Introduction Centrality Measures Implementation Applications Limitations Homework. Centrality Metrics. Ron Hagan, Yunhe Feng, and Jordan Bush

Size: px
Start display at page:

Download "Introduction Centrality Measures Implementation Applications Limitations Homework. Centrality Metrics. Ron Hagan, Yunhe Feng, and Jordan Bush"

Transcription

1 Centrality Metrics Ron Hagan, Yunhe Feng, and Jordan Bush University of Tennessee Knoxville April 22, 2015

2 Outline 1 Introduction 2 Centrality Metrics 3 Implementation 4 Applications 5 Limitations

3 Introduction

4 Introduction to Centrality Motivating Question: Given a graph, which nodes are the most important?

5 What defines importance? 1 Network Flow 2 Network Cohesiveness

6 What defines importance? 1 Network Flow 2 Network Cohesiveness

7 History of Centrality Measures Concept originally used in fields studying human communication and social networks

8 History of Centrality Measures Concept originally used in fields studying human communication and social networks Examples: Identifying most important person in a group Creating best group arrangements from group projects Identifying central places for urban planning

9 History of Centrality Measures First centrality measure was formally proposed by Bavelas in 1948 Eigenvector centrality was developed by Bonacich in 1972 Freeman (1976) condensed the existing literature to develop a formal mathematical framework for centrality (Degree, Closeness, and Betweenness)

10 Centrality Measures

11 Degree Centrality Definition Intuitive Definition: The node with the most connections is the most important Mathematical Definition: for graph G = (V, E), the degree centrality of a given node v is C D (v) = degree(v)

12 Degree Centrality Example v C D (v) Table: Degree Centrality

13 Degree Centrality When the network is directed, we can distinguish between indegree and outdegree

14 Degree Centrality When the network is directed, we can distinguish between indegree and outdegree Can normalize C D to make it comparable between graphs C D(v) = degree(v) n 1

15 Degree Centrality When the network is directed, we can distinguish between indegree and outdegree Can normalize C D to make it comparable between graphs C D(v) = degree(v) n 1 Can calculate a metric of degree centrality for the whole network, called Centralization

16 Betweenness Centrality Definition Intuitive Definition: The node with the most strategic location is the most important. The frequency with which a node is on the shortest paths between all other nodes

17 Betweenness Centrality Definition Mathematical Definition: Define g ij as the number of shortest paths between node v i and node v j. Let g ij (v k ) be the number of shortest paths between v i and v j that contain node v k. Then the betweenness centrality of node v k is given as C B (v k ) = n i n j g ij (v k ) g ij

18 Betweenness Centrality Definition Mathematical Definition: Define g ij as the number of shortest paths between node v i and node v j. Let g ij (v k ) be the number of shortest paths between v i and v j that contain node v k. Then the betweenness centrality of node v k is given as C B (v k ) = n i n j g ij (v k ) g ij Computed used All Pairs, Shortest Paths Algorithm

19 Betweenness Centrality Example v C B (v) = = = Table: Betweenness Centrality

20 Closeness Centrality Definition Intuitive Definition: The most important node is the one that is the most independent Nodes that require the fewest number of edges to transfer information to all other nodes are considered the most independent

21 Closeness Centrality Definition Mathematical Definition: Let d(v i, v j ) be the number of edges in the shortest path between nodes v i and v j. Note that as v i and v j get farther apart ( less central ), d(v i, v j ) gets larger Then we define the closeness centrality as C C (v k ) = 1 N d(v i, v k ) i

22 Closeness Centrality Definition Mathematical Definition: Let d(v i, v j ) be the number of edges in the shortest path between nodes v i and v j. Note that as v i and v j get farther apart ( less central ), d(v i, v j ) gets larger Then we define the closeness centrality as C C (v k ) = 1 N d(v i, v k ) i Computed used All Pairs, Shortest Paths Algorithm

23 Closeness Centrality Example v C C (v) = = = = = = 1 11 Table: Closeness Centrality

24 Closeness Centrality Can normalize C C to make it comparable between graphs C C(v k ) = C C(v k ) n 1

25 Eigenvector Centrality Definition Intuitive Definition: The node that has the most information flowing through it is the most important You are only important if you have important neighbors

26 Eigenvector Centrality Definition Intuitive Definition: The node that has the most information flowing through it is the most important You are only important if you have important neighbors

27 Eigenvector Centrality Definition Mathematical Definition: Let A be the adjacency matrix of a graph, such that a ij = 1 if node v i is connected to v j and a ij = 0 if not. Then we define the eigenvector centrality of node v k as x k = 1 a vt x t λ t G where λ is a constant This can be rewritten in matrix form as Ax = λx

28 Eigenvector Centrality Definition Mathematical Definition: Let A be the adjacency matrix of a graph, such that a ij = 1 if node v i is connected to v j and a ij = 0 if not. Then we define the eigenvector centrality of node v k as x k = 1 a vt x t λ t G where λ is a constant This can be rewritten in matrix form as Ax = λx This can be solved using basic linear algebra

29 Eigenvector Centrality Example v C EV (v) Table: Eigenvector Centrality

30 Implementation

31 Degree Centrality 1 for i from 1 to V 2 for j from 1 to V 3 if matrix[i][j]!= 0 then 4 degree[i]++; 5 end if

32 All Pairs Shortest Paths Algorithm Description Goal: Determine the set of shortest paths between each pair of vertices in a graph. Floyd-Warshall algorithm Run Dijktra s from each vertex

33 Floyd-Warshall algorithm pseudocode 1 let dist be a V V array of minimum distances 2 initialized to infinity 3 for each edge (u,v) 4 dist[u][v] <- w(u,v) 5 for k from 1 to V 6 for i from 1 to V 7 for j from 1 to V 8 if dist[i][k] + dist[k][j] < dist[i][j] 9 then dist[i][j] <- dist[i][k] + dist[k][j] 10 end if

34 Floyd-Warshall algorithm example

35 All Pairs Shortest Paths Floyd-Warshall: O(V 3 ) Dijkstra s: O(V 3 ) using an adjacency matrix, O(EVlogV ) using adjacency lists. For our implementation we used Dijktra s ran from each vertex.

36 Betweenness Centrality 1 for i from 1 to V 2 excute dijkstra(i) -> vector path[i] 3 for j from 1 to V 4 vector all_path <- path[i][j] 5 add path[i] into vector all_path 6 for i from 1 to V 7 for j from 1 to all_path.size() 8 if i in all_path[j] then path_num[i]++ 9 end if 10 betweenness[i]=path_num[i]/2/(( V -1)( V -2)/2)

37 Closeness Centrality 1 for i from 1 to V 2 excute dijkstra(i) -> vector path[i] 3 for j from 1 to V 4 path_length[i] += path[i][j] 5 closeness_cent[i] = 1.0/path_length[i];

38 Eigenvector Centrality We implemented Power Iteration to get the eigenvector centrality. The method is described by the iteration: b k+1 = Ab k Ab k Starting with a vector b 0, which may be an approximation to the dominant eigenvector or a random vector.at every iteration, the vector b k is multiplied by the matrix A and normalized.

39 Eigenvector Centrality Power Iteration under the assumptions: A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues The starting vector b 0 has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue. Then a subsequence of b k converges to an eigenvector associated with the dominant eigenvalue

40 Eigenvector Centrality 1 for i from 1 to V 2 eigenvector[i] <- 1; 3 for n from 1 to MAX_TIMES 4 for i from 1 to V 5 tmp_eigen[i] <- 0 6 for j from 1 to V 7 tmp_eigen[i] += matrix[i][j]*eigenvector[j] 8 norm_sq <- 0; 9 for i from 1 to V 10 norm_sq <- tmp_eigen[i]*tmp_eigen[i] 11 norm <- sqrt(norm_sq) 12 for i from 1 to V 13 eigenvector[i] <- tmp_eigen[i]/norm

41 Comparison of the 4 Centrality Approaches Graph Designing

42 Comparison of the 4 Centrality Approaches Graph Designing

43 Comparison of the 4 Centrality Approaches Degree Centrality Hicks Lu(Zheng) Wang Langston Lu(Allan) Rodriguez Hagan Bush Feng Phillips Almami Maksov Eberius Butler Duggan Grady Tong Li Cox Sherman

44 Comparison of the 4 Centrality Approaches Betweenness Centrality Hicks Lu(Zheng) Wang Langston Lu(Allan) Rodriguez Hagan Bush Eberius Feng Phillips Almami Maksov Butler Duggan Grady Tong Li Cox Sherman

45 Comparison of the 4 Centrality Approaches Closeness Centrality Hagan Bush Hicks Lu(Zheng) Wang Langston Feng Phillips Lu(Allan) Rodriguez Almami Maksov Eberius Butler Duggan GradyTong Cox Sherman Li

46 Comparison of the 4 Centrality Approaches Eigenvector Centrality Hagan Bush Eberius Hicks Lu(Zheng) Wang Langston Feng Lu(Allan) Rodriguez Phillips Almami Maksov Butler Duggan Grady Tong Cox Sherman Li

47 Applications

48 Applications Gene Networks Ecological Networks Social Networks Epidemiology PageRank algorithm in Google Search Engine

49 Emperical Examples We performed empirical testing using the R igraph package on a variety of graphs including: random graphs correlation graphs built from gene expression food webs

50 Random Graph We created an Erdős-Rényi random graph with 1000 vertices and an edge probability of 0.3 using the igraph package built in generator.

51 Random Graph

52 Random Graph

53 Random Graph

54 Random Graph

55 Gene Expression Data Prostate Cancer We built graphs from a set of gene expression data from two sets of tissue samples from prostate cancer tumors and normal tissue by: Calculating the pairwise Pearson Corellation coefficients for the gene probes. Creating a weighted correlation graph. Thresholding the graph to create an unweighted graph.

56 Prostate Cancer Correlation Graphs Betweenness

57 Prostate Cancer Correlation Graphs Eigenvector Centrality

58 DAVID Enrichment 100 probes with largest negative change in eigenvector centrality (normal vs cancer)

59 DAVID Enrichment

60 Food Web 125 vertex directed graph representing carbon exchanges in the Florida Bay ecosystem. Networks for both the wet and dry seasons.

61 Food Web Betweenness

62 Food Web Eigenvector Centrality 18 Florida Bay Eigenvector Centrality Nodes Wet Season Dry Season Eigenvector Centrality

63 Limitations

64 Limitations Degree Centrality Degree Centrality s fatal flaw : it can only measure node and a node directly connected, but will not be calculated indirectly connected. For example, in Influence network, if A can affect the 10 individuals, 10 individuals can no longer influence each other, while another person B can also affect the 10 individuals, 10 individuals may continue to affect 100 per person, in this case, if measured by Degree Centrality words, A and B will influence are equivalent, but that is clearly not the case.

65 Limitations Betweenness Centrality, Closeness Centrality, Eigenvector Centrality Limitations of these Centrality approaches are that they are harder to compute than, for example, degree centrality. For Closeness Centrality, another disadvantage is that this score is mostly suitable for connected graphs.

66 Homework

67 Homework Find the degree, betweenness, closeness, and eigenvector centralities for each vertex in the graph. answers to Ron Hagan

68 References Bavelas, A A mathematical model for group structures. Human Organization 7(3): Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology 2(1): Freeman, L. C Centrality in social networks conceptual clarification. Social Networks 1(3): Floyd, Robert W. (June 1962). Algorithm 97: Shortest Path. Communications of the ACM 5 (6): 345 Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems Ulanowicz, R.E., C. Bondavalli and M.S. Egnotovich. (1998) Network Analysis of Trophic Dynamics in South Florida Ecosystem, FY 97: The Florida Bay Ecosystem. Ref. No. [UMCES]CBL Chesapeake Biological Laboratory, Solomons, MD USA

69 Questions?

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 References 1 L. Freeman, Centrality in Social Networks: Conceptual Clarification, Social Networks, Vol. 1, 1978/1979, pp. 215 239. 2 S. Wasserman

More information

Centrality Measures. Leonid E. Zhukov

Centrality Measures. Leonid E. Zhukov Centrality Measures Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Network Science Leonid E.

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Node Centrality and Ranking on Networks

Node Centrality and Ranking on Networks Node Centrality and Ranking on Networks Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Social

More information

Centrality Measures. Leonid E. Zhukov

Centrality Measures. Leonid E. Zhukov Centrality Measures Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis and Visualization

More information

Node and Link Analysis

Node and Link Analysis Node and Link Analysis Leonid E. Zhukov School of Applied Mathematics and Information Science National Research University Higher School of Economics 10.02.2014 Leonid E. Zhukov (HSE) Lecture 5 10.02.2014

More information

Facebook Friends! and Matrix Functions

Facebook Friends! and Matrix Functions Facebook Friends! and Matrix Functions! Graduate Research Day Joint with David F. Gleich, (Purdue), supported by" NSF CAREER 1149756-CCF Kyle Kloster! Purdue University! Network Analysis Use linear algebra

More information

Applications to network analysis: Eigenvector centrality indices Lecture notes

Applications to network analysis: Eigenvector centrality indices Lecture notes Applications to network analysis: Eigenvector centrality indices Lecture notes Dario Fasino, University of Udine (Italy) Lecture notes for the second part of the course Nonnegative and spectral matrix

More information

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory

CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory CS168: The Modern Algorithmic Toolbox Lectures #11 and #12: Spectral Graph Theory Tim Roughgarden & Gregory Valiant May 2, 2016 Spectral graph theory is the powerful and beautiful theory that arises from

More information

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Radu Balan January 31, 2017 G = (V, E) An undirected graph G is given by two pieces of information: a set of vertices V and a set of edges E, G =

More information

A Note on Google s PageRank

A Note on Google s PageRank A Note on Google s PageRank According to Google, google-search on a given topic results in a listing of most relevant web pages related to the topic. Google ranks the importance of webpages according to

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix. Steve Kirkland University of Regina

Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix. Steve Kirkland University of Regina Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix Steve Kirkland University of Regina June 5, 2006 Motivation: Google s PageRank algorithm finds the stationary vector of a stochastic

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

Discrete Optimization Lecture 5. M. Pawan Kumar

Discrete Optimization Lecture 5. M. Pawan Kumar Discrete Optimization Lecture 5 M. Pawan Kumar pawan.kumar@ecp.fr Exam Question Type 1 v 1 s v 0 4 2 1 v 4 Q. Find the distance of the shortest path from s=v 0 to all vertices in the graph using Dijkstra

More information

As it is not necessarily possible to satisfy this equation, we just ask for a solution to the more general equation

As it is not necessarily possible to satisfy this equation, we just ask for a solution to the more general equation Graphs and Networks Page 1 Lecture 2, Ranking 1 Tuesday, September 12, 2006 1:14 PM I. II. I. How search engines work: a. Crawl the web, creating a database b. Answer query somehow, e.g. grep. (ex. Funk

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

Spectral Graph Theory Tools. Analysis of Complex Networks

Spectral Graph Theory Tools. Analysis of Complex Networks Spectral Graph Theory Tools for the Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA Acknowledgments Christine Klymko (Emory) Ernesto Estrada (Strathclyde, UK) Support:

More information

AXIOMS FOR CENTRALITY

AXIOMS FOR CENTRALITY AXIOMS FOR CENTRALITY From a paper by Paolo Boldi, Sebastiano Vigna Università degli Studi di Milano! Internet Math., 10(3-4):222 262, 2014. Proc. 13th ICDMW. IEEE, 2013. Proc. 4th WebScience. ACM, 2012.!

More information

Complex Social System, Elections. Introduction to Network Analysis 1

Complex Social System, Elections. Introduction to Network Analysis 1 Complex Social System, Elections Introduction to Network Analysis 1 Complex Social System, Network I person A voted for B A is more central than B if more people voted for A In-degree centrality index

More information

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank

Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank Math 443/543 Graph Theory Notes 5: Graphs as matrices, spectral graph theory, and PageRank David Glickenstein November 3, 4 Representing graphs as matrices It will sometimes be useful to represent graphs

More information

Link Analysis Information Retrieval and Data Mining. Prof. Matteo Matteucci

Link Analysis Information Retrieval and Data Mining. Prof. Matteo Matteucci Link Analysis Information Retrieval and Data Mining Prof. Matteo Matteucci Hyperlinks for Indexing and Ranking 2 Page A Hyperlink Page B Intuitions The anchor text might describe the target page B Anchor

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

Class President: A Network Approach to Popularity. Due July 18, 2014

Class President: A Network Approach to Popularity. Due July 18, 2014 Class President: A Network Approach to Popularity Due July 8, 24 Instructions. Due Fri, July 8 at :59 PM 2. Work in groups of up to 3 3. Type up the report, and submit as a pdf on D2L 4. Attach the code

More information

Differential Modeling for Cancer Microarray Data

Differential Modeling for Cancer Microarray Data Differential Modeling for Cancer Microarray Data Omar Odibat Department of Computer Science Feb, 01, 2011 1 Outline Introduction Cancer Microarray data Problem Definition Differential analysis Existing

More information

Preface. Contributors

Preface. Contributors CONTENTS Foreword Preface Contributors PART I INTRODUCTION 1 1 Networks in Biology 3 Björn H. Junker 1.1 Introduction 3 1.2 Biology 101 4 1.2.1 Biochemistry and Molecular Biology 4 1.2.2 Cell Biology 6

More information

MATH36001 Perron Frobenius Theory 2015

MATH36001 Perron Frobenius Theory 2015 MATH361 Perron Frobenius Theory 215 In addition to saying something useful, the Perron Frobenius theory is elegant. It is a testament to the fact that beautiful mathematics eventually tends to be useful,

More information

Linear Algebra I Lecture 8

Linear Algebra I Lecture 8 Linear Algebra I Lecture 8 Xi Chen 1 1 University of Alberta January 25, 2019 Outline 1 2 Gauss-Jordan Elimination Given a system of linear equations f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224W: Social and Information Network Analysis Fall 2014 David Hallac Based on Peter Lofgren, Yu Wayne Wu, and Borja Pelato s previous versions Matrices and

More information

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory

ORIE 4741: Learning with Big Messy Data. Spectral Graph Theory ORIE 4741: Learning with Big Messy Data Spectral Graph Theory Mika Sumida Operations Research and Information Engineering Cornell September 15, 2017 1 / 32 Outline Graph Theory Spectral Graph Theory Laplacian

More information

Principal component analysis (PCA) for clustering gene expression data

Principal component analysis (PCA) for clustering gene expression data Principal component analysis (PCA) for clustering gene expression data Ka Yee Yeung Walter L. Ruzzo Bioinformatics, v17 #9 (2001) pp 763-774 1 Outline of talk Background and motivation Design of our empirical

More information

Centrality measures in graphs or social networks

Centrality measures in graphs or social networks Centrality measures in graphs or social networks V.S. Subrahmanian University of Maryland vs@cs.umd.edu Copyright (C) 2012, V.S. Subrahmanian 1 PageRank Examples of vertices: Web pages Twitter ids nodes

More information

STABILITY AND CONTINUITY OF CENTRALITY MEASURES IN WEIGHTED GRAPHS. Department of Electrical and Systems Engineering, University of Pennsylvania

STABILITY AND CONTINUITY OF CENTRALITY MEASURES IN WEIGHTED GRAPHS. Department of Electrical and Systems Engineering, University of Pennsylvania STABILITY AND CONTINUITY OF CENTRALITY MEASURES IN WEIGHTED GRAPHS Santiago Segarra Alejandro Ribeiro Department of Electrical and Systems Engineering, University of Pennsylvania ABSTRACT This paper introduces

More information

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS LINK ANALYSIS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Retrieval evaluation Link analysis Models

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

Kristina Lerman USC Information Sciences Institute

Kristina Lerman USC Information Sciences Institute Rethinking Network Structure Kristina Lerman USC Information Sciences Institute Università della Svizzera Italiana, December 16, 2011 Measuring network structure Central nodes Community structure Strength

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 22 All-Pairs Shortest Paths Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 All Pairs

More information

Hyperlinked-Induced Topic Search (HITS) identifies. authorities as good content sources (~high indegree) HITS [Kleinberg 99] considers a web page

Hyperlinked-Induced Topic Search (HITS) identifies. authorities as good content sources (~high indegree) HITS [Kleinberg 99] considers a web page IV.3 HITS Hyperlinked-Induced Topic Search (HITS) identifies authorities as good content sources (~high indegree) hubs as good link sources (~high outdegree) HITS [Kleinberg 99] considers a web page a

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9 Bachelor in Statistics and Business Universidad Carlos III de Madrid Mathematical Methods II María Barbero Liñán Homework sheet 4: EIGENVALUES AND EIGENVECTORS DIAGONALIZATION (with solutions) Year - Is

More information

All-Pairs Shortest Paths

All-Pairs Shortest Paths All-Pairs Shortest Paths Version of October 28, 2016 Version of October 28, 2016 All-Pairs Shortest Paths 1 / 26 Outline Another example of dynamic programming Will see two different dynamic programming

More information

Graph Models The PageRank Algorithm

Graph Models The PageRank Algorithm Graph Models The PageRank Algorithm Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 The PageRank Algorithm I Invented by Larry Page and Sergey Brin around 1998 and

More information

The Second Eigenvalue of the Google Matrix

The Second Eigenvalue of the Google Matrix The Second Eigenvalue of the Google Matrix Taher H. Haveliwala and Sepandar D. Kamvar Stanford University {taherh,sdkamvar}@cs.stanford.edu Abstract. We determine analytically the modulus of the second

More information

Lecture 1: From Data to Graphs, Weighted Graphs and Graph Laplacian

Lecture 1: From Data to Graphs, Weighted Graphs and Graph Laplacian Lecture 1: From Data to Graphs, Weighted Graphs and Graph Laplacian Radu Balan February 5, 2018 Datasets diversity: Social Networks: Set of individuals ( agents, actors ) interacting with each other (e.g.,

More information

How works. or How linear algebra powers the search engine. M. Ram Murty, FRSC Queen s Research Chair Queen s University

How works. or How linear algebra powers the search engine. M. Ram Murty, FRSC Queen s Research Chair Queen s University How works or How linear algebra powers the search engine M. Ram Murty, FRSC Queen s Research Chair Queen s University From: gomath.com/geometry/ellipse.php Metric mishap causes loss of Mars orbiter

More information

Interact with Strangers

Interact with Strangers Interact with Strangers RATE: Recommendation-aware Trust Evaluation in Online Social Networks Wenjun Jiang 1, 2, Jie Wu 2, and Guojun Wang 1 1. School of Information Science and Engineering, Central South

More information

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature.

Powerful tool for sampling from complicated distributions. Many use Markov chains to model events that arise in nature. Markov Chains Markov chains: 2SAT: Powerful tool for sampling from complicated distributions rely only on local moves to explore state space. Many use Markov chains to model events that arise in nature.

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

International Journal of Business, Humanities and Social Science Vol. 1, No.1, October 2012 THE HYBRID MODEL OF AGENT S POWER IN SOCIAL NETWORKS

International Journal of Business, Humanities and Social Science Vol. 1, No.1, October 2012 THE HYBRID MODEL OF AGENT S POWER IN SOCIAL NETWORKS International Journal of Business, Humanities and Social Science Vol. 1, No.1, October 2012 THE HYBRID MODEL OF AGENT S POWER IN SOCIAL NETWORKS Ivan Belik ABSTRACT (Corresponding author) Norwegian School

More information

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 1 Outline Outline Dynamical systems. Linear and Non-linear. Convergence. Linear algebra and Lyapunov functions. Markov

More information

Lecture 11. Single-Source Shortest Paths All-Pairs Shortest Paths

Lecture 11. Single-Source Shortest Paths All-Pairs Shortest Paths Lecture. Single-Source Shortest Paths All-Pairs Shortest Paths T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to, rd Edition, MIT Press, 009 Sungkyunkwan University Hyunseung Choo choo@skku.edu

More information

Single Source Shortest Paths

Single Source Shortest Paths CMPS 00 Fall 017 Single Source Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight

More information

Quick Tour of Linear Algebra and Graph Theory

Quick Tour of Linear Algebra and Graph Theory Quick Tour of Linear Algebra and Graph Theory CS224w: Social and Information Network Analysis Fall 2012 Yu Wayne Wu Based on Borja Pelato s version in Fall 2011 Matrices and Vectors Matrix: A rectangular

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Inderjit Dhillon The University of Texas at Austin

Inderjit Dhillon The University of Texas at Austin Inderjit Dhillon The University of Texas at Austin ( Universidad Carlos III de Madrid; 15 th June, 2012) (Based on joint work with J. Brickell, S. Sra, J. Tropp) Introduction 2 / 29 Notion of distance

More information

Network Motifs of Pathogenic Genes in Human Regulatory Network

Network Motifs of Pathogenic Genes in Human Regulatory Network Network Motifs of Pathogenic Genes in Human Regulatory Network Michael Colavita Mentor: Soheil Feizi Fourth Annual MIT PRIMES Conference May 18, 2014 Topics Background Genetics Regulatory Networks The

More information

Bonacich Measures as Equilibria in Network Models

Bonacich Measures as Equilibria in Network Models Bonacich Measures as Equilibria in Network Models Hannu Salonen 1 Department of Economics University of Turku 20014 Turku Finland email: hansal@utu.fi Abstract We investigate the cases when the Bonacich

More information

Eigenvalues of Exponentiated Adjacency Matrices

Eigenvalues of Exponentiated Adjacency Matrices Eigenvalues of Exponentiated Adjacency Matrices Tracy Powell Lesley A Ward, Advisor Estelle Basor, Reader November 21, 25 Department of Mathematics 2 Chapter Problem A graph G is made up of vertices, or

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

Spectral Graph Theory

Spectral Graph Theory Spectral Graph Theory Aaron Mishtal April 27, 2016 1 / 36 Outline Overview Linear Algebra Primer History Theory Applications Open Problems Homework Problems References 2 / 36 Outline Overview Linear Algebra

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize/navigate it? First try: Human curated Web directories Yahoo, DMOZ, LookSmart

More information

LAPLACIAN MATRIX AND APPLICATIONS

LAPLACIAN MATRIX AND APPLICATIONS LAPLACIAN MATRIX AND APPLICATIONS Alice Nanyanzi Supervisors: Dr. Franck Kalala Mutombo & Dr. Simukai Utete alicenanyanzi@aims.ac.za August 24, 2017 1 Complex systems & Complex Networks 2 Networks Overview

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Lecture 1 and 2: Introduction and Graph theory basics. Spring EE 194, Networked estimation and control (Prof. Khan) January 23, 2012

Lecture 1 and 2: Introduction and Graph theory basics. Spring EE 194, Networked estimation and control (Prof. Khan) January 23, 2012 Lecture 1 and 2: Introduction and Graph theory basics Spring 2012 - EE 194, Networked estimation and control (Prof. Khan) January 23, 2012 Spring 2012: EE-194-02 Networked estimation and control Schedule

More information

Predicting Graph Labels using Perceptron. Shuang Song

Predicting Graph Labels using Perceptron. Shuang Song Predicting Graph Labels using Perceptron Shuang Song shs037@eng.ucsd.edu Online learning over graphs M. Herbster, M. Pontil, and L. Wainer, Proc. 22nd Int. Conf. Machine Learning (ICML'05), 2005 Prediction

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms, Lecture 5 // Introduction to Algorithms 6.46J/.4J LECTURE Shortest Paths I Properties o shortest paths Dijkstra s Correctness Analysis Breadth-irst Pro. Manolis Kellis March,

More information

Combating Web Spam with TrustRank

Combating Web Spam with TrustRank Combating Web Spam with rustrank Authors: Gyöngyi, Garcia-Molina, and Pederson Published in: Proceedings of the 0th VLDB Conference Year: 00 Presentation by: Rebecca Wills Date: April, 00 Questions we

More information

MATH 829: Introduction to Data Mining and Analysis Clustering II

MATH 829: Introduction to Data Mining and Analysis Clustering II his lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 829: Introduction to Data Mining and Analysis Clustering II Dominique Guillot Departments

More information

Data and Algorithms of the Web

Data and Algorithms of the Web Data and Algorithms of the Web Link Analysis Algorithms Page Rank some slides from: Anand Rajaraman, Jeffrey D. Ullman InfoLab (Stanford University) Link Analysis Algorithms Page Rank Hubs and Authorities

More information

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk

CMPS 6610 Fall 2018 Shortest Paths Carola Wenk CMPS 6610 Fall 018 Shortest Paths Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk Paths in graphs Consider a digraph G = (V, E) with an edge-weight function w

More information

Centrality in Social Networks

Centrality in Social Networks Developments in Data Analysis A. Ferligoj and A. Kramberger (Editors) Metodološki zvezki, 12, Ljubljana: FDV, 1996 Centrality in Social Networks Vladimir Batagelj Abstract In the paper an introduction

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

CS 4407 Algorithms Lecture: Shortest Path Algorithms

CS 4407 Algorithms Lecture: Shortest Path Algorithms CS 440 Algorithms Lecture: Shortest Path Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Outline Shortest Path Problem General Lemmas and Theorems. Algorithms Bellman-Ford

More information

Unit 5: Centrality. ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie

Unit 5: Centrality. ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie Unit 5: Centrality ICPSR University of Michigan, Ann Arbor Summer 2015 Instructor: Ann McCranie What does centrality tell us? We often want to know who the most important actors in a network are. Centrality

More information

Justification and Application of Eigenvector Centrality

Justification and Application of Eigenvector Centrality Justification and Application of Eigenvector Centrality Leo Spizzirri With great debt to P. D. Straffin, Jr Algebra in Geography: Eigenvectors of Networks[7] 3/6/2 Introduction Mathematics is only a hobby

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #9: Link Analysis Seoul National University 1 In This Lecture Motivation for link analysis Pagerank: an important graph ranking algorithm Flow and random walk formulation

More information

Community Detection. fundamental limits & efficient algorithms. Laurent Massoulié, Inria

Community Detection. fundamental limits & efficient algorithms. Laurent Massoulié, Inria Community Detection fundamental limits & efficient algorithms Laurent Massoulié, Inria Community Detection From graph of node-to-node interactions, identify groups of similar nodes Example: Graph of US

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis

Lecture 10. Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis CS-621 Theory Gems October 18, 2012 Lecture 10 Lecturer: Aleksander Mądry Scribes: Mani Bastani Parizi and Christos Kalaitzis 1 Introduction In this lecture, we will see how one can use random walks to

More information

Using R for Iterative and Incremental Processing

Using R for Iterative and Incremental Processing Using R for Iterative and Incremental Processing Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, Robert Schreiber UC Berkeley and HP Labs UC BERKELEY Big Data, Complex Algorithms PageRank (Dominant

More information

Móstoles, Spain. Keywords: complex networks, dual graph, line graph, line digraph.

Móstoles, Spain. Keywords: complex networks, dual graph, line graph, line digraph. Int. J. Complex Systems in Science vol. 1(2) (2011), pp. 100 106 Line graphs for directed and undirected networks: An structural and analytical comparison Regino Criado 1, Julio Flores 1, Alejandro García

More information

Calculating Web Page Authority Using the PageRank Algorithm

Calculating Web Page Authority Using the PageRank Algorithm Jacob Miles Prystowsky and Levi Gill Math 45, Fall 2005 1 Introduction 1.1 Abstract In this document, we examine how the Google Internet search engine uses the PageRank algorithm to assign quantitatively

More information

The Trouble with Community Detection

The Trouble with Community Detection The Trouble with Community Detection Aaron Clauset Santa Fe Institute 7 April 2010 Nonlinear Dynamics of Networks Workshop U. Maryland, College Park Thanks to National Science Foundation REU Program James

More information

Practice Problems - Linear Algebra

Practice Problems - Linear Algebra Practice Problems - Linear Algebra Shiro Kuriwaki and Connor Jerzak, Math Prefresher 07 August 7, 07. Dot product uv. Find the dot product of the following vectors u and v a (a) u =, v = b c u v = ()a

More information

Network Analysis and Modeling

Network Analysis and Modeling lecture 0: what are networks and how do we talk about them? 2017 Aaron Clauset 003 052 002 001 Aaron Clauset @aaronclauset Assistant Professor of Computer Science University of Colorado Boulder External

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Lecture: Modeling graphs with electrical networks

Lecture: Modeling graphs with electrical networks Stat260/CS294: Spectral Graph Methods Lecture 16-03/17/2015 Lecture: Modeling graphs with electrical networks Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

A Distributed Newton Method for Network Utility Maximization, II: Convergence

A Distributed Newton Method for Network Utility Maximization, II: Convergence A Distributed Newton Method for Network Utility Maximization, II: Convergence Ermin Wei, Asuman Ozdaglar, and Ali Jadbabaie October 31, 2012 Abstract The existing distributed algorithms for Network Utility

More information