b. Assuming that the sundial is set up correctly, explain this observation.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "b. Assuming that the sundial is set up correctly, explain this observation."

Transcription

1 Astronomy 100 Name(s): Exercise 3: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement of time. The hours 1. a. How many degrees in a circle (such as the ecliptic around the Earth)? The ecliptic is broken up into the twelve Zodiacal constellations (e.g., Aries, Taurus, Gemini, etc.); assuming each constellation is equally large, how many degrees does each Zodiacal constellation subtend? b. How many degrees of the sky does one hour represent? Another way to look at this question: how many degrees of the sky disappear over the western horizon every hour? 2. a. When you get the chance, go check out the sundial in the south courtyard on campus. Local noon is obviously when the Sun is directly overhead (also called Sun transit ). When there is no shadow on the sundial, the time should be noon. Is the time accurate? If not, estimate how many minutes the sundial is off. b. Assuming that the sundial is set up correctly, explain this observation. The lunar cycle 3. a. In the figure below, indicate the direction of the Sun with an arrow. b. Telling time using the Moon: At what time of day would you expect to observe a full Moon rising? Over which (eastern or western) horizon would it rise?

2 c. At what time of day would you expect to observe a first quarter Moon setting? d. At what time of day would you expect to observe a new Moon overhead? A guide for naming the phases of the Moon: If only a minimal crescent of the Moon is illuminated, it is a new Moon. If less than half of the Moon is lit, it is a crescent Moon. A half-illuminated Moon is a quarter (not half) Moon (first quarter occurs before full Moon, third quarter occurs after). If more than half is illuminated, but the Moon is not full, it is gibbous. If it is fully illuminated, it is a full Moon. When the lighted side s apparent area increases from night to night, the Moon is said to be waxing; when the apparent area decreases, the Moon is waning. 4. In the upper portion of the figure above (which represents looking down from the celestial north pole), eight positions of the Moon (labeled 1 through 8) are given in its orbit around the Earth. The lower part of the figure shows what an Earth observer would see of the Moon at each of the eight positions. a. For each position on both parts of the figure, shade the dark and illuminated portions of the Moon.

3 b. For the lower part of the figure, label each Moon's phase. c. For the upper part of the figure, is the Earth rotating clockwise (CW) or counterclockwise (CCW)? Indicate this with an arrow. 5. a. If you observe a quarter moon, how can you tell if it is the first or third quarter moon? b. Night after night, in what compass direction does the moon appear to move, relative to the fixed stars? 6. a. Why isn t every new moon coincident with a solar eclipse? In other words, why isn t the sun eclipsed every 28 or so days? b. If your answer to the previous part is true, then, how do we ever see a fully lit, full Moon? Shouldn t some of its face toward us always be dark? 7. a. Does the Moon rotate on its own axis? Note: Rotate, not revolve. Equivalent question: Does the Moon always present the same face to us on Earth? b. So what percent of the whole Moon s surface should we be able to see and map from telescopes on the surface of the Earth? c. In fact, we have been able to map 59% of the Moon s surface from Earth-based telescopes (the rest was done by sending satellites around the back ). How are we able to see that much? Hint: look up libration.

4 Modeling the Earth-Sun System You will need a piece of pipe cleaner, a large styrofoam ball, a small wooden dowel, an index card and a light source. Turn the light bulb on and fix it so that you can move the styrofoam ball around it easily. Take a small wooden dowel and push it through the center of the styrofoam ball, so that the ball will rotate about this axis. The ball will represent Earth; place it so that the bulb (which represents the Sun) evenly illuminates both hemispheres and poles. The Earth should be about three feet from the Sun. On the index card, write N, E, S and W at the cardinal points of the card. This card will represent the horizon for an observer; notice that the horizon appears flat when you are standing in the middle of a large plain on Earth, though you know very well that the Earth is spherical. So the index card is a good approximation of the horizon. The piece of pipe cleaner is a person who will be standing and casting a shadow on the styrofoam Earth. Punch the pipe cleaner through the middle of the index card, then place the person at approximately 45 N latitude on the ball. Align the index card so that N is in the direction of the north rotational pole. The days (diurnal cycle) Rotate the Earth so that, from the perspective of the pipe cleaner person, the Sun rises in the east and sets in the west. This is tricky so have someone watch the person as you spin the ball. 8. When viewing the Earth from above the North Pole, which direction does the planet rotate, clockwise (CW) or counterclockwise (CCW)? With respect to the cardinal points on the horizon, is the Earth s rotation in an easterly or westerly direction? The seasonal cycle If the Earth s axis of rotation was oriented so that each pole received equal illumination from the Sun, we could not explain why the poles receive no sunlight six months of the year. In June, the North Pole must be tilted toward the Sun to produce daylight over an entire day in the Arctic and darkness over an entire day at the South Pole. In December, the North Pole must be tilted away from the Sun to produce daylight over an entire day in the Antarctic and darkness over an entire day at the North Pole. Tilt the North Pole of your ball so that points towards the north wall of the room. As you rotate the ball around its axis, note which pole is in complete darkness and which pole is in complete light during a full rotation. Now, revolve the Earth around the Sun until the Earth reaches the opposite side of its orbit from where you started. Remember to keep the North Pole pointed toward

5 the north wall. Again, note which pole is in complete darkness and which pole is in complete light during a full rotation. 9. a. If summer is the term used to describe the season when daylight is longer than night for a given hemisphere, should summer occur when that hemisphere s pole is tilted toward or away from the Sun? Keep moving the Earth around the Sun, rotating the Earth continuously. b. Look at the shadow of your stick figure during the course of a day at four different positions around the Sun (the different seasons of the year ). Orient the stick figure at each of these positions so that the Sun is overhead. What is the orientation of the North Pole (toward or away from the Sun) when is the shadow of the stick figure is the shortest? Which season does this correspond to? c. Are the changes in the seasons due to the North Pole is oscillating in space, alternately toward and away from the Sun over the course of one year? We know from experience that the Sun is lower in the sky at noon during the winter months than during the summer. The annual variations in the Sun s altitude and the length of the day, resulting from the tilt of the Earth s axis, cause the seasons. In the summer, long days and the high altitude of the Sun give us more daylight hours and more direct sunlight than in the winter, which means we receive a higher concentration of sunlight on the surface of the Earth in the summer than in the winter. 10. a. Consider a planet with no tilt at all (in other words, its rotational axis is exactly perpendicular to the planet-sun plane). Will this planet have seasons? b. Consider a planet that has its rotational axis parallel to the plane on which it orbits. Will this planet have seasons? c. Using a list of planetary data, which planet in the solar system will very nearly not have any seasons? Remember, a planet does not need an atmosphere to have seasonal changes (for instance, uneven heating of the rocks due to seasons may lead to different amounts of gases being released from the rocks). d. Which planet in the solar system will have extreme seasons?

3. a. In the figure below, indicate the direction of the Sun with an arrow.

3. a. In the figure below, indicate the direction of the Sun with an arrow. Astronomy 100, Fall 2005 Name(s): Exercise 2: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation. Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

Summary Sheet #1 for Astronomy Main Lesson

Summary Sheet #1 for Astronomy Main Lesson Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.

More information

Earth is rotating on its own axis

Earth is rotating on its own axis Earth is rotating on its own axis 1 rotation every day (24 hours) Earth is rotating counterclockwise if you are looking at its North pole from other space. Earth is rotating clockwise if you are looking

More information

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010 The Celestial Sphere Chapter 1 Cycles of the Sky Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial

More information

Practice Questions: Seasons #1

Practice Questions: Seasons #1 1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Practice Exam #3. Part 1: The Circumpolar Constellations

Practice Exam #3. Part 1: The Circumpolar Constellations Practice Exam #3 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Some Comments on the Real Exam This exam covers all material related to astronomy.

More information

Lab Activity on the Moon's Phases and Eclipses

Lab Activity on the Moon's Phases and Eclipses Lab Activity on the Moon's Phases and Eclipses 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Academic Year Second Term. Science Revision Sheet. Grade

Academic Year Second Term. Science Revision Sheet. Grade Academic Year 2017-2018 Second Term Science Revision Sheet Grade 6 Name: Grade Date: Section: Part A. Science Practice. Circle the letter of your answer. 1. When the moon is waxing, its lighted part appears

More information

Earth Motions Packet 14

Earth Motions Packet 14 Earth Motions Packet 14 Your Name Group Members Score Minutes Standard 4 Key Idea 1 Performance Indicator 1.1 Explain complex phenomena, such as tides, variations in day length, solar insolation, apparent

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

2.2 The Reason for Seasons

2.2 The Reason for Seasons 2.2 The Reason for Seasons Our goals for learning: What causes the seasons? How does the orientation of Earth's axis change with time? Thought Question TRUE OR FALSE? Earth is closer to the Sun in summer

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide

4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Name: Teacher: Test Date: 4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Vocabulary: Solar System: A group of objects that revolve around a single star. Sun: The central (and only) star in

More information

Earth & Space Science, Interpreting Data DURATION Preparation: 5 minutes Activity: 40 minutes (total over one day)

Earth & Space Science, Interpreting Data DURATION Preparation: 5 minutes Activity: 40 minutes (total over one day) Objectives In this activity students will: 1. Observe how the position of the sun in the sky changes during the course of the day 2. Discover the cardinal directions by tracking the motion of the sun Materials

More information

Astronomy Review. Use the following four pictures to answer questions 1-4.

Astronomy Review. Use the following four pictures to answer questions 1-4. Astronomy Review Use the following four pictures to answer questions 1-4. 1. Put an X through the pictures that are NOT possible. 2. Circle the picture that could be a lunar eclipse. 3. Triangle the picture

More information

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Rotation The movement of one object as it turns or spins around a central point or axis. Revolution The movement

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

Lab Activity on the Moon's Phases and Eclipses

Lab Activity on the Moon's Phases and Eclipses Lab Activity on the Moon's Phases and Eclipses 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab

More information

The ecliptic and the sidereal motion of the sun Moon and the planets on it.

The ecliptic and the sidereal motion of the sun Moon and the planets on it. The ecliptic and the sidereal motion of the sun Moon and the planets on it. The following picture is a picture of the sky as it looks about noon on May 18 2012. The light of the Sun has been erased artificially

More information

Astronomy 101 Exam 1 Form A

Astronomy 101 Exam 1 Form A Astronomy 101 Exam 1 Form A Name: Lab section number: (In the format M0**. See back page; if you get this wrong you may not get your exam back!) Exam time: one hour and twenty minutes Please put bags under

More information

2.1 Patterns in the Night Sky

2.1 Patterns in the Night Sky 2.1 Patterns in the Night Sky Our goals for learning: What are constellations? How do we locate objects in the sky? Why do stars rise and set? Why don t we see the same constellations throughout the year?

More information

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 1 Image Slides Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CH. 1: CYCLES OF THE SKY CO a 1.1 The Celestial Sphere CO b The nearest star to us is about

More information

The Earth-Moon-Sun System. I. Lunar Rotation and Revolution II. Phases of the Moon III. Lunar Eclipses IV. Solar Eclipses

The Earth-Moon-Sun System. I. Lunar Rotation and Revolution II. Phases of the Moon III. Lunar Eclipses IV. Solar Eclipses The Earth-Moon-Sun System I. Lunar Rotation and Revolution II. Phases of the Moon III. Lunar Eclipses IV. Solar Eclipses I. Lunar Rotation and Revolution The Moon rotates on its axis as it circles the

More information

The Cause of the Seasons

The Cause of the Seasons The Cause of the Seasons Summer Winter Seasons are caused by the Earth s axis tilt, not the distance from the Earth to the Sun! Axis tilt changes directness of sunlight during the year. Why Does Flux Sunlight

More information

Astronomy 101 Lab: Lunar Phases and Eclipses

Astronomy 101 Lab: Lunar Phases and Eclipses Name: Astronomy 101 Lab: Lunar Phases and Eclipses Pre-Lab Assignment: In this week's lab, you will be using a lamp, a globe, and a ball to simulate the Sun, Earth, and the Moon. You will be able to see

More information

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons.

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons. 1. Which diagram best represents the regions of Earth in sunlight on June 21 and December 21? [NP indicates the North Pole and the shading represents Earth's night side. Diagrams are not drawn to scale.]

More information

THE GREAT SUN-EARTH-MOON LINE-UP

THE GREAT SUN-EARTH-MOON LINE-UP NAME DATE PARTNERS THE GREAT SUN-EARTH-MOON LINE-UP Activity 1: Where Do Lunar Phases Come From? The phases of the moon have fascinated people for thousands of years. They have appeared in myths, art,

More information

How many days are between exactly the same Moon phase?

How many days are between exactly the same Moon phase? IDS 102 Phases of the Moon- Part II Along with this part of the handout you should receive a two page handout of the appearance of the Moon over the previous month. Look carefully at the appearance of

More information

Earth, Sun, and Stars

Earth, Sun, and Stars Earth, Sun, and Stars Daily Patterns Earth Spins Earth is always moving, even though you don t feel it. One way Earth moves is by spinning around an imaginary line. One end of the line would come out of

More information

Motions of the Earth

Motions of the Earth Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect our lives? How does the orientation of Earth's

More information

8 th Grade Earth, Moon and Sun Systems Review

8 th Grade Earth, Moon and Sun Systems Review 8 th Grade Earth, Moon and Sun Systems Review #1 Click on the link to learn What causes Seasons? A #2 H G B D C What is season A in this diagram? E F A: Summer B: Fall C: Winter D: Spring D. Spring A #3

More information

12.2. The Earth Moon System KNOW? The Phases of the Moon. Did You

12.2. The Earth Moon System KNOW? The Phases of the Moon. Did You 12.2 The Earth Moon System Did You KNOW? The Moon is Earth s closest neighbour. It is highly influential in our lives because it causes the oceans tides. The Moon is also responsible for eclipses. waxing

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Astro 210 Lecture 3 Jan 22, 2018

Astro 210 Lecture 3 Jan 22, 2018 Astro 210 Lecture 3 Jan 22, 2018 Announcements HW1 available; due online in pdf at 5:00pm Friday Office hours: Instructor 2-3pm Wed; TA 3:30-4:30pm Thurs register your iclicker; link on course moodle site

More information

Unit 2. Cycles of the Sky

Unit 2. Cycles of the Sky Unit 2 Cycles of the Sky The Celestial Sphere Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial

More information

Term Info Picture. A celestial body that orbits a bigger celestial body (a moon) Earth s only natural satellite. It causes all of the tides.

Term Info Picture. A celestial body that orbits a bigger celestial body (a moon) Earth s only natural satellite. It causes all of the tides. Astronomy (Earth, Moon and Sun) S6E2. Obtain, evaluate, and communicate information about the effets of the relative positions of the sun, Earth and moon. A. Develop and use a model to demonstrate the

More information

Astronomy 101 Lab: Seasons

Astronomy 101 Lab: Seasons Name: Astronomy 101 Lab: Seasons Pre-Lab Assignment: In class, we've talked about the cause of the seasons. In this lab, you will use globes to study the relative positions of Earth and the Sun during

More information

The reason is that the Moon s rotation takes 27.3 days the same amount of time it takes to revolve once around Earth. Because these two motions take

The reason is that the Moon s rotation takes 27.3 days the same amount of time it takes to revolve once around Earth. Because these two motions take Moon Phases 6.E.1.1 Explain how the relative motion and relative position of the sun, Earth and moon affect the seasons, tides, phases of the moon, and eclipses. Motions of the Moon Just as Earth rotates

More information

Tilted Earth Lab Why Do We Have Seasons?

Tilted Earth Lab Why Do We Have Seasons? Name Class Tilted Earth Lab Why Do We Have Seasons? Purpose: In this investigation, you are going to figure out how the axis (or tilt) of the Earth, combined with the revolution (orbit) of Earth around

More information

Introduction To Modern Astronomy II

Introduction To Modern Astronomy II ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens

More information

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase.

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase. 1. Which event is a direct result of Earth's revolution? A) the apparent deflection of winds B) the changing of the Moon phases C) the seasonal changes in constellations viewed in the night sky D) the

More information

Name: Earth and Space Assessment Study Guide. Assessment Date : Term Rotation Revolution

Name: Earth and Space Assessment Study Guide. Assessment Date : Term Rotation Revolution Name: Earth and Space Assessment Study Guide Assessment Date : Earth s Rotation and Revolution Term Rotation Revolution Brief Definition Earth s Time to Complete One complete spin on an axis 24 hours (or

More information

Tutoring information, as announced in class

Tutoring information, as announced in class Announcements Register for Connect, register your iclickers - Register iclickers at https://www1.iclicker.com/ or REEF account profile - Purchase the REEF polling app, create an account, register and get

More information

Day, Night & the Seasons. Lecture 2 1/21/2014

Day, Night & the Seasons. Lecture 2 1/21/2014 Day, Night & the Seasons Lecture 2 1/21/2014 Logistics The following students see me after class: A. Gonzalez, Chen Anyone who was not here on first day see me after class Pin Numbers - if you have not

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon

Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon Based on Chapter 2 This material will be useful for understanding Chapters 3 and 4 on The

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Which table correctly shows the dates on which the apparent paths of the Sun were observed? A) B) C) D)

Which table correctly shows the dates on which the apparent paths of the Sun were observed? A) B) C) D) 1. The diagram below represents the horizon and the Sun's apparent paths, A, B, and C, on three different dates, as viewed from the same location in New York State. Which table correctly shows the dates

More information

Study Points. What is a mare?

Study Points. What is a mare? What is a mare? Study Points What causes craters, especially on the Moon? What is the Moon s terminator? Explain why the Moon exhibits phases. Draw the Sun-Earth-Moon system showing the Moon s orbit (not

More information

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles. Understanding The Sky Astronomy is full of cycles Like the day, the month, & the year In this section we will try to understand these cycles. For Example Why do we think of stars as nighttime objects?

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System Name The Sun-Earth-Moon System Section 28.3 The Sun-Earth-Moon System Date Main Idea Details Read the title of Section 3. List three things that might be discussed in this section. 1. 2. 3. Review Vocabulary

More information

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks

More information

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC.

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC. 18.2 Reading 18.2 Earth Cycles Do you ever wonder where our calendar comes from? Or why the Moon gradually changes its shape? Or why we have seasons? The answers have to do with the relative positions

More information

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse.

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse. Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse. The Earth- Moon System Have you ever wondered why the

More information

ì<(sk$m)=cdfdhh< +^-Ä-U-Ä-U

ì<(sk$m)=cdfdhh< +^-Ä-U-Ä-U Standards Preview Earth Sciences Standard Set 4. Earth Sciences 4. Objects in the sky move in regular and predictable patterns. As a basis for understanding this concept: 4.a. Students know the patterns

More information

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture.

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. Test 2 1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. 2. Look carefully at the phases of the Moon. Number them (1 to 4) in the order that you would

More information

THIS IS HOW I SEE IT (1 HOUR)

THIS IS HOW I SEE IT (1 HOUR) (1 HOUR) Addresses NGSS Level of Difficulty: 3 Grade Range: 3-5 (with 6th Grade Extentions) OVERVIEW In this activity, students will construct interactive lunar cycle models to illustrate the phases of

More information

Astronomy 11. No, this course isn t all about Star Wars

Astronomy 11. No, this course isn t all about Star Wars Astronomy 11 No, this course isn t all about Star Wars Earth s Rotation How fast are people on the equator moving? s=d/t =circumference/24 hours =(40,000 km)/24 hours =1670 km/h That s Mach 1.4! What

More information

Dive into Saturn.

Dive into Saturn. Dive into Saturn http://www.pbs.org/wgbh/nova/space/death-dive-to-saturn.html Read Ch. 3 By next class time Do practice online quiz 01 Axis tilt changes directness of sunlight during the year. Why Does

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

Astronomy. What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets?

Astronomy. What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets? Astronomy Essential Questions and Answers: What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets? Students: Gravity is the

More information

Chapter: The Earth-Moon-Sun System

Chapter: The Earth-Moon-Sun System Chapter 7 Table of Contents Chapter: The Earth-Moon-Sun System Section 1: Earth in Space Section 2: Time and Seasons Section 3: Earth s Moon 1 Earth in Space Earth s Size and Shape Ancient Measurements

More information

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements

1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements // Table of Contents Chapter: The Earth-Moon-Sun System Section : Chapter 7 Section : Section : Earth s Size and Shape Ancient Measurements First, no matter where you are on Earth, objects fall straight

More information

Full Moon. Phases of the Moon

Full Moon. Phases of the Moon Phases of the Moon The Moon takes 29.5 days to orbit Earth. This is a lunar month. The gravity of the Earth keeps the Moon in orbit. The Moon does not produce light. We see the Moon because it reflects

More information

Planet Earth. Part 2

Planet Earth. Part 2 Planet Earth Part 2 Sun, Earth and Moon Motions The Solar System revolves around the Milky Way galaxy center. The Sun rotates on its own axis. Earth revolves around the Sun (1 year) and rotates on its

More information

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 3): Lunar Phases Check Planetarium Schedule Next Class: HW1 Due Friday! Early Cosmology Music: We only Come out at Night

More information

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014

Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014 Brock University Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014 Number of hours: 50 min Time of Examination: 14:00 14:50 Instructor: B.Mitrović

More information

Astronomy 115 Section 4 Week 2. Adam Fries SF State

Astronomy 115 Section 4 Week 2. Adam Fries SF State Astronomy 115 Section 4 Week 2 Adam Fries SF State afries@sfsu.edu Important Notes: Homework #1 is Due at the beginning of class next time. Attendance Sheet is going around one last time! Homework Questions?

More information

Astr 1050 Mon. Jan. 31, 2017

Astr 1050 Mon. Jan. 31, 2017 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on

More information

Practice Seasons Moon Quiz

Practice Seasons Moon Quiz 1. Which diagram represents the tilt of Earth's axis relative to the Sun's rays on December 15? A) B) C) D) 2. The diagram below represents Earth in space on the first day of a season. 5. Base your answer

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source Lesson 3 Eclipses and Tides LA.8.2.2.3, SC.8.E.5.9, SC.8.N.1.1 Skim or scan the heading, boldfaced words, and pictures in the lesson. Identify or predict three facts you will learn from the lesson. Discuss

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an 1. The diagram below represents some constellations and one position of Earth in its orbit around the Sun. These constellations are visible to an observer on Earth at different times of the year. When

More information

ASTR 1P01 Test 1, May 2017 Page 1 BROCK UNIVERSITY. Test 1: May 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of students: 614

ASTR 1P01 Test 1, May 2017 Page 1 BROCK UNIVERSITY. Test 1: May 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of students: 614 ASTR 1P01 Test 1, May 2017 Page 1 BROCK UNIVERSITY Test 1: May 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of students: 614 Examination date: 13 May 2017 Time limit: 50 min Time of Examination:

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

Patterns of Change on Earth

Patterns of Change on Earth TEKS collect and analyze data to identify sequences and predict patterns of change in shadows, tides, seasons, and the observable appearance of the Moon over time Patterns of Change on Earth Patterns and

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

CA1 2.11: Designing an Equatorial Sundial Activity

CA1 2.11: Designing an Equatorial Sundial Activity Purpose: To design an equatorial sundial and learn about motions of the sun and earth that have a bearing on its design. Materials: poster board, length of stiff wire or dowel rod, tape, protractor, ruler,

More information

from The Walrus and the Carpenter Through the Looking-Glass -- Lewis Carroll

from The Walrus and the Carpenter Through the Looking-Glass -- Lewis Carroll The Sun was shining on the sea, Shining with all his might; He did his very best to make The billows smooth and bright- And this was odd because it was The middle of the night. from The Walrus and the

More information

Chapter 3 Cycles of the Moon

Chapter 3 Cycles of the Moon Chapter 3 Cycles of the Moon Guidepost In the previous chapter, you studied the cycle of day and night and the cycle of the seasons. Now you are ready to study the brightest object in the night sky. The

More information

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars. Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and

More information

PHYS 160 Astronomy Test #1 Name Answer Key Test Version A

PHYS 160 Astronomy Test #1 Name Answer Key Test Version A PHYS 160 Astronomy Test #1 Name Answer Key Test Version A True False Multiple Choice 1. T 1. C 2. F 2. B 3. T 3. A 4. T 4. E 5. T 5. B 6. F 6. A 7. F 7. A 8. T 8. D 9. F 9. D 10. F 10. B 11. B 12. D Definitions

More information

Astronomy 101: 9/18/2008

Astronomy 101: 9/18/2008 Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.

More information

Astronomy 120 Winter 2005 Highlights of Astronomy. First Midterm Examination

Astronomy 120 Winter 2005 Highlights of Astronomy. First Midterm Examination Astronomy 120 Winter 2005 Highlights of Astronomy First Midterm Examination Name: MULTIPLE CHOICE: Choose the one best answer from among the five choices for each of the following 6 questions. Each correct

More information

Name: Exam 1, 9/30/05

Name: Exam 1, 9/30/05 Multiple Choice: Select the choice that best answers each question. Write your choice in the blank next to each number. (2 points each) 1. At the North Pole in mid-november, the sun rises at a. North of

More information

Chapter 3: Cycles of the Sky

Chapter 3: Cycles of the Sky Chapter 3: Cycles of the Sky Motions of the Planets Mercury Venus Earth All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane, the ecliptic plane. The Moon is orbiting

More information

EARTH MOON SUN REVIEW

EARTH MOON SUN REVIEW 1. A student read in a newspaper that the maximum length of the daylight period for the year in Pittsburgh, Pennsylvania, had just been reached. What was the date of this newspaper? 4. In the diagram below,

More information

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Brock University Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

In the space below, write an explanation for why we observe phases of the moon, based upon your current knowledge:

In the space below, write an explanation for why we observe phases of the moon, based upon your current knowledge: IDS 102 Phases of the Moon PART II In the space below, write an explanation for why we observe phases of the moon, based upon your current knowledge: As you discovered yesterday, when we observe the Earth

More information