores? 40

41 Availability Debian package: Github: github.com/rostlab/tmseg PredictProtein: predictprotein.org Yachdav et al., 2014, NAR 41

42 Thank you Unknown source L 42

43 References Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Rost, B. (2014). PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Research, 42(Web Server issue), W Jensen, L. J., & Bateman, A. (2011). The rise and fall of supervised machine learning techniques. Bioinformatics, 27(24), Loh, W.-Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), Lomize, M. a, Lomize, A. L., Pogozheva, I. D., & Mosberg, H. I. (2006). OPM: orientations of proteins in membranes database. Bioinformatics (Oxford, England), 22(5), Velankar, S., McNeil, P., Mittard-Runte, V., Suarez, a, Barrell, D., Apweiler, R., & Henrick, K. (2005). E-MSD: an integrated data resource for bioinformatics. Nucleic Acids Research, 33(Database issue), D Kozma, D., Simon, I., & Tusnády, G. E. (2013). PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Research, 41(Database issue), D Mika, S., & Rost, B. (2003). UniqueProt: creating representative protein sequence sets. Nucleic Acids Research, 31(13),

proteins TMSEG: Novel prediction of transmembrane helices Michael Bernhofer, 1 * Edda Kloppmann, 1,2 Jonas Reeb, 1 and Burkhard Rost 1,2,3,4

proteins TMSEG: Novel prediction of transmembrane helices Michael Bernhofer, 1 * Edda Kloppmann, 1,2 Jonas Reeb, 1 and Burkhard Rost 1,2,3,4 proteins STRUCTURE O FUNCTION O BIOINFORMATICS TMSEG: Novel prediction of transmembrane helices Michael Bernhofer, 1 * Edda Kloppmann, 1,2 Jonas Reeb, 1 and Burkhard Rost 1,2,3,4 1 Department of Informatics

More information

protein. Evaluation of transmembrane helix predictions in 2014 Jonas Reeb, 1 Edda Kloppmann, 1,2 * Michael Bernhofer, 1 and Burkhard Rost 1,2,3,4

protein. Evaluation of transmembrane helix predictions in 2014 Jonas Reeb, 1 Edda Kloppmann, 1,2 * Michael Bernhofer, 1 and Burkhard Rost 1,2,3,4 proteins STRUCTURE O FUNCTION O BIOINFORMATICS Evaluation of transmembrane helix predictions in 2014 Jonas Reeb, 1 Edda Kloppmann, 1,2 * Michael Bernhofer, 1 and Burkhard Rost 1,2,3,4 1 Department of Informatics

More information

SUPPLEMENTARY MATERIALS

SUPPLEMENTARY MATERIALS SUPPLEMENTARY MATERIALS Enhanced Recognition of Transmembrane Protein Domains with Prediction-based Structural Profiles Baoqiang Cao, Aleksey Porollo, Rafal Adamczak, Mark Jarrell and Jaroslaw Meller Contact:

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

A Machine Text-Inspired Machine Learning Approach for Identification of Transmembrane Helix Boundaries

A Machine Text-Inspired Machine Learning Approach for Identification of Transmembrane Helix Boundaries A Machine Text-Inspired Machine Learning Approach for Identification of Transmembrane Helix Boundaries Betty Yee Man Cheng 1, Jaime G. Carbonell 1, and Judith Klein-Seetharaman 1, 2 1 Language Technologies

More information

Statistics and learning: Big Data

Statistics and learning: Big Data Statistics and learning: Big Data Learning Decision Trees and an Introduction to Boosting Sébastien Gadat Toulouse School of Economics February 2017 S. Gadat (TSE) SAD 2013 1 / 30 Keywords Decision trees

More information

A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions. Rath et al.

A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions. Rath et al. A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions Rath et al. Rath et al. BMC Bioinformatics 2013, 14:111 Rath et al. BMC Bioinformatics

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Machine Learning in Action

Machine Learning in Action Machine Learning in Action Tatyana Goldberg (goldberg@rostlab.org) August 16, 2016 @ Machine Learning in Biology Beijing Genomics Institute in Shenzhen, China June 2014 GenBank 1 173,353,076 DNA sequences

More information

TMHMM2.0 User's guide

TMHMM2.0 User's guide TMHMM2.0 User's guide This program is for prediction of transmembrane helices in proteins. July 2001: TMHMM has been rated best in an independent comparison of programs for prediction of TM helices: S.

More information

A General Method for Combining Predictors Tested on Protein Secondary Structure Prediction

A General Method for Combining Predictors Tested on Protein Secondary Structure Prediction A General Method for Combining Predictors Tested on Protein Secondary Structure Prediction Jakob V. Hansen Department of Computer Science, University of Aarhus Ny Munkegade, Bldg. 540, DK-8000 Aarhus C,

More information

BIOINFORMATICS. Enhanced Recognition of Protein Transmembrane Domains with Prediction-based Structural Profiles

BIOINFORMATICS. Enhanced Recognition of Protein Transmembrane Domains with Prediction-based Structural Profiles BIOINFORMATICS Vol.? no.? 200? Pages 1 1 Enhanced Recognition of Protein Transmembrane Domains with Prediction-based Structural Profiles Baoqiang Cao 2, Aleksey Porollo 1, Rafal Adamczak 1, Mark Jarrell

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Nonlinear Classification

Nonlinear Classification Nonlinear Classification INFO-4604, Applied Machine Learning University of Colorado Boulder October 5-10, 2017 Prof. Michael Paul Linear Classification Most classifiers we ve seen use linear functions

More information

Model Accuracy Measures

Model Accuracy Measures Model Accuracy Measures Master in Bioinformatics UPF 2017-2018 Eduardo Eyras Computational Genomics Pompeu Fabra University - ICREA Barcelona, Spain Variables What we can measure (attributes) Hypotheses

More information

Topology Prediction of Helical Transmembrane Proteins: How Far Have We Reached?

Topology Prediction of Helical Transmembrane Proteins: How Far Have We Reached? 550 Current Protein and Peptide Science, 2010, 11, 550-561 Topology Prediction of Helical Transmembrane Proteins: How Far Have We Reached? Gábor E. Tusnády and István Simon* Institute of Enzymology, BRC,

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Real Estate Price Prediction with Regression and Classification CS 229 Autumn 2016 Project Final Report

Real Estate Price Prediction with Regression and Classification CS 229 Autumn 2016 Project Final Report Real Estate Price Prediction with Regression and Classification CS 229 Autumn 2016 Project Final Report Hujia Yu, Jiafu Wu [hujiay, jiafuwu]@stanford.edu 1. Introduction Housing prices are an important

More information

Jessica Wehner. Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008

Jessica Wehner. Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008 Journal Club Jessica Wehner Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008 Comparison of Probabilistic Combination Methods for Protein Secondary Structure

More information

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Learning Neural Networks Classifier Short Presentation INPUT: classification data, i.e. it contains an classification (class) attribute.

More information

Classification using stochastic ensembles

Classification using stochastic ensembles July 31, 2014 Topics Introduction Topics Classification Application and classfication Classification and Regression Trees Stochastic ensemble methods Our application: USAID Poverty Assessment Tools Topics

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Dyadic Classification Trees via Structural Risk Minimization

Dyadic Classification Trees via Structural Risk Minimization Dyadic Classification Trees via Structural Risk Minimization Clayton Scott and Robert Nowak Department of Electrical and Computer Engineering Rice University Houston, TX 77005 cscott,nowak @rice.edu Abstract

More information

Predictive Modeling: Classification. KSE 521 Topic 6 Mun Yi

Predictive Modeling: Classification. KSE 521 Topic 6 Mun Yi Predictive Modeling: Classification Topic 6 Mun Yi Agenda Models and Induction Entropy and Information Gain Tree-Based Classifier Probability Estimation 2 Introduction Key concept of BI: Predictive modeling

More information

Anomaly Detection for the CERN Large Hadron Collider injection magnets

Anomaly Detection for the CERN Large Hadron Collider injection magnets Anomaly Detection for the CERN Large Hadron Collider injection magnets Armin Halilovic KU Leuven - Department of Computer Science In cooperation with CERN 2018-07-27 0 Outline 1 Context 2 Data 3 Preprocessing

More information

Neural Networks and Ensemble Methods for Classification

Neural Networks and Ensemble Methods for Classification Neural Networks and Ensemble Methods for Classification NEURAL NETWORKS 2 Neural Networks A neural network is a set of connected input/output units (neurons) where each connection has a weight associated

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

Boosting. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL , 10.7, 10.13

Boosting. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL , 10.7, 10.13 Boosting Ryan Tibshirani Data Mining: 36-462/36-662 April 25 2013 Optional reading: ISL 8.2, ESL 10.1 10.4, 10.7, 10.13 1 Reminder: classification trees Suppose that we are given training data (x i, y

More information

Learning Time-Series Shapelets

Learning Time-Series Shapelets Learning Time-Series Shapelets Josif Grabocka, Nicolas Schilling, Martin Wistuba and Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany SIGKDD 14,

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 06 - Regression & Decision Trees Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom

More information

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 21 K - Nearest Neighbor V In this lecture we discuss; how do we evaluate the

More information

Oliver Dürr. Statistisches Data Mining (StDM) Woche 11. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Oliver Dürr. Statistisches Data Mining (StDM) Woche 11. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Statistisches Data Mining (StDM) Woche 11 Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften oliver.duerr@zhaw.ch Winterthur, 29 November 2016 1 Multitasking

More information

Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function

Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function Allan Lo 1, 2, Hua-Sheng Chiu 3, Ting-Yi Sung 3, Ping-Chiang Lyu 2, and Wen-Lian Hsu

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

Source localization in an ocean waveguide using supervised machine learning

Source localization in an ocean waveguide using supervised machine learning Source localization in an ocean waveguide using supervised machine learning Haiqiang Niu, Emma Reeves, and Peter Gerstoft Scripps Institution of Oceanography, UC San Diego Part I Localization on Noise09

More information

Support Vector Machine & Its Applications

Support Vector Machine & Its Applications Support Vector Machine & Its Applications A portion (1/3) of the slides are taken from Prof. Andrew Moore s SVM tutorial at http://www.cs.cmu.edu/~awm/tutorials Mingyue Tan The University of British Columbia

More information

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations Review of Lecture 1 This course is about finding novel actionable patterns in data. We can divide data mining algorithms (and the patterns they find) into five groups Across records Classification, Clustering,

More information

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition Ad Feelders Universiteit Utrecht Department of Information and Computing Sciences Algorithmic Data

More information

Decision trees COMS 4771

Decision trees COMS 4771 Decision trees COMS 4771 1. Prediction functions (again) Learning prediction functions IID model for supervised learning: (X 1, Y 1),..., (X n, Y n), (X, Y ) are iid random pairs (i.e., labeled examples).

More information

Public Database 의이용 (1) - SignalP (version 4.1)

Public Database 의이용 (1) - SignalP (version 4.1) Public Database 의이용 (1) - SignalP (version 4.1) 2015. 8. KIST 이철주 Secretion pathway prediction ProteinCenter (Proxeon Bioinformatics, Odense, Denmark; http://www.cbs.dtu.dk/services) SignalP (version 4.1)

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

1-D Predictions. Prediction of local features: Secondary structure & surface exposure

1-D Predictions. Prediction of local features: Secondary structure & surface exposure 1-D Predictions Prediction of local features: Secondary structure & surface exposure 1 Learning Objectives After today s session you should be able to: Explain the meaning and usage of the following local

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 21: Decision Tree / Random Forest / Ensemble Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sections of this course

More information

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An Artificial

More information

Decision T ree Tree Algorithm Week 4 1

Decision T ree Tree Algorithm Week 4 1 Decision Tree Algorithm Week 4 1 Team Homework Assignment #5 Read pp. 105 117 of the text book. Do Examples 3.1, 3.2, 3.3 and Exercise 3.4 (a). Prepare for the results of the homework assignment. Due date

More information

10701/15781 Machine Learning, Spring 2007: Homework 2

10701/15781 Machine Learning, Spring 2007: Homework 2 070/578 Machine Learning, Spring 2007: Homework 2 Due: Wednesday, February 2, beginning of the class Instructions There are 4 questions on this assignment The second question involves coding Do not attach

More information

The human transmembrane proteome

The human transmembrane proteome Dobson et al. Biology Direct (2015) 10:31 DOI 10.1186/s13062-015-0061-x RESEARCH Open Access The human transmembrane proteome László Dobson, István Reményi and Gábor E. Tusnády * Abstract Background: Transmembrane

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Article from Predictive Analytics and Futurism July 2016 Issue 13 Regression and Classification: A Deeper Look By Jeff Heaton Classification and regression are the two most common forms of models fitted

More information

Protein 8-class Secondary Structure Prediction Using Conditional Neural Fields

Protein 8-class Secondary Structure Prediction Using Conditional Neural Fields 2010 IEEE International Conference on Bioinformatics and Biomedicine Protein 8-class Secondary Structure Prediction Using Conditional Neural Fields Zhiyong Wang, Feng Zhao, Jian Peng, Jinbo Xu* Toyota

More information

Accurate Prediction of Protein Disordered Regions by Mining Protein Structure Data

Accurate Prediction of Protein Disordered Regions by Mining Protein Structure Data Data Mining and Knowledge Discovery, 11, 213 222, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. DOI: 10.1007/s10618-005-0001-y Accurate Prediction of Protein Disordered

More information

Comparison of Shannon, Renyi and Tsallis Entropy used in Decision Trees

Comparison of Shannon, Renyi and Tsallis Entropy used in Decision Trees Comparison of Shannon, Renyi and Tsallis Entropy used in Decision Trees Tomasz Maszczyk and W lodzis law Duch Department of Informatics, Nicolaus Copernicus University Grudzi adzka 5, 87-100 Toruń, Poland

More information

Predictive Analytics on Accident Data Using Rule Based and Discriminative Classifiers

Predictive Analytics on Accident Data Using Rule Based and Discriminative Classifiers Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 3 (2017) pp. 461-469 Research India Publications http://www.ripublication.com Predictive Analytics on Accident Data Using

More information

Lecture 2. Judging the Performance of Classifiers. Nitin R. Patel

Lecture 2. Judging the Performance of Classifiers. Nitin R. Patel Lecture 2 Judging the Performance of Classifiers Nitin R. Patel 1 In this note we will examine the question of how to udge the usefulness of a classifier and how to compare different classifiers. Not only

More information

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery AtomNet A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery Izhar Wallach, Michael Dzamba, Abraham Heifets Victor Storchan, Institute for Computational and

More information

K-means-based Feature Learning for Protein Sequence Classification

K-means-based Feature Learning for Protein Sequence Classification K-means-based Feature Learning for Protein Sequence Classification Paul Melman and Usman W. Roshan Department of Computer Science, NJIT Newark, NJ, 07102, USA pm462@njit.edu, usman.w.roshan@njit.edu Abstract

More information

Linear Classifiers. Michael Collins. January 18, 2012

Linear Classifiers. Michael Collins. January 18, 2012 Linear Classifiers Michael Collins January 18, 2012 Today s Lecture Binary classification problems Linear classifiers The perceptron algorithm Classification Problems: An Example Goal: build a system that

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

Prediction and Classif ication of Human G-protein Coupled Receptors Based on Support Vector Machines

Prediction and Classif ication of Human G-protein Coupled Receptors Based on Support Vector Machines Article Prediction and Classif ication of Human G-protein Coupled Receptors Based on Support Vector Machines Yun-Fei Wang, Huan Chen, and Yan-Hong Zhou* Hubei Bioinformatics and Molecular Imaging Key Laboratory,

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Combination of M-Estimators and Neural Network Model to Analyze Inside/Outside Bark Tree Diameters

Combination of M-Estimators and Neural Network Model to Analyze Inside/Outside Bark Tree Diameters Combination of M-Estimators and Neural Network Model to Analyze Inside/Outside Bark Tree Diameters Kyriaki Kitikidou, Elias Milios, Lazaros Iliadis, and Minas Kaymakis Democritus University of Thrace,

More information

Ensemble learning 11/19/13. The wisdom of the crowds. Chapter 11. Ensemble methods. Ensemble methods

Ensemble learning 11/19/13. The wisdom of the crowds. Chapter 11. Ensemble methods. Ensemble methods The wisdom of the crowds Ensemble learning Sir Francis Galton discovered in the early 1900s that a collection of educated guesses can add up to very accurate predictions! Chapter 11 The paper in which

More information

Protein structure alignments

Protein structure alignments Protein structure alignments Proteins that fold in the same way, i.e. have the same fold are often homologs. Structure evolves slower than sequence Sequence is less conserved than structure If BLAST gives

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others

More information

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Prof. Dr. M. A. Mottalib, Md. Rahat Hossain Department of Computer Science and Information Technology

More information

Symbolic methods in TC: Decision Trees

Symbolic methods in TC: Decision Trees Symbolic methods in TC: Decision Trees ML for NLP Lecturer: Kevin Koidl Assist. Lecturer Alfredo Maldonado https://www.cs.tcd.ie/kevin.koidl/cs0/ kevin.koidl@scss.tcd.ie, maldonaa@tcd.ie 01-017 A symbolic

More information

Analysis of N-terminal Acetylation data with Kernel-Based Clustering

Analysis of N-terminal Acetylation data with Kernel-Based Clustering Analysis of N-terminal Acetylation data with Kernel-Based Clustering Ying Liu Department of Computational Biology, School of Medicine University of Pittsburgh yil43@pitt.edu 1 Introduction N-terminal acetylation

More information

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like

SCOP. all-β class. all-α class, 3 different folds. T4 endonuclease V. 4-helical cytokines. Globin-like SCOP all-β class 4-helical cytokines T4 endonuclease V all-α class, 3 different folds Globin-like TIM-barrel fold α/β class Profilin-like fold α+β class http://scop.mrc-lmb.cam.ac.uk/scop CATH Class, Architecture,

More information

The TOPCONS webserver for consensus prediction of membrane protein topology and signal peptides

The TOPCONS webserver for consensus prediction of membrane protein topology and signal peptides The TOPCONS webserver f consensus prediction of membrane protein topology and signal peptides Konstantinos D. Tsirigos 1,2, Christoph Peters 1,2, Nanjiang Shu 1,2,3, Lukas Käll 1,2 and Arne Elofsson 1,2,*

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec1 Building a Multiple Sequence Alignment Learning Outcomes 1- Understanding Why multiple

More information

.. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. for each element of the dataset we are given its class label.

.. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. for each element of the dataset we are given its class label. .. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Data Mining: Classification/Supervised Learning Definitions Data. Consider a set A = {A 1,...,A n } of attributes, and an additional

More information

IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS

IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS Aslı Filiz 1, Eser Aygün 2, Özlem Keskin 3 and Zehra Cataltepe 2 1 Informatics Institute and 2 Computer Engineering Department,

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Bayesian Hierarchical Classification. Seminar on Predicting Structured Data Jukka Kohonen

Bayesian Hierarchical Classification. Seminar on Predicting Structured Data Jukka Kohonen Bayesian Hierarchical Classification Seminar on Predicting Structured Data Jukka Kohonen 17.4.2008 Overview Intro: The task of hierarchical gene annotation Approach I: SVM/Bayes hybrid Barutcuoglu et al:

More information

A Discriminatively Trained, Multiscale, Deformable Part Model

A Discriminatively Trained, Multiscale, Deformable Part Model A Discriminatively Trained, Multiscale, Deformable Part Model P. Felzenszwalb, D. McAllester, and D. Ramanan Edward Hsiao 16-721 Learning Based Methods in Vision February 16, 2009 Images taken from P.

More information

Day 3: Classification, logistic regression

Day 3: Classification, logistic regression Day 3: Classification, logistic regression Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 20 June 2018 Topics so far Supervised

More information

Support Vector Machines. Machine Learning Fall 2017

Support Vector Machines. Machine Learning Fall 2017 Support Vector Machines Machine Learning Fall 2017 1 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost 2 Where are we? Learning algorithms Decision Trees Perceptron AdaBoost Produce

More information

Stat 502X Exam 2 Spring 2014

Stat 502X Exam 2 Spring 2014 Stat 502X Exam 2 Spring 2014 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This exam consists of 12 parts. I'll score it at 10 points per problem/part

More information

Harrison B. Prosper. Bari Lectures

Harrison B. Prosper. Bari Lectures Harrison B. Prosper Florida State University Bari Lectures 30, 31 May, 1 June 2016 Lectures on Multivariate Methods Harrison B. Prosper Bari, 2016 1 h Lecture 1 h Introduction h Classification h Grid Searches

More information

Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments

Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Improving Protein Secondary-Structure Prediction by Predicting Ends of Secondary-Structure Segments Uros Midic 1 A. Keith Dunker 2 Zoran Obradovic 1* 1 Center for Information Science and Technology Temple

More information

Hierarchical models for the rainfall forecast DATA MINING APPROACH

Hierarchical models for the rainfall forecast DATA MINING APPROACH Hierarchical models for the rainfall forecast DATA MINING APPROACH Thanh-Nghi Do dtnghi@cit.ctu.edu.vn June - 2014 Introduction Problem large scale GCM small scale models Aim Statistical downscaling local

More information

Predictors (of secondary structure) based on Machine Learning tools

Predictors (of secondary structure) based on Machine Learning tools Predictors (of secondary structure) based on Machine Learning tools Predictors of secondary structure 1 Generation methods: propensity of each residue to be in a given conformation Chou-Fasman 2 Generation

More information

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES

PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES PROTEIN FUNCTION PREDICTION WITH AMINO ACID SEQUENCE AND SECONDARY STRUCTURE ALIGNMENT SCORES Eser Aygün 1, Caner Kömürlü 2, Zafer Aydin 3 and Zehra Çataltepe 1 1 Computer Engineering Department and 2

More information

Machine Learning Recitation 8 Oct 21, Oznur Tastan

Machine Learning Recitation 8 Oct 21, Oznur Tastan Machine Learning 10601 Recitation 8 Oct 21, 2009 Oznur Tastan Outline Tree representation Brief information theory Learning decision trees Bagging Random forests Decision trees Non linear classifier Easy

More information

Machine Learning & Data Mining

Machine Learning & Data Mining Group M L D Machine Learning M & Data Mining Chapter 7 Decision Trees Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University Top 10 Algorithm in DM #1: C4.5 #2: K-Means #3: SVM

More information

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9 Slides adapted from Jordan Boyd-Graber Machine Learning: Chenhao Tan Boulder 1 of 39 Recap Supervised learning Previously: KNN, naïve

More information

Multivariate Methods in Statistical Data Analysis

Multivariate Methods in Statistical Data Analysis Multivariate Methods in Statistical Data Analysis Web-Site: http://tmva.sourceforge.net/ See also: "TMVA - Toolkit for Multivariate Data Analysis, A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E.

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction Protein Secondary Structure Prediction Doug Brutlag & Scott C. Schmidler Overview Goals and problem definition Existing approaches Classic methods Recent successful approaches Evaluating prediction algorithms

More information

Protein Secondary Structure Prediction using Feed-Forward Neural Network

Protein Secondary Structure Prediction using Feed-Forward Neural Network COPYRIGHT 2010 JCIT, ISSN 2078-5828 (PRINT), ISSN 2218-5224 (ONLINE), VOLUME 01, ISSUE 01, MANUSCRIPT CODE: 100713 Protein Secondary Structure Prediction using Feed-Forward Neural Network M. A. Mottalib,

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information