1 Inria Rennes - Bretagne Atlantique 2 Alcatel-Lucent - Bell Labs France

Size: px
Start display at page:

Download "1 Inria Rennes - Bretagne Atlantique 2 Alcatel-Lucent - Bell Labs France"

Transcription

1 LOW-COMPLEXITY SINGLE-IMAGE SUPER-RESOLUTION BASED ON NONNEGATIVE NEIGHBOR EMBEDDING Marco Bevilacqua 1,2, Aline Roumy 1, Christine Guillemot 1, Marie-Line Alberi Morel 2 1 Inria Rennes - Bretagne Atlantique 2 Alcatel-Lucent - Bell Labs France British Machine Vision Conference (BMVC) 2012 September 6, 2012

2 Overview Single-image Super-Resolution What is it? Methods used Neighbor embedding SR Proposed algorithm [KP1] Feature representation [KP2] Neighbor embedding method [KP3] Choice of the dictionary Results Conclusions BMVC Low-Complexity Single-Image SR September 6,

3 Single-image Super-Resolution What is it? Given a low resolution (LR) input image, the aim is to produce an enhanced upscaling (high resolution - HR). Our target I Design a low-complexity yet efficient single-image SR algorithm BMVC Low-Complexity Single-Image SR September 6,

4 Methods Single-image SR Inverse problem methods Machine Learning methods Example-based methods ( correspondences of LR/HR patches ) Direct local Learning (Support Vector Regression, Ridge Regression...) Nearest Neighbor (NN) estimation BMVC Low-Complexity Single-Image SR September 6,

5 Nearest Neighbor SR 1. Dictionary learning Learning correspondences of LR/HR patches training images external dictionary [Freeman et al., 2002, Yang et al., 2008, Chang et al., 2004] correspondences learnt exploiting image self-similarities [Glasner et al., 2009] 2. NN search Search for best matching patches for the LR input patches 3. Weight computation Compute the weights of the patch combinations by using the selected LR candidates 4. HR patch reconstruction Combine the corresponding HR candidates to reconstruct the HR output patches, according to the weights computed The whole procedure is carried out in a feature space One-pass or multi-pass approach BMVC Low-Complexity Single-Image SR September 6,

6 LLE-based Nearest Neighbor SR In [Chang et al., 2004] an example-based SR algorithm, inspired by LLE (Locally Linear Embedding), is proposed: The weights for the linear combination (3. Weight computation), like in LLE, are the results of a LS problem that minimizes the approximation error with a sum-to-1 constraint (SUM1-LS) w i = arg min xt i Xd i w 2 s.t. 1 T w = 1. (1) w Gradient features are used for the LR patches; mean-subtracted luma values are used as features for the HR patches. BMVC Low-Complexity Single-Image SR September 6,

7 Key points Three key points KP1 Features used to represent the LR and HR patches KP2 Method used to compute the neighbor embedding (i.e. the weights of the patch combination) KP3 Nature of the dictionary: external or internal? BMVC Low-Complexity Single-Image SR September 6,

8 [KP1] Representation by features Each patch is represented by a feature vector Role of the features To catch the most salient information in the LR patches in order to predict the HR details To enforce the hypothesis of manifold similarity Various possibilities Simple luminance values Centered luminance values (with mean removal) Gradient values... BMVC Low-Complexity Single-Image SR September 6,

9 [KP1] Analysis of the features F1 1st order gradient F2 Centered luminance values F1+F2 Concatenation of F1 and F2 All curves present a fall (even dramatic in case of F2) We decide to use F2: low-cost and best performing overall Can we avoid the fall? BMVC Low-Complexity Single-Image SR September 6,

10 [KP1] Why the fall? Observation 1 d: dimension of the LR vectors; K: number of neighbors The ith neighborhood matrix Xd i has the highest possible rank w.h.p., i.e. r i = min(d 1, K). Observation 2 For K = d the SUM1-LS problem is equivalent to a square linear system, as we have d equations in K = d unknowns unique solution in the LR domain. Here, experimentally we have a critical point in the performance. The fall is because of an overfitting problem! BMVC Low-Complexity Single-Image SR September 6,

11 [KP2] A nonnegative embedding? Idea: replace the sum-to-1 equality constraint by an inequality constraint to avoid the unique solution problem Patches reconstructed only by additive combinations according to the intuitive notion of combining parts to form a whole The LS problem (1) becomes a nonnegative least squares (NNLS) problem: w i = arg min xt i Xd i w 2 s.t. w 0. (2) w BMVC Low-Complexity Single-Image SR September 6,

12 [KP2] Analysis of the weights Distribution of the weights SUM1-LS NNLS Distance between the actual LR weights and the ideal HR weights BMVC Low-Complexity Single-Image SR September 6,

13 [KP3] Choice of the dictionary Two possibilities build an external dictionary from a set of training images (from the original HR images, generate the LR versions, and extract HR and LR patches, respectively) learn the patch correspondences in a pyramid of recursively scaled images, starting from the LR input image, in the way of [Glasner et al., 2009] Internal DB Ext DB esa Ext DB wiki Image Scale PSNR DB size PSNR DB size PSNR DB size Head Baby Eyetest bird Woman In our case the dictionary derived from the pyramid is insufficient. BMVC Low-Complexity Single-Image SR September 6,

14 Algorithm: summary KP1 Features used to represent the LR and HR patches Centered luminance features (F2) KP2 Method used to compute the neighbor embedding (i.e. the weights of the patch combination) Nonnegative embedding (NNLS weights) KP3 Nature of the dictionary: external or internal? External BMVC Low-Complexity Single-Image SR September 6,

15 Experiments: algorithms considered Name Procedure LR features Patch reconstruction method Chang et al. (LLE) Glasner et al. (Pyramid) Tang et al. (KRR) Our algorithm single-step gradient (1st-2nd) NN embedding with SUM1-LS weights multi-pass luminance NN embedding with exponential weights single-step gradient (1st-2nd) kernel ridge regression single-step centered luminance NN embedding with NNLS weights BMVC Low-Complexity Single-Image SR September 6,

16 Results 1/3 Our algorithm Chang et al. Glasner et al. Tang et al. Image Scale PSNR Time PSNR Time PSNR Time PSNR Time baby bird butterfly head woman baby bird butterfly head woman baby bird butterfly head woman Higher PSNR for scale = 2; Glasner et al. outperforming for larger scale factors. BMVC Low-Complexity Single-Image SR September 6,

17 Results 2/3 Our algorithm Chang et al. Glasner et al. Tang et al. Image Scale PSNR Time PSNR Time PSNR Time PSNR Time baby bird butterfly head woman baby bird butterfly head woman baby bird butterfly head woman Computational time sensibly reduced, thanks to 1) one-pass procedure or 2) shorter feature vectors. BMVC Low-Complexity Single-Image SR September 6,

18 Results 3/3 Our algorithm Chang et al. Glasner et al. Tang et al. Lin. Regr. + F2 Image Scale PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time baby bird butterfly head woman baby bird butterfly head woman baby bird butterfly head woman Linear Ridge Regression + centered luminance features: promising method! BMVC Low-Complexity Single-Image SR September 6,

19 Visual results: bird 1/6 M. factor: x3 Input image BMVC Low-Complexity Single-Image SR September 6,

20 Visual results: bird 2/6 M. factor: x3 Bicubic interpolation BMVC Low-Complexity Single-Image SR September 6,

21 Visual results: bird 3/6 PSNR: db Time: 47 s. Chang et al. BMVC Low-Complexity Single-Image SR September 6,

22 Visual results: bird 4/6 PSNR: db Time: 281 s. Glasner et al. BMVC Low-Complexity Single-Image SR September 6,

23 Visual results: bird 5/6 PSNR: db Time: 42 s. Tang et al. BMVC Low-Complexity Single-Image SR September 6,

24 Visual results: bird 6/6 PSNR: db Time: 9 s. Our algorithm BMVC Low-Complexity Single-Image SR September 6,

25 Visual results: baby 1/6 M. factor: x3 Input image BMVC Low-Complexity Single-Image SR September 6,

26 Visual results: baby 2/6 M. factor: x3 Bicubic interpolation BMVC Low-Complexity Single-Image SR September 6,

27 Visual results: baby 3/6 PSNR: db Time: 116 s. Chang et al. BMVC Low-Complexity Single-Image SR September 6,

28 Visual results: baby 4/6 PSNR: db Time: 2188 s. Glasner et al. BMVC Low-Complexity Single-Image SR September 6,

29 Visual results: baby 5/6 PSNR: db Time: 111 s. Tang et al. BMVC Low-Complexity Single-Image SR September 6,

30 Visual results: baby 6/6 PSNR: db Time: 27 s. Our algorithm BMVC Low-Complexity Single-Image SR September 6,

31 Conclusions Our method present better results than other one-pass algorithms [Chang et al., 2004, Tang et al., 2011] Results comparable to the multi-pass algorithm of [Glasner et al., 2009] for scale factor of 2 and 3, but much lower computational time Future work Further study regression methods (already promising results) Investigate other strategies for neighbor search BMVC Low-Complexity Single-Image SR September 6,

32 THANKS Questions? BMVC 2012 University of Surrey September 3-7, 2012

Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding

Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding Learning an Adaptive Dictionary Structure for Efficient Image Sparse Coding Jérémy Aghaei Mazaheri, Christine Guillemot, Claude Labit To cite this version: Jérémy Aghaei Mazaheri, Christine Guillemot,

More information

Linear Regression 1 / 25. Karl Stratos. June 18, 2018

Linear Regression 1 / 25. Karl Stratos. June 18, 2018 Linear Regression Karl Stratos June 18, 2018 1 / 25 The Regression Problem Problem. Find a desired input-output mapping f : X R where the output is a real value. x = = y = 0.1 How much should I turn my

More information

The Iteration-Tuned Dictionary for Sparse Representations

The Iteration-Tuned Dictionary for Sparse Representations The Iteration-Tuned Dictionary for Sparse Representations Joaquin Zepeda #1, Christine Guillemot #2, Ewa Kijak 3 # INRIA Centre Rennes - Bretagne Atlantique Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Overview. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Overview. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Overview Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 1/25/2016 Sparsity Denoising Regression Inverse problems Low-rank models Matrix completion

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE

MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE MIDTERM SOLUTIONS: FALL 2012 CS 6375 INSTRUCTOR: VIBHAV GOGATE March 28, 2012 The exam is closed book. You are allowed a double sided one page cheat sheet. Answer the questions in the spaces provided on

More information

Learning-Based Image Super-Resolution

Learning-Based Image Super-Resolution Limits of Algorithms Learning-Based Image Super-Resolution zhoulin@microsoft.com Microsoft Research Asia Nov. 8, 2008 Limits of Algorithms Outline 1 What is Super-Resolution (SR)? 2 3 Limits of Algorithms

More information

Lecture: Face Recognition

Lecture: Face Recognition Lecture: Face Recognition Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 12-1 What we will learn today Introduction to face recognition The Eigenfaces Algorithm Linear

More information

Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time

Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Experiment presentation for CS3710:Visual Recognition Presenter: Zitao Liu University of Pittsburgh ztliu@cs.pitt.edu

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION

DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA INTRODUCTION DETECTING HUMAN ACTIVITIES IN THE ARCTIC OCEAN BY CONSTRUCTING AND ANALYZING SUPER-RESOLUTION IMAGES FROM MODIS DATA Shizhi Chen and YingLi Tian Department of Electrical Engineering The City College of

More information

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Olga Kouropteva, Oleg Okun, Matti Pietikäinen Machine Vision Group, Infotech Oulu and

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

Multiple Similarities Based Kernel Subspace Learning for Image Classification

Multiple Similarities Based Kernel Subspace Learning for Image Classification Multiple Similarities Based Kernel Subspace Learning for Image Classification Wang Yan, Qingshan Liu, Hanqing Lu, and Songde Ma National Laboratory of Pattern Recognition, Institute of Automation, Chinese

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 13, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 13, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 13, 2017 1 Learning Model A: learning algorithm for a machine learning task S: m i.i.d. pairs z i = (x i, y i ), i = 1,..., m,

More information

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat

Geometric View of Machine Learning Nearest Neighbor Classification. Slides adapted from Prof. Carpuat Geometric View of Machine Learning Nearest Neighbor Classification Slides adapted from Prof. Carpuat What we know so far Decision Trees What is a decision tree, and how to induce it from data Fundamental

More information

Supervised Deep Kriging for Single-Image Super-Resolution

Supervised Deep Kriging for Single-Image Super-Resolution Supervised Deep Kriging for Single-Image Super-Resolution Gianni FRANCHI 1, Angela YAO 2, and Andreas KOLB 1 1 Institute for Vision and Graphics, University of Siegen, Germany {gianni.franchi,andreas.kolb}@uni-siegen.de

More information

Logistic Regression Logistic

Logistic Regression Logistic Case Study 1: Estimating Click Probabilities L2 Regularization for Logistic Regression Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10 th,

More information

Kaviti Sai Saurab. October 23,2014. IIT Kanpur. Kaviti Sai Saurab (UCLA) Quantum methods in ML October 23, / 8

Kaviti Sai Saurab. October 23,2014. IIT Kanpur. Kaviti Sai Saurab (UCLA) Quantum methods in ML October 23, / 8 A review of Quantum Algorithms for Nearest-Neighbor Methods for Supervised and Unsupervised Learning Nathan Wiebe,Ashish Kapoor,Krysta M. Svore Jan.2014 Kaviti Sai Saurab IIT Kanpur October 23,2014 Kaviti

More information

Face recognition Computer Vision Spring 2018, Lecture 21

Face recognition Computer Vision Spring 2018, Lecture 21 Face recognition http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 21 Course announcements Homework 6 has been posted and is due on April 27 th. - Any questions about the homework?

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Machine Learning for Computer Vision 8. Neural Networks and Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group INTRODUCTION Nonlinear Coordinate Transformation http://cs.stanford.edu/people/karpathy/convnetjs/

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Applied inductive learning - Lecture 4

Applied inductive learning - Lecture 4 Applied inductive learning - Lecture 4 Louis Wehenkel Department of Electrical Engineering and Computer Science University of Liège Montefiore - Liège - October 10, 2005 Find slides: http://montefiore.ulg.ac.be/

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

The Curse of Dimensionality for Local Kernel Machines

The Curse of Dimensionality for Local Kernel Machines The Curse of Dimensionality for Local Kernel Machines Yoshua Bengio, Olivier Delalleau & Nicolas Le Roux April 7th 2005 Yoshua Bengio, Olivier Delalleau & Nicolas Le Roux Snowbird Learning Workshop Perspective

More information

A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation

A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence A Local Non-Negative Pursuit Method for Intrinsic Manifold Structure Preservation Dongdong Chen and Jian Cheng Lv and Zhang Yi

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

9 Classification. 9.1 Linear Classifiers

9 Classification. 9.1 Linear Classifiers 9 Classification This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this case we are predicting a class: winner or loser, yes or no, rich or poor, positive

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Regularization Theory

Regularization Theory Regularization Theory Solving the inverse problem of Super resolution with CNN Aditya Ganeshan Under the guidance of Dr. Ankik Kumar Giri December 13, 2016 Table of Content 1 Introduction Material coverage

More information

Discriminant Uncorrelated Neighborhood Preserving Projections

Discriminant Uncorrelated Neighborhood Preserving Projections Journal of Information & Computational Science 8: 14 (2011) 3019 3026 Available at http://www.joics.com Discriminant Uncorrelated Neighborhood Preserving Projections Guoqiang WANG a,, Weijuan ZHANG a,

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Bayesian Methods Machine Learning CSE546 Kevin Jamieson University of Washington November 1, 2018 2018 Kevin Jamieson 2 MLE Recap - coin flips Data:

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Recent Advances in Structured Sparse Models

Recent Advances in Structured Sparse Models Recent Advances in Structured Sparse Models Julien Mairal Willow group - INRIA - ENS - Paris 21 September 2010 LEAR seminar At Grenoble, September 21 st, 2010 Julien Mairal Recent Advances in Structured

More information

Machine Learning (CSE 446): Neural Networks

Machine Learning (CSE 446): Neural Networks Machine Learning (CSE 446): Neural Networks Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 6, 2017 1 / 22 Admin No Wednesday office hours for Noah; no lecture Friday. 2 /

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395

Data Mining. Dimensionality reduction. Hamid Beigy. Sharif University of Technology. Fall 1395 Data Mining Dimensionality reduction Hamid Beigy Sharif University of Technology Fall 1395 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1395 1 / 42 Outline 1 Introduction 2 Feature selection

More information

Linear Regression. Volker Tresp 2014

Linear Regression. Volker Tresp 2014 Linear Regression Volker Tresp 2014 1 Learning Machine: The Linear Model / ADALINE As with the Perceptron we start with an activation functions that is a linearly weighted sum of the inputs h i = M 1 j=0

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Mathematically Sophisticated Classification Todd Wilson Statistical Learning Group Department of Statistics North Carolina State University September 27, 2016 1 / 29 Support Vector

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

DISTINGUISH HARD INSTANCES OF AN NP-HARD PROBLEM USING MACHINE LEARNING

DISTINGUISH HARD INSTANCES OF AN NP-HARD PROBLEM USING MACHINE LEARNING DISTINGUISH HARD INSTANCES OF AN NP-HARD PROBLEM USING MACHINE LEARNING ZHE WANG, TONG ZHANG AND YUHAO ZHANG Abstract. Graph properties suitable for the classification of instance hardness for the NP-hard

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Least Squares SVM Regression

Least Squares SVM Regression Least Squares SVM Regression Consider changing SVM to LS SVM by making following modifications: min (w,e) ½ w 2 + ½C Σ e(i) 2 subject to d(i) (w T Φ( x(i))+ b) = e(i), i, and C>0. Note that e(i) is error

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1 Linear Regression Machine Learning CSE546 Kevin Jamieson University of Washington Oct 5, 2017 1 The regression problem Given past sales data on zillow.com, predict: y = House sale price from x = {# sq.

More information

Using the Johnson-Lindenstrauss lemma in linear and integer programming

Using the Johnson-Lindenstrauss lemma in linear and integer programming Using the Johnson-Lindenstrauss lemma in linear and integer programming Vu Khac Ky 1, Pierre-Louis Poirion, Leo Liberti LIX, École Polytechnique, F-91128 Palaiseau, France Email:{vu,poirion,liberti}@lix.polytechnique.fr

More information

A Convex Approach for Designing Good Linear Embeddings. Chinmay Hegde

A Convex Approach for Designing Good Linear Embeddings. Chinmay Hegde A Convex Approach for Designing Good Linear Embeddings Chinmay Hegde Redundancy in Images Image Acquisition Sensor Information content

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

SOLVING SPARSE REPRESENTATIONS FOR OBJECT CLASSIFICATION USING QUANTUM D-WAVE 2X MACHINE

SOLVING SPARSE REPRESENTATIONS FOR OBJECT CLASSIFICATION USING QUANTUM D-WAVE 2X MACHINE SOLVING SPARSE REPRESENTATIONS FOR OBJECT CLASSIFICATION USING QUANTUM D-WAVE 2X MACHINE! Nga Nguyen, Amy Larson, Carleton Coffrin, John Perry, Gary Salazar, and Garrett Kenyon Los Alamos National Laboratory

More information

Subspace Methods for Visual Learning and Recognition

Subspace Methods for Visual Learning and Recognition This is a shortened version of the tutorial given at the ECCV 2002, Copenhagen, and ICPR 2002, Quebec City. Copyright 2002 by Aleš Leonardis, University of Ljubljana, and Horst Bischof, Graz University

More information

Fast learning rates for plug-in classifiers under the margin condition

Fast learning rates for plug-in classifiers under the margin condition Fast learning rates for plug-in classifiers under the margin condition Jean-Yves Audibert 1 Alexandre B. Tsybakov 2 1 Certis ParisTech - Ecole des Ponts, France 2 LPMA Université Pierre et Marie Curie,

More information

Patch similarity under non Gaussian noise

Patch similarity under non Gaussian noise The 18th IEEE International Conference on Image Processing Brussels, Belgium, September 11 14, 011 Patch similarity under non Gaussian noise Charles Deledalle 1, Florence Tupin 1, Loïc Denis 1 Institut

More information

SIFT: Scale Invariant Feature Transform

SIFT: Scale Invariant Feature Transform 1 SIFT: Scale Invariant Feature Transform With slides from Sebastian Thrun Stanford CS223B Computer Vision, Winter 2006 3 Pattern Recognition Want to find in here SIFT Invariances: Scaling Rotation Illumination

More information

The analog data assimilation: method, applications and implementation

The analog data assimilation: method, applications and implementation The analog data assimilation: method, applications and implementation Pierre Tandeo pierre.tandeo@imt-atlantique.fr IMT-Atlantique, Brest, France 16 th of February 2018 Before starting Works in collaboration

More information

Optimal Kernel Shapes for Local Linear Regression

Optimal Kernel Shapes for Local Linear Regression Optimal Kernel Shapes for Local Linear Regression Dirk Ormoneit Trevor Hastie Department of Statistics Stanford University Stanford, CA 94305-4065 ormoneit@stat.stanjord.edu Abstract Local linear regression

More information

Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning

Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning Invertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning Xian Wei, Martin Kleinsteuber, and Hao Shen Department of Electrical and Computer Engineering Technische Universität München,

More information

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang /

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang / CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors Furong Huang / furongh@cs.umd.edu What we know so far Decision Trees What is a decision tree, and how to induce it from

More information

Day 3: Classification, logistic regression

Day 3: Classification, logistic regression Day 3: Classification, logistic regression Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 20 June 2018 Topics so far Supervised

More information

Nonlinear Learning using Local Coordinate Coding

Nonlinear Learning using Local Coordinate Coding Nonlinear Learning using Local Coordinate Coding Kai Yu NEC Laboratories America kyu@sv.nec-labs.com Tong Zhang Rutgers University tzhang@stat.rutgers.edu Yihong Gong NEC Laboratories America ygong@sv.nec-labs.com

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Local regression, intrinsic dimension, and nonparametric sparsity

Local regression, intrinsic dimension, and nonparametric sparsity Local regression, intrinsic dimension, and nonparametric sparsity Samory Kpotufe Toyota Technological Institute - Chicago and Max Planck Institute for Intelligent Systems I. Local regression and (local)

More information

Sketching for Large-Scale Learning of Mixture Models

Sketching for Large-Scale Learning of Mixture Models Sketching for Large-Scale Learning of Mixture Models Nicolas Keriven Université Rennes 1, Inria Rennes Bretagne-atlantique Adv. Rémi Gribonval Outline Introduction Practical Approach Results Theoretical

More information

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Let A m n be a matrix of real numbers. The matrix AA T has an eigenvector x with eigenvalue b. Then the eigenvector y of A T A

More information

Adaptive Compressive Imaging Using Sparse Hierarchical Learned Dictionaries

Adaptive Compressive Imaging Using Sparse Hierarchical Learned Dictionaries Adaptive Compressive Imaging Using Sparse Hierarchical Learned Dictionaries Jarvis Haupt University of Minnesota Department of Electrical and Computer Engineering Supported by Motivation New Agile Sensing

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Introduction and Data Representation Mikhail Belkin & Partha Niyogi Department of Electrical Engieering University of Minnesota Mar 21, 2017 1/22 Outline Introduction 1 Introduction 2 3 4 Connections to

More information

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU,

Machine Learning. Data visualization and dimensionality reduction. Eric Xing. Lecture 7, August 13, Eric Xing Eric CMU, Eric Xing Eric Xing @ CMU, 2006-2010 1 Machine Learning Data visualization and dimensionality reduction Eric Xing Lecture 7, August 13, 2010 Eric Xing Eric Xing @ CMU, 2006-2010 2 Text document retrieval/labelling

More information

Machine Learning Summer 2018 Exercise Sheet 4

Machine Learning Summer 2018 Exercise Sheet 4 Ludwig-Maimilians-Universitaet Muenchen 17.05.2018 Institute for Informatics Prof. Dr. Volker Tresp Julian Busch Christian Frey Machine Learning Summer 2018 Eercise Sheet 4 Eercise 4-1 The Simpsons Characters

More information

Segmentation of Cell Membrane and Nucleus using Branches with Different Roles in Deep Neural Network

Segmentation of Cell Membrane and Nucleus using Branches with Different Roles in Deep Neural Network Segmentation of Cell Membrane and Nucleus using Branches with Different Roles in Deep Neural Network Tomokazu Murata 1, Kazuhiro Hotta 1, Ayako Imanishi 2, Michiyuki Matsuda 2 and Kenta Terai 2 1 Meijo

More information

Optimal kernel methods for large scale learning

Optimal kernel methods for large scale learning Optimal kernel methods for large scale learning Alessandro Rudi INRIA - École Normale Supérieure, Paris joint work with Luigi Carratino, Lorenzo Rosasco 6 Mar 2018 École Polytechnique Learning problem

More information

Scalable Bayesian Event Detection and Visualization

Scalable Bayesian Event Detection and Visualization Scalable Bayesian Event Detection and Visualization Daniel B. Neill Carnegie Mellon University H.J. Heinz III College E-mail: neill@cs.cmu.edu This work was partially supported by NSF grants IIS-0916345,

More information

Statistical Modeling of Visual Patterns: Part I --- From Statistical Physics to Image Models

Statistical Modeling of Visual Patterns: Part I --- From Statistical Physics to Image Models Statistical Modeling of Visual Patterns: Part I --- From Statistical Physics to Image Models Song-Chun Zhu Departments of Statistics and Computer Science University of California, Los Angeles Natural images

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 9 1 / 23 Overview

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Multiclass Classification-1

Multiclass Classification-1 CS 446 Machine Learning Fall 2016 Oct 27, 2016 Multiclass Classification Professor: Dan Roth Scribe: C. Cheng Overview Binary to multiclass Multiclass SVM Constraint classification 1 Introduction Multiclass

More information

Nonlinear Data Transformation with Diffusion Map

Nonlinear Data Transformation with Diffusion Map Nonlinear Data Transformation with Diffusion Map Peter Freeman Ann Lee Joey Richards* Chad Schafer Department of Statistics Carnegie Mellon University www.incagroup.org * now at U.C. Berkeley t! " 3 3

More information

Nonlinear Classification

Nonlinear Classification Nonlinear Classification INFO-4604, Applied Machine Learning University of Colorado Boulder October 5-10, 2017 Prof. Michael Paul Linear Classification Most classifiers we ve seen use linear functions

More information

Discriminative Learning and Big Data

Discriminative Learning and Big Data AIMS-CDT Michaelmas 2016 Discriminative Learning and Big Data Lecture 2: Other loss functions and ANN Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Lecture

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Prepositional Phrase Attachment over Word Embedding Products

Prepositional Phrase Attachment over Word Embedding Products Prepositional Phrase Attachment over Word Embedding Products Pranava Madhyastha (1), Xavier Carreras (2), Ariadna Quattoni (2) (1) University of Sheffield (2) Naver Labs Europe Prepositional Phrases I

More information

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING Yannick Morvan, Dirk Farin University of Technology Eindhoven 5600 MB Eindhoven, The Netherlands email: {y.morvan;d.s.farin}@tue.nl Peter

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. October 7, Efficiency: If size(w) = 100B, each prediction is expensive:

Machine Learning CSE546 Carlos Guestrin University of Washington. October 7, Efficiency: If size(w) = 100B, each prediction is expensive: Simple Variable Selection LASSO: Sparse Regression Machine Learning CSE546 Carlos Guestrin University of Washington October 7, 2013 1 Sparsity Vector w is sparse, if many entries are zero: Very useful

More information