Genome 559 Wi RNA Function, Search, Discovery

Size: px
Start display at page:

Download "Genome 559 Wi RNA Function, Search, Discovery"

Transcription

1 Genome 559 Wi 2009 RN Function, Search, Discovery

2 The Message Cells make lots of RN noncoding RN Functionally important, functionally diverse Structurally complex New tools required alignment, discovery, search, scoring, etc. 2

3 RN Secondary Structure: RN makes helices too Base pairs U C G U G 5 UC C G C G G C U C G G U C C U 3 Usually single stranded 3

4 Fig. 2. The arrows show the situation as it seemed in Solid arrows represent probable transfers, dotted arrows possible transfers. The absent arrows (compare Fig. 1) represent the impossible transfers postulated by the central dogma. They are the three possible arrows starting from protein.

5 Proteins catalyze & regulate biochemistry The Met Repressor SM 5

6 lberts, et al, 3e. The protein way Riboswitch alternative SM Grundy & Henkin, Mol. Microbiol 1998 Epshtein, et al., PNS 2003 Winkler et al., Nat. Struct. Biol

7 lberts, et al, 3e. The protein way Riboswitch alternatives SM-II SM-I Grundy, Epshtein, Winkler et al., 1998, 2003 Corbino et al., Genome Biol

8 lberts, et al, 3e. The protein way Riboswitch alternatives SM-III SM-I SM-II Fuchs et al., NSMB 2006 Grundy, Epshtein, Winkler et al., 1998, 2003 Corbino et al., Genome Biol

9 lberts, et al, 3e. The protein way Riboswitch alternatives SM-III SM-I SM-II SM-IV Grundy, Epshtein, Winkler et al., 1998, 2003 Corbino et al., Genome Biol Fuchs et al., NSMB 2006 Weinberg et al., RN

10 boxed = confirmed riboswitch (+2 more) Widespread, deeply conserved, structurally sophisticated, functionally diverse, biologically important uses for ncrn throughout prokaryotic world. Weinberg, et al. Nucl. cids Res., July :

11 Why is RN hard to deal with? Similar structures, but only 29% seq id G CG U C U G U CU C U G C G U G C C G GCGG G U G G G G G C CU G G GC C C G C GG G G G G C C C U C G U C U C G C G G C G C C U U G G G C G G C U U U CU U G U UUC U CUG C C C G G C G G G G G C U G C CG G U UG U U U C CG U U G U GU G CG 11 : Structure often more important than sequence

12 Motif Description & Inference 12

13 RN Motif Models Covariance Models (Eddy & Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids Model position-specific nucleotide preferences and base-pair preferences Pro: accurate Con: model building hard, search sloooow 13

14 14

15 mrn leader mrn leader switch? 15

16 Mutual Information M ij = f f xi,xj xi,xj log xi,xj 2 f xi f xj ; 0 M ij 2 Max when no seq conservation but perfect pairing; Expected score gain from modeling i & j as paired. Given columns, finding optimal pairing without pseudoknots can be done by dynamic programming 16

17 17

18 Fast Motif Search Faster Genome nnotation of Non-coding RNs Without Loss of ccuracy Weinberg & Ruzzo Recomb 04, ISMB 04, Bioinformatics 06 18

19 CM s are good, but slow Rfam Reality EMBL Our Work EMBL Rfam Goal EMBL BLST Ravenna junk CM hits 1 month, 1000 computers CM hits ~2 months, 1000 computers CM junk hits 10 years, computers

20 Name Results: New ncrn s? # found BLST + CM # found rigorous filter + CM # new Pyrococcus snorn Iron response element Histone 3 element Purine riboswitch Retron msr Hammerhead I Hammerhead III U4 snrn S-box U6 snrn U5 snrn U7 snrn

21 Motif Discovery In Prokaryotes (Vertebrates too, but no time today see, e.g., Torarinsson, et al. Genome Research, Jan 2008) 21

22 pipeline for RN motif genome scans CDD CMfinder Ortholgous genes Top datasets Motifs Search Genome database Upstream sequences Footprinter Rank datasets Homologs Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. Computational Pipeline for High Throughput Discovery of cis-regulatory Noncoding RN in 22 Prokaryotes. PLoS Computational Biology. 3(7): e126, July 6, 2007.

23 Identify CDD group members 2946 CDD groups < 10 CPU days Retrieve upstream sequences Footprinter ranking < 10 CPU days CMfinder motifs 1 ~ 2 CPU months Motif postprocessing 1740 motifs RaveNn 10 CPU months CMfinder refinement < 1 CPU month Motif postprocessing 1466 motifs 23

24 boxed = confirmed riboswitch (+2 more) Weinberg, et al. Nucl. cids Res., July :

25 Summary ncrn - apparently widespread, much interest Covariance Models - powerful but expensive RaveNn filtering - search ~100x faster with no/little loss CMfinder - CM-based motif discovery in unaligned sequences Pipelines integrating comp and bio for ncrn discovery Many vertebrate ncrns? structural, not seq conservation; functional significance unclear BIG CPU demands Still need for further methods development & application

26 Course Wrap Up Modern biology is suddenly very data-rich Mathematical & computational tools needed We showed: sequence modeling, alignment & search, phylogeny, linkage/association mapping, some data bases Python is a good tool for doing much of this There s lots more! Check out, e.g., GENOME 540/1, CSE

27 We hope you enjoyed it. Thanks! 27

Searching for Noncoding RNA

Searching for Noncoding RNA Searching for Noncoding RN Larry Ruzzo omputer Science & Engineering enome Sciences niversity of Washington http://www.cs.washington.edu/homes/ruzzo Bio 2006, Seattle, 8/4/2006 1 Outline Noncoding RN Why

More information

The Double Helix. CSE 417: Algorithms and Computational Complexity! The Central Dogma of Molecular Biology! DNA! RNA! Protein! Protein!

The Double Helix. CSE 417: Algorithms and Computational Complexity! The Central Dogma of Molecular Biology! DNA! RNA! Protein! Protein! The Double Helix SE 417: lgorithms and omputational omplexity! Winter 29! W. L. Ruzzo! Dynamic Programming, II" RN Folding! http://www.rcsb.org/pdb/explore.do?structureid=1t! Los lamos Science The entral

More information

RNA Search and! Motif Discovery" Genome 541! Intro to Computational! Molecular Biology"

RNA Search and! Motif Discovery Genome 541! Intro to Computational! Molecular Biology RNA Search and! Motif Discovery" Genome 541! Intro to Computational! Molecular Biology" Day 1" Many biologically interesting roles for RNA" RNA secondary structure prediction" 3 4 Approaches to Structure

More information

RNA Search and Motif Discovery. Lectures CSE 527 Autumn 2007

RNA Search and Motif Discovery. Lectures CSE 527 Autumn 2007 RNA Search and Motif Discovery Lectures 18-19 CSE 527 Autumn 2007 The Human Parts List, circa 2001 1 gagcccggcc cgggggacgg gcggcgggat agcgggaccc cggcgcggcg gtgcgcttca 61 gggcgcagcg gcggccgcag accgagcccc

More information

Modeling and Searching for Non-Coding RNA

Modeling and Searching for Non-Coding RNA Modeling and Searching for Non-oding RN W.L. Ruzzo http://www.cs.washington.edu/homes/ruzzo http://www.cs.washington.edu/homes/ruzzo/ courses/gs541/09sp ENOME 541 protein and DN sequence analysis to determine

More information

RNA Search and! Motif Discovery"

RNA Search and! Motif Discovery RN Search and! Motif Discovery" Lecture 9! SEP 590! utumn 2008" Outline" Whirlwind tour of ncrn search & discovery" RN motif description (ovariance Model Review)" lgorithms for searching" Rigorous & heuristic

More information

Modeling and Searching for Non-Coding RNA

Modeling and Searching for Non-Coding RNA Modeling and Searching for Non-oding RN W.L. Ruzzo http://www.cs.washington.edu/homes/ruzzo The entral Dogma DN RN Protein gene Protein DN (chromosome) cell RN (messenger) lassical RNs mrn trn rrn snrn

More information

CSEP 527 Computational Biology. RNA: Function, Secondary Structure Prediction, Search, Discovery

CSEP 527 Computational Biology. RNA: Function, Secondary Structure Prediction, Search, Discovery SEP 527 omputational Biology RN: Function, Secondary Structure Prediction, Search, Discovery The Message ells make lots of RN noncoding RN Functionally important, functionally diverse Structurally complex

More information

98 Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, December 6, 2006

98 Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, December 6, 2006 98 Algorithms in Bioinformatics I, WS 06, ZBIT, D. Huson, December 6, 2006 8.3.1 Simple energy minimization Maximizing the number of base pairs as described above does not lead to good structure predictions.

More information

Modeling and Searching for Non-Coding RNA

Modeling and Searching for Non-Coding RNA Modeling and Searching for Non-oding RN W.L. Ruzzo http://www.cs.washington.edu/homes/ruzzo Outline Why RN? Examples of RN biology omputational hallenges Modeling Search Inference The entral Dogma DN RN

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

Measuring TF-DNA interactions

Measuring TF-DNA interactions Measuring TF-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Regulation of Gene Expression by Transcription Factors TF trans-acting factors TF TF TF TF

More information

RNA Secondary Structure. CSE 417 W.L. Ruzzo

RNA Secondary Structure. CSE 417 W.L. Ruzzo RN Secondary Structure SE 417 W.L. Ruzzo The Double Helix Los lamos Science The entral Dogma of Molecular Biology DN RN Protein gene Protein DN (chromosome) cell RN (messenger) Non-coding RN Messenger

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Using Ensembles of Hidden Markov Models for Grand Challenges in Bioinformatics

Using Ensembles of Hidden Markov Models for Grand Challenges in Bioinformatics Using Ensembles of Hidden Markov Models for Grand Challenges in Bioinformatics Tandy Warnow Founder Professor of Engineering The University of Illinois at Urbana-Champaign http://tandy.cs.illinois.edu

More information

Markov Models & DNA Sequence Evolution

Markov Models & DNA Sequence Evolution 7.91 / 7.36 / BE.490 Lecture #5 Mar. 9, 2004 Markov Models & DNA Sequence Evolution Chris Burge Review of Markov & HMM Models for DNA Markov Models for splice sites Hidden Markov Models - looking under

More information

Conserved RNA Structures. Ivo L. Hofacker. Institut for Theoretical Chemistry, University Vienna.

Conserved RNA Structures. Ivo L. Hofacker. Institut for Theoretical Chemistry, University Vienna. onserved RN Structures Ivo L. Hofacker Institut for Theoretical hemistry, University Vienna http://www.tbi.univie.ac.at/~ivo/ Bled, January 2002 Energy Directed Folding Predict structures from sequence

More information

RNA Protein Interaction

RNA Protein Interaction Introduction RN binding in detail structural analysis Examples RN Protein Interaction xel Wintsche February 16, 2009 xel Wintsche RN Protein Interaction Introduction RN binding in detail structural analysis

More information

Towards a Comprehensive Annotation of Structured RNAs in Drosophila

Towards a Comprehensive Annotation of Structured RNAs in Drosophila Towards a Comprehensive Annotation of Structured RNAs in Drosophila Rebecca Kirsch 31st TBI Winterseminar, Bled 20/02/2016 Studying Non-Coding RNAs in Drosophila Why Drosophila? especially for novel molecules

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary information S1 (box). Supplementary Methods description. Prokaryotic Genome Database Archaeal and bacterial genome sequences were downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/)

More information

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT 3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT.03.239 25.09.2012 SEQUENCE ANALYSIS IS IMPORTANT FOR... Prediction of function Gene finding the process of identifying the regions of genomic DNA that encode

More information

Predicting RNA Secondary Structure

Predicting RNA Secondary Structure 7.91 / 7.36 / BE.490 Lecture #6 Mar. 11, 2004 Predicting RNA Secondary Structure Chris Burge Review of Markov Models & DNA Evolution CpG Island HMM The Viterbi Algorithm Real World HMMs Markov Models for

More information

ROC TPR FPR

ROC TPR FPR HW5 2 3 TPR 0.0 0.2 0.4 0.6 0.8 1.0 291 411 537 669 807 957 1098 1269 1506 1971 8703 171 51 RO TPR = True Positive Rate = Sensitivity = Recall = TP/(TP+FN) FPR = False Positive Rate = 1 Specificity = FP/(FP+TN)

More information

Detecting non-coding RNA in Genomic Sequences

Detecting non-coding RNA in Genomic Sequences Detecting non-coding RNA in Genomic Sequences I. Overview of ncrnas II. What s specific about RNA detection? III. Looking for known RNAs IV. Looking for unknown RNAs Daniel Gautheret INSERM ERM 206 & Université

More information

Early History up to Schedule. Proteins DNA & RNA Schwann and Schleiden Cell Theory Charles Darwin publishes Origin of Species

Early History up to Schedule. Proteins DNA & RNA Schwann and Schleiden Cell Theory Charles Darwin publishes Origin of Species Schedule Bioinformatics and Computational Biology: History and Biological Background (JH) 0.0 he Parsimony criterion GKN.0 Stochastic Models of Sequence Evolution GKN 7.0 he Likelihood criterion GKN 0.0

More information

Matrix-based pattern discovery algorithms

Matrix-based pattern discovery algorithms Regulatory Sequence Analysis Matrix-based pattern discovery algorithms Jacques.van.Helden@ulb.ac.be Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)

More information

A graph kernel approach to the identification and characterisation of structured non-coding RNAs using multiple sequence alignment information

A graph kernel approach to the identification and characterisation of structured non-coding RNAs using multiple sequence alignment information graph kernel approach to the identification and characterisation of structured noncoding RNs using multiple sequence alignment information Mariam lshaikh lbert Ludwigs niversity Freiburg, Department of

More information

Model Accuracy Measures

Model Accuracy Measures Model Accuracy Measures Master in Bioinformatics UPF 2017-2018 Eduardo Eyras Computational Genomics Pompeu Fabra University - ICREA Barcelona, Spain Variables What we can measure (attributes) Hypotheses

More information

SnoPatrol: How many snorna genes are there? Supplementary

SnoPatrol: How many snorna genes are there? Supplementary SnoPatrol: How many snorna genes are there? Supplementary materials. Paul P. Gardner 1, Alex G. Bateman 1 and Anthony M. Poole 2,3 1 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton,

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri RNA Structure Prediction Secondary

More information

Genome Annotation. Qi Sun Bioinformatics Facility Cornell University

Genome Annotation. Qi Sun Bioinformatics Facility Cornell University Genome Annotation Qi Sun Bioinformatics Facility Cornell University Some basic bioinformatics tools BLAST PSI-BLAST - Position-Specific Scoring Matrix HMM - Hidden Markov Model NCBI BLAST How does BLAST

More information

In Genomes, Two Types of Genes

In Genomes, Two Types of Genes In Genomes, Two Types of Genes Protein-coding: [Start codon] [codon 1] [codon 2] [ ] [Stop codon] + DNA codons translated to amino acids to form a protein Non-coding RNAs (NcRNAs) No consistent patterns

More information

Sensing Metabolic Signals with Nascent RNA Transcripts: The T Box and S Box Riboswitches as Paradigms

Sensing Metabolic Signals with Nascent RNA Transcripts: The T Box and S Box Riboswitches as Paradigms Sensing Metabolic Signals with Nascent RNA Transcripts: The T Box and S Box Riboswitches as Paradigms T.M. HENKIN AND F.J. GRUNDY Department of Microbiology and The RNA Group, The Ohio State University,

More information

A Method for Aligning RNA Secondary Structures

A Method for Aligning RNA Secondary Structures Method for ligning RN Secondary Structures Jason T. L. Wang New Jersey Institute of Technology J Liu, JTL Wang, J Hu and B Tian, BM Bioinformatics, 2005 1 Outline Introduction Structural alignment of RN

More information

Expanded View Figures

Expanded View Figures Molecular Systems iology Evolutionary divergence of mouse P Mei-Sheng Xiao et al Expanded View Figures Nucleotide percentage (%) 0 20 40 60 80 100 T G Nucleotide percentage (%) 0 20 40 60 80 100 T G Frequency

More information

Filter Methods. Part I : Basic Principles and Methods

Filter Methods. Part I : Basic Principles and Methods Filter Methods Part I : Basic Principles and Methods Feature Selection: Wrappers Input: large feature set Ω 10 Identify candidate subset S Ω 20 While!stop criterion() Evaluate error of a classifier using

More information

Comparative Genomics II

Comparative Genomics II Comparative Genomics II Advances in Bioinformatics and Genomics GEN 240B Jason Stajich May 19 Comparative Genomics II Slide 1/31 Outline Introduction Gene Families Pairwise Methods Phylogenetic Methods

More information

A Computational Pipeline for High- Throughput Discovery of cis-regulatory Noncoding RNA in Prokaryotes

A Computational Pipeline for High- Throughput Discovery of cis-regulatory Noncoding RNA in Prokaryotes A Computational Pipeline for High- Throughput Discovery of cis-regulatory Noncoding RNA in Prokaryotes Zizhen Yao 1*, Jeffrey Barrick 2, Zasha Weinberg 3, Shane Neph 1,4, Ronald Breaker 2,3,5, Martin Tompa

More information

Discovering MultipleLevels of Regulatory Networks

Discovering MultipleLevels of Regulatory Networks Discovering MultipleLevels of Regulatory Networks IAS EXTENDED WORKSHOP ON GENOMES, CELLS, AND MATHEMATICS Hong Kong, July 25, 2018 Gary D. Stormo Department of Genetics Outline of the talk 1. Transcriptional

More information

BLAST. Varieties of BLAST

BLAST. Varieties of BLAST BLAST Basic Local Alignment Search Tool (1990) Altschul, Gish, Miller, Myers, & Lipman Uses short-cuts or heuristics to improve search speed Like speed-reading, does not examine every nucleotide of database

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

Introduction to Hidden Markov Models for Gene Prediction ECE-S690

Introduction to Hidden Markov Models for Gene Prediction ECE-S690 Introduction to Hidden Markov Models for Gene Prediction ECE-S690 Outline Markov Models The Hidden Part How can we use this for gene prediction? Learning Models Want to recognize patterns (e.g. sequence

More information

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination.

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination. Module Structure: (15 credits each) Lectures and Assessment: 50% coursework, 50% unseen examination. Module Title Module 1: Bioinformatics and structural biology as applied to drug design MEDC0075 In the

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

RNALogo: a new approach to display structural RNA alignment

RNALogo: a new approach to display structural RNA alignment Published online 21 May 2008 W91 W96 doi:10.1093/nar/gkn258 RNALogo: a new approach to display structural RNA alignment Tzu-Hao Chang 1, Jorng-Tzong Horng 1,2 and Hsien-Da Huang 3,4, * 1 Department of

More information

Mariam Alshaikh. April 15, 2015

Mariam Alshaikh. April 15, 2015 Master Thesis graph kernel approach to the identification and characterization of structured non-coding RNs using multiple sequence alignment information Mariam lshaikh pril 15, 2015 Faculty of Engineering

More information

Unravelling the biochemical reaction kinetics from time-series data

Unravelling the biochemical reaction kinetics from time-series data Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute Email: schnell@indiana.edu WWW: http://www.informatics.indiana.edu/schnell

More information

DNA/RNA Structure Prediction

DNA/RNA Structure Prediction C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Master Course DNA/Protein Structurefunction Analysis and Prediction Lecture 12 DNA/RNA Structure Prediction Epigenectics Epigenomics:

More information

Hidden Markov Models in Bioinformatics 14.11

Hidden Markov Models in Bioinformatics 14.11 idden Markov Models in Bioinformatics 14.11 60 min Definition Three Key Algorithms Summing over Unknown States Most Probable Unknown States Marginalizing Unknown States Key Bioinformatic Applications Pedigree

More information

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010 BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

More information

BIOINFORMATICS LAB AP BIOLOGY

BIOINFORMATICS LAB AP BIOLOGY BIOINFORMATICS LAB AP BIOLOGY Bioinformatics is the science of collecting and analyzing complex biological data. Bioinformatics combines computer science, statistics and biology to allow scientists to

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Copyright (c) 2007 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained

Copyright (c) 2007 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained Copyright (c) 2007 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

More information

Computational Biology and Chemistry

Computational Biology and Chemistry Computational Biology and Chemistry 33 (2009) 245 252 Contents lists available at ScienceDirect Computational Biology and Chemistry journal homepage: www.elsevier.com/locate/compbiolchem Research Article

More information

Computational methods for predicting protein-protein interactions

Computational methods for predicting protein-protein interactions Computational methods for predicting protein-protein interactions Tomi Peltola T-61.6070 Special course in bioinformatics I 3.4.2008 Outline Biological background Protein-protein interactions Computational

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

A Structure-Based Flexible Search Method for Motifs in RNA

A Structure-Based Flexible Search Method for Motifs in RNA JOURNAL OF COMPUTATIONAL BIOLOGY Volume 14, Number 7, 2007 Mary Ann Liebert, Inc. Pp. 908 926 DOI: 10.1089/cmb.2007.0061 A Structure-Based Flexible Search Method for Motifs in RNA ISANA VEKSLER-LUBLINSKY,

More information

A DNA Sequence 2017/12/6 1

A DNA Sequence 2017/12/6 1 A DNA Sequence ccgtacgtacgtagagtgctagtctagtcgtagcgccgtagtcgatcgtgtgg gtagtagctgatatgatgcgaggtaggggataggatagcaacagatgagc ggatgctgagtgcagtggcatgcgatgtcgatgatagcggtaggtagacttc gcgcataaagctgcgcgagatgattgcaaagragttagatgagctgatgcta

More information

Position-specific scoring matrices (PSSM)

Position-specific scoring matrices (PSSM) Regulatory Sequence nalysis Position-specific scoring matrices (PSSM) Jacques van Helden Jacques.van-Helden@univ-amu.fr Université d ix-marseille, France Technological dvances for Genomics and Clinics

More information

Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm,

Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm, Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm, with pairwise alignment of sequences as an example 1,2 1

More information

Mitochondrial Genome Annotation

Mitochondrial Genome Annotation Protein Genes 1,2 1 Institute of Bioinformatics University of Leipzig 2 Department of Bioinformatics Lebanese University TBI Bled 2015 Outline Introduction Mitochondrial DNA Problem Tools Training Annotation

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

RNA-Strukturvorhersage Strukturelle Bioinformatik WS16/17

RNA-Strukturvorhersage Strukturelle Bioinformatik WS16/17 RNA-Strukturvorhersage Strukturelle Bioinformatik WS16/17 Dr. Stefan Simm, 01.11.2016 simm@bio.uni-frankfurt.de RNA secondary structures a. hairpin loop b. stem c. bulge loop d. interior loop e. multi

More information

Figure S1: Similar to Fig. 2D in paper, but using Euclidean distance instead of Spearman distance.

Figure S1: Similar to Fig. 2D in paper, but using Euclidean distance instead of Spearman distance. Supplementary analysis 1: Euclidean distance in the RESS As shown in Fig. S1, Euclidean distance did not adequately distinguish between pairs of random sequence and pairs of structurally-related sequence.

More information

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Substitution score matrices, PAM, BLOSUM Needleman-Wunsch algorithm (Global) Smith-Waterman algorithm (Local) BLAST (local, heuristic) E-value

More information

GENOME-WIDE ANALYSIS OF CORE PROMOTER REGIONS IN EMILIANIA HUXLEYI

GENOME-WIDE ANALYSIS OF CORE PROMOTER REGIONS IN EMILIANIA HUXLEYI 1 GENOME-WIDE ANALYSIS OF CORE PROMOTER REGIONS IN EMILIANIA HUXLEYI Justin Dailey and Xiaoyu Zhang Department of Computer Science, California State University San Marcos San Marcos, CA 92096 Email: daile005@csusm.edu,

More information

De novo prediction of structural noncoding RNAs

De novo prediction of structural noncoding RNAs 1/ 38 De novo prediction of structural noncoding RNAs Stefan Washietl 18.417 - Fall 2011 2/ 38 Outline Motivation: Biological importance of (noncoding) RNAs Algorithms to predict structural noncoding RNAs

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

BIOINF 4120 Bioinforma2cs 2 - Structures and Systems -

BIOINF 4120 Bioinforma2cs 2 - Structures and Systems - BIOINF 4120 Bioinforma2cs 2 - Structures and Systems - Oliver Kohlbacher Summer 2014 3. RNA Structure Part II Overview RNA Folding Free energy as a criterion Folding free energy of RNA Zuker- SCegler algorithm

More information

Comparing transcription factor regulatory networks of human cell types. The Protein Network Workshop June 8 12, 2015

Comparing transcription factor regulatory networks of human cell types. The Protein Network Workshop June 8 12, 2015 Comparing transcription factor regulatory networks of human cell types The Protein Network Workshop June 8 12, 2015 KWOK-PUI CHOI Dept of Statistics & Applied Probability, Dept of Mathematics, NUS OUTLINE

More information

Theoretical distribution of PSSM scores

Theoretical distribution of PSSM scores Regulatory Sequence Analysis Theoretical distribution of PSSM scores Jacques van Helden Jacques.van-Helden@univ-amu.fr Aix-Marseille Université, France Technological Advances for Genomics and Clinics (TAGC,

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary information S3 (box) Methods Methods Genome weighting The currently available collection of archaeal and bacterial genomes has a highly biased distribution of isolates across taxa. For example,

More information

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004 UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004 Lecture: Tue/Thu 9:30-10:45am Engr-II Room 3301 Instructor

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

The Riboswitch is functionally separated into the ligand binding APTAMER and the decision-making EXPRESSION PLATFORM

The Riboswitch is functionally separated into the ligand binding APTAMER and the decision-making EXPRESSION PLATFORM The Riboswitch is functionally separated into the ligand binding APTAMER and the decision-making EXPRESSION PLATFORM Purine riboswitch TPP riboswitch SAM riboswitch glms ribozyme In-line probing is used

More information

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

The Phylo- HMM approach to problems in comparative genomics, with examples.

The Phylo- HMM approach to problems in comparative genomics, with examples. The Phylo- HMM approach to problems in comparative genomics, with examples. Keith Bettinger Introduction The theory of evolution explains the diversity of organisms on Earth by positing that earlier species

More information

Searching genomes for non-coding RNA using FastR

Searching genomes for non-coding RNA using FastR Searching genomes for non-coding RNA using FastR Shaojie Zhang Brian Haas Eleazar Eskin Vineet Bafna Keywords: non-coding RNA, database search, filtration, riboswitch, bacterial genome. Address for correspondence:

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

An Introduction to Sequence Similarity ( Homology ) Searching

An Introduction to Sequence Similarity ( Homology ) Searching An Introduction to Sequence Similarity ( Homology ) Searching Gary D. Stormo 1 UNIT 3.1 1 Washington University, School of Medicine, St. Louis, Missouri ABSTRACT Homologous sequences usually have the same,

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

VIEW. Flipping Off the Riboswitch: RNA Structures That Control Gene Expression

VIEW. Flipping Off the Riboswitch: RNA Structures That Control Gene Expression Flipping Off the Riboswitch: RNA Structures That Control Gene Expression Dipali G. Sashital and Samuel E. Butcher* Department of Biochemistry, University of Wisconsin Madison, 433 Babcock Drive, Madison,

More information

Bioinformatics 1--lectures 15, 16. Markov chains Hidden Markov models Profile HMMs

Bioinformatics 1--lectures 15, 16. Markov chains Hidden Markov models Profile HMMs Bioinformatics 1--lectures 15, 16 Markov chains Hidden Markov models Profile HMMs target sequence database input to database search results are sequence family pseudocounts or background-weighted pseudocounts

More information

Alignment. Peak Detection

Alignment. Peak Detection ChIP seq ChIP Seq Hongkai Ji et al. Nature Biotechnology 26: 1293-1300. 2008 ChIP Seq Analysis Alignment Peak Detection Annotation Visualization Sequence Analysis Motif Analysis Alignment ELAND Bowtie

More information

CSE 527 Autumn Lectures 8-9 (& part of 10) Motifs: Representation & Discovery

CSE 527 Autumn Lectures 8-9 (& part of 10) Motifs: Representation & Discovery CSE 527 Autumn 2006 Lectures 8-9 (& part of 10) Motifs: Representation & Discovery 1 DNA Binding Proteins A variety of DNA binding proteins ( transcription factors ; a significant fraction, perhaps 5-10%,

More information

Hidden Markov Models in computational biology. Ron Elber Computer Science Cornell

Hidden Markov Models in computational biology. Ron Elber Computer Science Cornell Hidden Markov Models in computational biology Ron Elber Computer Science Cornell 1 Or: how to fish homolog sequences from a database Many sequences in database RPOBESEQ Partitioned data base 2 An accessible

More information

DNA Binding Proteins CSE 527 Autumn 2007

DNA Binding Proteins CSE 527 Autumn 2007 DNA Binding Proteins CSE 527 Autumn 2007 A variety of DNA binding proteins ( transcription factors ; a significant fraction, perhaps 5-10%, of all human proteins) modulate transcription of protein coding

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models A selection of slides taken from the following: Chris Bystroff Protein Folding Initiation Site Motifs Iosif Vaisman Bioinformatics and Gene Discovery Colin Cherry Hidden Markov Models

More information

Lecture 3: Markov chains.

Lecture 3: Markov chains. 1 BIOINFORMATIK II PROBABILITY & STATISTICS Summer semester 2008 The University of Zürich and ETH Zürich Lecture 3: Markov chains. Prof. Andrew Barbour Dr. Nicolas Pétrélis Adapted from a course by Dr.

More information

The wonderful world of RNA informatics

The wonderful world of RNA informatics December 9, 2012 Course Goals Familiarize you with the challenges involved in RNA informatics. Introduce commonly used tools, and provide an intuition for how they work. Give you the background and confidence

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Stochastic processes and Markov chains (part II)

Stochastic processes and Markov chains (part II) Stochastic processes and Markov chains (part II) Wessel van Wieringen w.n.van.wieringen@vu.nl Department of Epidemiology and Biostatistics, VUmc & Department of Mathematics, VU University Amsterdam, The

More information

Genome Annotation Project Presentation

Genome Annotation Project Presentation Halogeometricum borinquense Genome Annotation Project Presentation Loci Hbor_05620 & Hbor_05470 Presented by: Mohammad Reza Najaf Tomaraei Hbor_05620 Basic Information DNA Coordinates: 527,512 528,261

More information

HIDDEN MARKOV MODEL-BASED HOMOLOGY SEARCH AND GENE PREDICTION IN NGS ERA

HIDDEN MARKOV MODEL-BASED HOMOLOGY SEARCH AND GENE PREDICTION IN NGS ERA HIDDEN MRKOV MODEL-BSED HOMOLOY SERCH ND ENE PREDICTION IN NS ER By Prapaporn Techa-angkoon DISSERTTION Submitted to Michigan State University in partial fulfillment of the requirements for the degree

More information

EVOLUTIONARY DISTANCE MODEL BASED ON DIFFERENTIAL EQUATION AND MARKOV PROCESS

EVOLUTIONARY DISTANCE MODEL BASED ON DIFFERENTIAL EQUATION AND MARKOV PROCESS August 0 Vol 4 No 005-0 JATIT & LLS All rights reserved ISSN: 99-8645 wwwjatitorg E-ISSN: 87-95 EVOLUTIONAY DISTANCE MODEL BASED ON DIFFEENTIAL EUATION AND MAKOV OCESS XIAOFENG WANG College of Mathematical

More information

INFORMATION-THEORETIC BOUNDS OF EVOLUTIONARY PROCESSES MODELED AS A PROTEIN COMMUNICATION SYSTEM. Liuling Gong, Nidhal Bouaynaya and Dan Schonfeld

INFORMATION-THEORETIC BOUNDS OF EVOLUTIONARY PROCESSES MODELED AS A PROTEIN COMMUNICATION SYSTEM. Liuling Gong, Nidhal Bouaynaya and Dan Schonfeld INFORMATION-THEORETIC BOUNDS OF EVOLUTIONARY PROCESSES MODELED AS A PROTEIN COMMUNICATION SYSTEM Liuling Gong, Nidhal Bouaynaya and Dan Schonfeld University of Illinois at Chicago, Dept. of Electrical

More information