Machine Learning. Regularization and Feature Selection. Fabio Vandin November 13, 2017

Size: px
Start display at page:

Download "Machine Learning. Regularization and Feature Selection. Fabio Vandin November 13, 2017"

Transcription

1 Machine Learning Regularization and Feature Selection Fabio Vandin November 13,

2 Learning Model A: learning algorithm for a machine learning task S: m i.i.d. pairs z i = (x i, y i ), i = 1,..., m, with z i Z = X Y, generated from distribution D) training set available to A to produce A(S); H: the hypothesis (or model) set for A loss function: l(h, (x, y)), l : H Z R + L S (h): empirical risk or training error of hypothesis h H L S (h) = 1 m m l(h, z i ) i=1 L D (h): true risk or generalization error of hypothesis h H: L D (h) = E z D[l(h,z)] 2

3 Learning Paradigm We would like A to produce A(S) such that L D (A(S)) is small, or at least close to the smallest generalization error L D (h ) achievable by the best hypothesis h in H: h = arg min h H L D(h) We have seen two learning paradigms: Empirical Risk Minimization Structural Risk Minimization Minimum Description Length 3

4 Empirical Risk Minimization (ERM): pick A(S) arg min h H L S(h) guarantees learning for PAC learnable H Minimum Description Length: pick ( ) h + ln(2/δ) A(S) arg min L S (h) + ) h H 2m where h is the length of the description of h. considers trade-off between training error and complexity We now see another learning paradigm. 4

5 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization function R : R R Regularized Loss Minimization (RLM): pick h obtained as arg min (L S(w) + R(w)) w Intuition: R(w) is a measure of complexity of hypothesis h defined by w regularization balances between low empirical risk and less complex hypotheses We will see some of the most common regularization function 5

6 Tikhonov regularization Regularization function: R(w) = λ w 2 λ R, λ > 0 l 2 norm: w 2 = d i=1 w 2 i Therefore the learning rule is: pick ( A(S) = arg min LS (w) + λ w 2) w Intuition: w 2 measures the complexity of hypothesis defined by w λ regulates the tradeoff between the empirical risk (L S (w)) or overfitting and the complexity ( w 2 ) of the model we pick 6

7 Ridge Regression Linear regression with squared loss + Tikhonov regularization ridge regression Linear regression with squared loss: given: training set S = ((x 1, y 1 ),..., (x m, y m )), with x i R d and y i R want: w which minimizes empirical risk: w = arg min w 1 m m ( w, x i y i ) 2 i=1 equivalently, find w which minimizes the residual sum of squares RSS(w) w = arg min w RSS(w) = arg min w m ( w, x i y i ) 2 i=1 7

8 Linear regression: pick w = arg min w RSS(w) = arg min w m ( w, x i y i ) 2 i=1 Ridge regression: pick w = arg min w λ w 2 + m ( w, x i y i ) 2 i=1 8

9 Let RSS: Matrix Form x 1 x 2 X =. x m X: design matrix 9

10 Let X: design matrix RSS: Matrix Form x 1 x 2 X =. x m y 1 y 2 y =. y m 9

11 Let RSS: Matrix Form x 1 x 2 X =. x m X: design matrix we have that RSS is y 1 y 2 y =. y m 9

12 Let RSS: Matrix Form x 1 x 2 X =. x m X: design matrix y 1 y 2 y =. y m we have that RSS is m ( w, x i y i ) 2 = (y Xw) T (y Xw) i=1 9

13 Ridge Regression: Matrix Form 10 Linear regression: pick arg min (y w Xw)T (y Xw) Ridge regression: pick arg min w λ w 2 + (y Xw) T (y Xw)

14 11 Want to find w which minimizes f (w) = λ w 2 + (y Xw) T (y Xw). How? Compute gradient it to 0. f (w) w of objective function w.r.t w and compare

15 11 Want to find w which minimizes f (w) = λ w 2 + (y Xw) T (y Xw). How? Compute gradient it to 0. f (w) w of objective function w.r.t w and compare f (w) w = 2λw 2XT (y Xw)

16 11 Want to find w which minimizes f (w) = λ w 2 + (y Xw) T (y Xw). How? Compute gradient it to 0. f (w) w of objective function w.r.t w and compare f (w) w = 2λw 2XT (y Xw) Then we need to find w such that 2λw 2X T (y Xw) = 0

17 12 2λw 2X T (y Xw) = 0 is equivalent to ( ) λi + X T X w = X T y Note: X T X is positive semidefinite λi is positive definite λi + X T X is positive definite λi + X T X is invertible Ridge regression solution: w = ( λi + X T X ) 1 X T y

18 Tikhonov Regularization: Some Results 13 We?ll show: Tikhonov regularization makes the learner stable w.r.t. small perturbations of the training set, which in turn leads to small bounds on generalization error Informally: an algorithm A is stable if a small change of the training data (i.e., its input) S will lead to a small change of its output hypothesis Questions: what is a small change of the training data? what is a small change of its output hypothesis?

19 Stability 14 small change of the training data = replace one sample! Given S = (z 1,..., z m ) and additional example (i.e., pair instance label/target) z let S (i) = (z 1,..., z i 1, z, z i+1,..., z m ) small change of its output hypothesis = on-average-replace-one-stable (OAROS) Definition Let ɛ : N R be a monotonically decreasing function. We say that a learning algorithm A is on-average-replace-one-stable OAROS with rate ɛ(m) if for every distribution D: E (S,z ) D m+1,i U(m)[l(A(S (i) ), z i ) l(a(s), z i )] ɛ(m)

20 Stability Rules do not Overfit proposition If algorithm A is OAROS with rate ɛ(m) then: E S D m[l D (A(S)) L S (A(S))] ɛ(m) Proof. Since S and z are both drawn i.i.d. from D, we have that for every i: E S [L D (A(S))] = E S,z [l(a(s), z )] = E S,z [l(a(s (i) ), z i )]. On the other hand we have: E S [L S (A(S))] = E S,i [l(a(s), z i )]. The proof follows from the definition of stability. 15

21 Tikhonov Regularization is a Stabilizer 16 Proposition Assume the loss function is convex and ρ-lipschitz continuous. Then, the RLM rule with regularizer λ w 2 is OAROS with rate. It follows that for the RLM rule: 2ρ λm E S D m[l D (A(S)) L S (A(S))] 2ρ λm A function f : R d R is ρ-lipschitz continuous if for every w 1, w 2 R d we have that f (w 2 ) f (w 2 ) ρ w 1 w 2

22 Note that The Fitting-Stability Tradeoff E S [L D (A(S))] = E S [L S (A(S))] + E S [L D (A(S)) L S (A(S))] Notes: E S [L S (A(S))]: how well A fits the training set E S [L D (A(S)) L S (A(S))] = overfitting, bounded by stability of A in Tikhonov regularization, λ controls tradeoff between the two terms Questions: how do L S (A(S)) and A(S) 2 = w 2 vary as a function of λ? how may E S [L D (A(S)) L S (A(S))] change as a function of λ? How do set λ? 17

23 18 Using the fitting-stability tradeoff decomposition and the result for convex, Lipschitz losses we can prove that knowing the properties (e.g., ρ in ρ-lipschitz continuity, etc.) one can pick λ to guarantee that c E S [L D (A(S))] min L D(w) + H m where c > 0 depends on the parameters of the loss function. Question: how do we pick λ in practice?

24 l 1 Regularization 19 Regularization function: R(w) = λ w 1 λ R, λ > 0 l 1 norm: w 1 = d i=1 w i Therefore the learning rule is: pick A(S) = arg min w (L S(w) + λ w 1 ) Intuition: w 1 measures the complexity of hypothesis defined by w λ regulates the tradeoff between the empirical risk (L S (w)) or overfitting and the complexity ( w 1 ) of the model we pick

25 LASSO 20 Linear regression with squared loss + l 1 regression LASSO (least absolute shrinkage and selection operator) LASSO: pick Notes: w = arg min w λ w 1 + no closed form solution! m ( w, x i y i ) 2 l 1 norm is a convex function and squared loss is a convex problem can be solved efficiently! (true for every convex loss function) i=1 l 1 regularization often induces sparse solutions

26 LASSO and Sparse Solution 21 Ridge$Regression$ LASSO$ w i$ w i$ 1/λ$ 1/λ$

27 LASSO and Sparse Solution 21 Ridge$Regression$ LASSO$ w i$ w i$ 1/λ$ 1/λ$

28 Ridge Regression vs LASSO LASSO {w: L S (w)=α} RIDGE REGRESSION w 2 w 2 w 1 s w 2 s w 1 w 1 l 1 regularization performs a sort of feature selection 22

29 Feature Selection 23 We have a large pool of features Goal: select a small number of features that will be used by our (final) predictor Assume X = R d. Goal: learn (final) predictor using k << d predictors Motivation? prevent overfitting: less predictors hypotheses of lower complexity! predictions can be done faster useful in many applications!

30 Feature Selection: Computational Problem 24 Assume that we use the Empirical Risk Minimization (ERM) procedure. The problem of selecting k features that minimize the empirical risk can be written as: where w 0 = {i : w i 0} How can we solve it? min L S(w) subject to w 0 k w

31 How do we find the solution to the problem? 25 min L S(w) subject to w 0 k w Brute-Force Algorithm 1 sol ; 2 Foreach subset P of k features of do: i) wp best model using only the features in k ii) If L S (wp ) < L S(sol) then sol wp 3 Return sol Complexity? Learn Θ ( (d k) ) Θ ( n k) models exponential algorithm! Can we do better? Proposition The optimization problem of feature selection NP-hard.

32 Greedy Algorithms for Feature Selection 26 forward selection: start from the empty solution, add one features at the time, until solution has cardinality k (or no improvement) backward selection: start from the solution which includes all features, remove one features at the time, until solution has cardinality k (or no improvement) ( k 1 ) Complexity? Learn Θ 0=1 d i Θ (kd) models

33 Bibliography [UML] 27 Regularization and Ridge Regression: Chapter 12 no section 13.3; sectio 13.4 only up to Corollary 13.8 (excluded) Feature Selection and LASSO: Chapter 25 only section (introduction and Backward Elimination ) and

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017

Machine Learning. Regularization and Feature Selection. Fabio Vandin November 14, 2017 Machine Learning Regularization and Feature Selection Fabio Vandin November 14, 2017 1 Regularized Loss Minimization Assume h is defined by a vector w = (w 1,..., w d ) T R d (e.g., linear models) Regularization

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Introduction to Machine Learning (67577) Lecture 7

Introduction to Machine Learning (67577) Lecture 7 Introduction to Machine Learning (67577) Lecture 7 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Solving Convex Problems using SGD and RLM Shai Shalev-Shwartz (Hebrew

More information

Machine Learning. Model Selection and Validation. Fabio Vandin November 7, 2017

Machine Learning. Model Selection and Validation. Fabio Vandin November 7, 2017 Machine Learning Model Selection and Validation Fabio Vandin November 7, 2017 1 Model Selection When we have to solve a machine learning task: there are different algorithms/classes algorithms have parameters

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

SCMA292 Mathematical Modeling : Machine Learning. Krikamol Muandet. Department of Mathematics Faculty of Science, Mahidol University.

SCMA292 Mathematical Modeling : Machine Learning. Krikamol Muandet. Department of Mathematics Faculty of Science, Mahidol University. SCMA292 Mathematical Modeling : Machine Learning Krikamol Muandet Department of Mathematics Faculty of Science, Mahidol University February 9, 2016 Outline Quick Recap of Least Square Ridge Regression

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory Definition Reminder: We are given m samples {(x i, y i )} m i=1 Dm and a hypothesis space H and we wish to return h H minimizing L D (h) = E[l(h(x), y)]. Problem

More information

COMS 4771 Lecture Fixed-design linear regression 2. Ridge and principal components regression 3. Sparse regression and Lasso

COMS 4771 Lecture Fixed-design linear regression 2. Ridge and principal components regression 3. Sparse regression and Lasso COMS 477 Lecture 6. Fixed-design linear regression 2. Ridge and principal components regression 3. Sparse regression and Lasso / 2 Fixed-design linear regression Fixed-design linear regression A simplified

More information

Introduction to Machine Learning (67577) Lecture 3

Introduction to Machine Learning (67577) Lecture 3 Introduction to Machine Learning (67577) Lecture 3 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem General Learning Model and Bias-Complexity tradeoff Shai Shalev-Shwartz

More information

Machine Learning for Biomedical Engineering. Enrico Grisan

Machine Learning for Biomedical Engineering. Enrico Grisan Machine Learning for Biomedical Engineering Enrico Grisan enrico.grisan@dei.unipd.it Curse of dimensionality Why are more features bad? Redundant features (useless or confounding) Hard to interpret and

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 17: Stochastic Optimization Part II: Realizable vs Agnostic Rates Part III: Nearest Neighbor Classification Stochastic

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. October 7, Efficiency: If size(w) = 100B, each prediction is expensive:

Machine Learning CSE546 Carlos Guestrin University of Washington. October 7, Efficiency: If size(w) = 100B, each prediction is expensive: Simple Variable Selection LASSO: Sparse Regression Machine Learning CSE546 Carlos Guestrin University of Washington October 7, 2013 1 Sparsity Vector w is sparse, if many entries are zero: Very useful

More information

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c Warm up D cai.yo.ie p IExrL9CxsYD Sglx.Ddl f E Luo fhlexi.si dbll Fix any a, b, c > 0. 1. What is the x 2 R that minimizes ax 2 + bx + c x a b Ta OH 2 ax 16 0 x 1 Za fhkxiiso3ii draulx.h dp.d 2. What is

More information

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning Lecture 3: More on regularization. Bayesian vs maximum likelihood learning L2 and L1 regularization for linear estimators A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

Machine Learning in the Data Revolution Era

Machine Learning in the Data Revolution Era Machine Learning in the Data Revolution Era Shai Shalev-Shwartz School of Computer Science and Engineering The Hebrew University of Jerusalem Machine Learning Seminar Series, Google & University of Waterloo,

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Lasso Regression: Regularization for feature selection

Lasso Regression: Regularization for feature selection Lasso Regression: Regularization for feature selection Emily Fox University of Washington January 18, 2017 1 Feature selection task 2 1 Why might you want to perform feature selection? Efficiency: - If

More information

l 1 and l 2 Regularization

l 1 and l 2 Regularization David Rosenberg New York University February 5, 2015 David Rosenberg (New York University) DS-GA 1003 February 5, 2015 1 / 32 Tikhonov and Ivanov Regularization Hypothesis Spaces We ve spoken vaguely about

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 4: ML Models (Overview) Cho-Jui Hsieh UC Davis April 17, 2017 Outline Linear regression Ridge regression Logistic regression Other finite-sum

More information

MLCC 2017 Regularization Networks I: Linear Models

MLCC 2017 Regularization Networks I: Linear Models MLCC 2017 Regularization Networks I: Linear Models Lorenzo Rosasco UNIGE-MIT-IIT June 27, 2017 About this class We introduce a class of learning algorithms based on Tikhonov regularization We study computational

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Convex optimization COMS 4771

Convex optimization COMS 4771 Convex optimization COMS 4771 1. Recap: learning via optimization Soft-margin SVMs Soft-margin SVM optimization problem defined by training data: w R d λ 2 w 2 2 + 1 n n [ ] 1 y ix T i w. + 1 / 15 Soft-margin

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Learnability, Stability, Regularization and Strong Convexity

Learnability, Stability, Regularization and Strong Convexity Learnability, Stability, Regularization and Strong Convexity Nati Srebro Shai Shalev-Shwartz HUJI Ohad Shamir Weizmann Karthik Sridharan Cornell Ambuj Tewari Michigan Toyota Technological Institute Chicago

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning PAC Learning and VC Dimension Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010

Linear Regression. Aarti Singh. Machine Learning / Sept 27, 2010 Linear Regression Aarti Singh Machine Learning 10-701/15-781 Sept 27, 2010 Discrete to Continuous Labels Classification Sports Science News Anemic cell Healthy cell Regression X = Document Y = Topic X

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Linear Regression 1 / 25. Karl Stratos. June 18, 2018

Linear Regression 1 / 25. Karl Stratos. June 18, 2018 Linear Regression Karl Stratos June 18, 2018 1 / 25 The Regression Problem Problem. Find a desired input-output mapping f : X R where the output is a real value. x = = y = 0.1 How much should I turn my

More information

Rirdge Regression. Szymon Bobek. Institute of Applied Computer science AGH University of Science and Technology

Rirdge Regression. Szymon Bobek. Institute of Applied Computer science AGH University of Science and Technology Rirdge Regression Szymon Bobek Institute of Applied Computer science AGH University of Science and Technology Based on Carlos Guestrin adn Emily Fox slides from Coursera Specialization on Machine Learnign

More information

Computational Learning Theory

Computational Learning Theory CS 446 Machine Learning Fall 2016 OCT 11, 2016 Computational Learning Theory Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes 1 PAC Learning We want to develop a theory to relate the probability of successful

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Lasso Regression: Regularization for feature selection

Lasso Regression: Regularization for feature selection Lasso Regression: Regularization for feature selection Emily Fox University of Washington January 18, 2017 Feature selection task 1 Why might you want to perform feature selection? Efficiency: - If size(w)

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning

LECTURE 10: LINEAR MODEL SELECTION PT. 1. October 16, 2017 SDS 293: Machine Learning LECTURE 10: LINEAR MODEL SELECTION PT. 1 October 16, 2017 SDS 293: Machine Learning Outline Model selection: alternatives to least-squares Subset selection - Best subset - Stepwise selection (forward and

More information

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh

Generalization Bounds in Machine Learning. Presented by: Afshin Rostamizadeh Generalization Bounds in Machine Learning Presented by: Afshin Rostamizadeh Outline Introduction to generalization bounds. Examples: VC-bounds Covering Number bounds Rademacher bounds Stability bounds

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives

A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives Paul Grigas May 25, 2016 1 Boosting Algorithms in Linear Regression Boosting [6, 9, 12, 15, 16] is an extremely

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

1 The Probably Approximately Correct (PAC) Model

1 The Probably Approximately Correct (PAC) Model COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #3 Scribe: Yuhui Luo February 11, 2008 1 The Probably Approximately Correct (PAC) Model A target concept class C is PAC-learnable by

More information

Homework 1: Solutions

Homework 1: Solutions Homework 1: Solutions Statistics 413 Fall 2017 Data Analysis: Note: All data analysis results are provided by Michael Rodgers 1. Baseball Data: (a) What are the most important features for predicting players

More information

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Computational Learning Theory Le Song Lecture 11, September 20, 2012 Based on Slides from Eric Xing, CMU Reading: Chap. 7 T.M book 1 Complexity of Learning

More information

Sparse Approximation and Variable Selection

Sparse Approximation and Variable Selection Sparse Approximation and Variable Selection Lorenzo Rosasco 9.520 Class 07 February 26, 2007 About this class Goal To introduce the problem of variable selection, discuss its connection to sparse approximation

More information

Part of the slides are adapted from Ziko Kolter

Part of the slides are adapted from Ziko Kolter Part of the slides are adapted from Ziko Kolter OUTLINE 1 Supervised learning: classification........................................................ 2 2 Non-linear regression/classification, overfitting,

More information

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d)

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless

More information

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016 Machine Learning 10-701, Fall 2016 Computational Learning Theory Eric Xing Lecture 9, October 5, 2016 Reading: Chap. 7 T.M book Eric Xing @ CMU, 2006-2016 1 Generalizability of Learning In machine learning

More information

Day 3: Classification, logistic regression

Day 3: Classification, logistic regression Day 3: Classification, logistic regression Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 20 June 2018 Topics so far Supervised

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods.

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods. TheThalesians Itiseasyforphilosopherstoberichiftheychoose Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods Ivan Zhdankin

More information

Outline lecture 2 2(30)

Outline lecture 2 2(30) Outline lecture 2 2(3), Lecture 2 Linear Regression it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic Control

More information

Linear Regression. Volker Tresp 2018

Linear Regression. Volker Tresp 2018 Linear Regression Volker Tresp 2018 1 Learning Machine: The Linear Model / ADALINE As with the Perceptron we start with an activation functions that is a linearly weighted sum of the inputs h = M j=0 w

More information

Introduction to Machine Learning (67577) Lecture 5

Introduction to Machine Learning (67577) Lecture 5 Introduction to Machine Learning (67577) Lecture 5 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem Nonuniform learning, MDL, SRM, Decision Trees, Nearest Neighbor Shai

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Pardis Noorzad Department of Computer Engineering and IT Amirkabir University of Technology Ordibehesht 1390 Introduction For the analysis of data structures and algorithms

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Generalization bounds

Generalization bounds Advanced Course in Machine Learning pring 200 Generalization bounds Handouts are jointly prepared by hie Mannor and hai halev-hwartz he problem of characterizing learnability is the most basic question

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany Predictive Models Predictive Models 1 / 34 Outline

More information

On the Generalization Ability of Online Strongly Convex Programming Algorithms

On the Generalization Ability of Online Strongly Convex Programming Algorithms On the Generalization Ability of Online Strongly Convex Programming Algorithms Sham M. Kakade I Chicago Chicago, IL 60637 sham@tti-c.org Ambuj ewari I Chicago Chicago, IL 60637 tewari@tti-c.org Abstract

More information

Introduction to Machine Learning. Regression. Computer Science, Tel-Aviv University,

Introduction to Machine Learning. Regression. Computer Science, Tel-Aviv University, 1 Introduction to Machine Learning Regression Computer Science, Tel-Aviv University, 2013-14 Classification Input: X Real valued, vectors over real. Discrete values (0,1,2,...) Other structures (e.g.,

More information

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018

PAC Learning Introduction to Machine Learning. Matt Gormley Lecture 14 March 5, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University PAC Learning Matt Gormley Lecture 14 March 5, 2018 1 ML Big Picture Learning Paradigms:

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1 Linear Regression Machine Learning CSE546 Kevin Jamieson University of Washington Oct 5, 2017 1 The regression problem Given past sales data on zillow.com, predict: y = House sale price from x = {# sq.

More information

Algorithmic Stability and Generalization Christoph Lampert

Algorithmic Stability and Generalization Christoph Lampert Algorithmic Stability and Generalization Christoph Lampert November 28, 2018 1 / 32 IST Austria (Institute of Science and Technology Austria) institute for basic research opened in 2009 located in outskirts

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

6.867 Machine learning: lecture 2. Tommi S. Jaakkola MIT CSAIL

6.867 Machine learning: lecture 2. Tommi S. Jaakkola MIT CSAIL 6.867 Machine learning: lecture 2 Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learning problem hypothesis class, estimation algorithm loss and estimation criterion sampling, empirical and

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

Ridge Regression 1. to which some random noise is added. So that the training labels can be represented as:

Ridge Regression 1. to which some random noise is added. So that the training labels can be represented as: CS 1: Machine Learning Spring 15 College of Computer and Information Science Northeastern University Lecture 3 February, 3 Instructor: Bilal Ahmed Scribe: Bilal Ahmed & Virgil Pavlu 1 Introduction Ridge

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Ridge Regression: Regulating overfitting when using many features. Training, true, & test error vs. model complexity. CSE 446: Machine Learning

Ridge Regression: Regulating overfitting when using many features. Training, true, & test error vs. model complexity. CSE 446: Machine Learning Ridge Regression: Regulating overfitting when using many features Emily Fox University of Washington January 3, 207 Training, true, & test error vs. model complexity Overfitting if: Error y Model complexity

More information