CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

Similar documents
CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

CAS300M17BM2 1.7kV, 8.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

CAS120M12BM2 1.2kV, 13 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec Diode

CAS300M12BM2 1.2kV, 5.0 mω All-Silicon Carbide Half-Bridge Module C2M MOSFET and Z-Rec TM Diode

Chip Outline. Symbol Parameter Value Unit Test Conditions Note 36 A 27 V GS = 20 V, T C = 100 C. -55 to +175

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 12.5 V GS = 20 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 15 V GS = 15 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note V GS = 15 V, T C = 25 C Fig. 19 A 7.5 V GS = 15 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 40 V GS = 20 V, T C = 100 C.

Package. Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 40 V GS = 15 V, T C = 100 C.

Package. Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Part Number Package Marking

Package. TAB Drain. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 22.5 V GS = 15 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS =20 V, T C = 25 C A 71 V GS =20 V, T C = 100 C. -40 to +175

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 20 V, T C = 25 C Fig. 19 A 24 V GS = 20 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 6 V GS = 20 V, T C = 100 C.

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

Package TO Symbol Parameter Value Unit Test Conditions Note. V GS =20 V, T C = 25 C Fig. 19 A 60 V GS =20 V, T C = 100 C.

Chip Outline. Symbol Parameter Value Unit Test Conditions Note V GS = 20 V, T C = 25 C A 46 V GS = 20 V, T C = 100 C. -40 to +175

Package. TAB Drain S S G. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 13.5 V GS = 15 V, T C = 100 C

GCMS020A120B1H1 1200V 20 mohm SiC MOSFET Module

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D05120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

C2D20120D Silicon Carbide Schottky Diode Zero Recovery Rectifier

C4D05120E Silicon Carbide Schottky Diode Z-Rec Rectifier

C5D05170H Silicon Carbide Schottky Diode Z-Rec Rectifier

Z-Rec Rectifier. C4D08120A Silicon Carbide Schottky Diode. Package. Features. Benefits. Applications

TO-247-3L Inner Circuit Product Summary I C) R DS(on)

C3D04065A Silicon Carbide Schottky Diode Z-Rec Rectifier

CID Insulated Gate Bipolar Transistor with Silicon Carbide Schottky Diode Zero Recovery Rectifier

SPECIFICATIONS (T J = 25 C, unless otherwise noted)

C3D08065A Silicon Carbide Schottky Diode Z-Rec Rectifier

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

SCT10N120. Silicon carbide Power MOSFET 1200 V, 12 A, 520 mω (typ., T J = 150 C) in an HiP247 package. Datasheet. Features. Applications.

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

E4D20120A. Silicon Carbide Schottky Diode E-Series Automotive. Features. Package. Benefits. Applications. Maximum Ratings (T C V DS 900 V I D 11.

PSMN4R5-40PS. N-channel 40 V 4.6 mω standard level MOSFET. High efficiency due to low switching and conduction losses

Silicon carbide Power MOSFET 650 V, 90 A, 18 mω (typ., T J = 25 C) in an H²PAK-7 package. Order code V DS R DS(on) max. I D

C3D04060F Silicon Carbide Schottky Diode Z-Rec Rectifier (Full-Pak)

C3D16065D Silicon Carbide Schottky Diode Z-Rec Rectifier

Complementary (N- and P-Channel) MOSFET

BUK9Y53-100B. N-channel TrenchMOS logic level FET. Table 1. Pinning Pin Description Simplified outline Symbol 1, 2, 3 source (S) 4 gate (G)

C3D02060E Silicon Carbide Schottky Diode Z-Rec Rectifier

500V N-Channel MOSFET

GP1M003A080H/ GP1M003A080F GP1M003A080HH/ GP1M003A080FH

PSMN4R3-30PL. N-channel 30 V 4.3 mω logic level MOSFET. High efficiency due to low switching and conduction losses

PSMN006-20K. N-channel TrenchMOS SiliconMAX ultra low level FET

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM Power-Transistor

OptiMOS 3 Power-Transistor

C2D10120A Silicon Carbide Schottky Diode Zero Recovery Rectifier

FEATURES SYMBOL QUICK REFERENCE DATA

N-channel TrenchMOS transistor

OptiMOS TM P3 Power-Transistor


OptiMOS (TM) 3 Power-Transistor

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V

SPP20N60S5. Cool MOS Power Transistor V DS 600 V

Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

OptiMOS Power-Transistor

N- & P-Channel Enhancement Mode Field Effect Transistor

OptiMOS 2 Power-Transistor

Maximum Ratings Parameter Symbol Value Unit Continuous drain current T C = 25 C T C = 100 C

GSID300A120S5C1 6-Pack IGBT Module

OptiMOS 3 M-Series Power-MOSFET

OptiMOS TM 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 3 Power-Transistor

SPB03N60S5. Cool MOS Power Transistor V DS 600 V

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

OptiMOS 3 Power-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS Small-Signal-Transistor

OptiMOS TM Power-Transistor

LSIC1MO120E V N-channel, Enhancement-mode SiC MOSFET

N-channel TrenchMOS standard level FET. Higher operating power due to low thermal resistance Low conduction losses due to low on-state resistance

CoolMOS TM Power Transistor

OptiMOS P2 Small-Signal-Transistor

Final data. Maximum Ratings, at T C = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

OptiMOS 3 Power-Transistor

OptiMOS 2 Power-Transistor

Final data. Maximum Ratings, at T C = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

SIPMOS Power-Transistor

OptiMOS 2 Power-Transistor

SIPMOS Small-Signal-Transistor

BUK B. N-channel TrenchMOS standard level FET

OptiMOS TM 3 Power-Transistor

N-channel TrenchMOS standard level FET

Transcription:

CCS5M2CM2.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode Features Ultra Low Loss Zero Reverse Recovery Current Zero Turn-off Tail Current High-Frequency Operation Positive Temperature Coefficient on V F and V DS(on) Cu Baseplate, AlN DBC System Benefits Enables Compact and Lightweight Systems High Efficiency Operation Ease of Transistor Gate Control Reduced Cooling Requirements Reduced System Cost Package V DS E SW, Total @ 5A, 5 C R DS(on).2 kv.7 mj 25 mω Applications Solar Inverters UPS and SMPS Induction Heating Regen Drives 3-Phase PFC Motor Drives Maximum Ratings (T C = 25 C unless otherwise specified) Part Number Package Marking CCS5M2CM2 Six-Pack CCS5M2CM2 Symbol Parameter Value Unit Test Conditions Notes V DS Drain - Source Voltage.2 kv V GS Gate - Source Voltage -/+25 V Absolute maximum values V GS Gate - Source Voltage -5/+2 V Recommended operational values I D Continuous Drain Current 87 V GS = 2 V, T C = 25 C A 59 V GS = 2 V, T C = 9 C Fig. 26 Datasheet: CCS5M2CM2,Rev. C I D(pulse) Pulsed Drain Current 25 A Pulse width t P limited by T jmax Fig. 28 I F Continuous Diode Forward Current 2 V GS = -5 V, T C = 25 C A 62 V GS = -5 V, T C = 9 C I FSM Non-Repetitive Diode Forward Surge Current 4 A V GS = -5 V, T C = C, t P = ms, Half Sine Pulse, T J Junction Temperature -4 to +5 C T C,T STG Case and Storage Temperature Range -4 to +25 C V isol Case Isolation Voltage 5. kv AC, 5 Hz, min L Stray Stray Inductance 3 nh Measured from pins 25-26 to 27-28 P D Power Dissipation 32 W T C = 25 C, T J 5 C Fig. 27 Subject to change without notice. www.cree.com

Electrical Characteristics (T C = 25 C unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Test Conditions Note V (BR)DSS Drain - Source Breakdown Voltage.2 kv V GS, = V, I D = 25 µa V GS(th) Gate Threshold Voltage 2.3 V D = V G, I D = 2.5 ma V.6 V DS = V, ID = 2.5 ma, T J = 5 C I DSS Zero Gate Voltage Drain Current 2 25 μa V DS =.2 kv, V GS = V I GSS Gate-Source Leakage Current na V GS = 25 V, V DS = V R DS(on) g fs On State Resistance Transconductance C iss Input Capacitance 2.8 C oss Output Capacitance.393 C rss Reverse Transfer Capacitance.4 E on Turn-On Switching Energy. mj E Off Turn-Off Switching Energy.6 mj 25 36 mω VGS = 2 V, IDS = 5 A Figs. 43 63 V GS = 2 V, I DS = 5 A, T J = 5 C 4-7 22 V DS = 2 V, IDS = 5 A 2 S V DS = 2 V, ID = 5 A, T J = 5 C nf V DS = 8 V, V GS = V f = MHz, V AC = 25 mv V DD = 6 V, V GS = +2V/-5V I D = 5 A, R G = 2 Ω Load = 2 μh T J = 5 C Note: IEC 6747-8-4 Definitions R G (int) Internal Gate Resistance.5 Ω f = MHz, V AC = 25 mv Q GS Gate-Source Charge 32 Q GD Gate-Drain Charge 3 Q G Total Gate Charge 8 t d(on) Turn-on delay time 2 ns t r Rise time 3 ns t d(off) Turn-off delay time 5 ns t f Fall time 9 ns V SD Diode Forward Voltage Q C Total Capacitive Charge.28 μc Thermal Characteristics Fig. 8 Figs. 6,7 Fig. 8 nc V DD= 8 V, I D= 5 A Fig. 5 V DD = 8V, R LOAD = 8 Ω V GS = +2/-2V, R G = 3.8 Ω T J = 25 C Note: IEC 6747-8-4 Definitions.5.8 I F = 5 A, V GS = V 2. 2.3 I F = 5 A, T J = 5 C Symbol Parameter Min. Typ. Max. Unit Test Conditions Note R thjcm Thermal Resistance Juction-to-Case for MOSFET.37.4 T c = 9 C, P D = 5 W C/W R thjcd Thermal Resistance Juction-to-Case for Diode.42.43 T c = 9 C, P D = 3 W NTC Characteristics Symbol Condition Typ. Max. Unit R 25 T C = 25 C 5 kω Delta R/R T C = C, R = 48 Ω ±5 % P 25 T C = 25 C mw B 25/5 R 2 = R 25 exp[b 25/5 (/T 2 -/(298.5K))] 338 K Additional Module Data Symbol Condition Max Unit Test Condition W Weight 8 g M Mounting Torque 5 Nm To heatsink Figs. 2 Figs. - 2 CCS5M2CM2,Rev. C

2 6 T J = -4 C t p < 5 µs V GS = 2 V 2 6 t p < 5 µs V GS = 2 V Drain Current, I DS (A) 2 8 Drain Current, I DS (A) 2 8 V GS = V 4 V GS = V 4 3 6 9 2 5 3 6 9 2 5 Figure. Typical Output Characteristics T J = -4 C Figure 2. Typical Output Characteristics T J = 25 C Drain Current, I DS (A) 2 6 2 8 4 T J = 5 C t p < 5 µs V GS = 2 V V GS = V On Resistance, R DS On (p.u.) 2..8.6.4.2..8.6.4 I DS = 5 A V GS = 2 V t p < 5 µs.2 3 6 9 2 5. -5 25 5 75 25 5 Junction Temperature, T J ( C) Figure 3. Typical Output Characteristics T J = 5 C Figure 4. Normalized On-Resistance vs. Temperature 6 5 V GS = 2 V t p < 5 µs T J = 5 C 9 8 I DS = 5 A t p < 5 µs On Resistance, R DS On (mω) 4 3 2 T J = -4 C T J = 25 C On Resistance, R DS On (mω) 7 6 5 4 3 2 T J = -4 C T J = 5 C 25 5 75 Drain Source Current, I DS (A) 2 3 4 5 6 7 8 9 2 Gate Source Voltage, V GS (V) Figure 5. Normalized On-Resistance vs. Drain Current For Various Temperatures Figure 6. Normalized On-Resistance vs. Gate-Source Voltage for Various Temperatures 3 CCS5M2CM2,Rev. C

On Resistance, R DS On (mω) 9 8 7 6 5 4 3 2 V GS = 2 V V GS = 4 V V GS = 6 V V GS = 8 V V GS = 2 V I DS = 5 A t p < 5 µs 8 6 4 2 t p < 5 µs T J = 5 C T J = -4 C -5 25 5 75 25 5 Junction Temperature, T J ( C) Figure 7. On-Resistance vs. Temperature for Various Gate-Source Voltages 2 4 6 8 2 Gate-Source Voltage, V GS (V) Figure 8. Transfer Characteristic for Various Junction Temperatures -3-2.5-2 -.5 - -.5-3 -2.5-2 -.5 - -.5 V GS = -5 V V GS = -2 V V GS = V -5 Drain-Source Currnmt, I DS (A) -5 T J = -4 C tp < 5 µs - V GS = -2 V V GS = -5 V V GS = V tp < 5 µs - Figure 9. Diode Characteristic at -4 C Figure. Diode Characteristic at 25 C -3-2.5-2 -.5 - -.5-3 -2.5-2 -.5 - -.5 V GS = V V GS = V V GS = -5 V V GS = V -5 V GS = 2 V -5 V GS = -2 V T J = 5 C tp < 5 µs - T J = -4 C tp < 5 µs - Figure. Diode Characteristic at 5 C Figure 2. 3 rd Quadrant Characteristic at -4 C 4 CCS5M2CM2,Rev. C

-3-2.5-2 -.5 - -.5-3 -2.5-2 -.5 - -.5 V GS = V V GS = V V GS = V V GS = 2 V -5 V GS = V -5 tp < 5 µs - V GS = 2 V T J = 5 C tp < 5 µs - Figure 3. 3 rd Quadrant Characteristic at 25 C Figure 4. 3 rd Quadrant Characteristic at 5 C 2 Gate-Source Voltage, V GS (V) 5 5 V DS = 8 V I DS = 5 A I GS = ma Capacitance (pf) f = MHz V AC = 25 mv C ISS C OSS C RSS -5 3 6 9 2 5 8 Gate Charge (nc) 5 5 2 25 Figure 5. Typical Gate Charge Characteristics Figure 6. Typical Capacitances vs. Drain-Source Voltage ( - 25 V) C ISS 3. 2.5 V DD = 6 V T J = 5 C L = 2 µh R G = 2 Ohms V GS = +2V/-5V E on Capacitance (pf) C OSS C RSS Switching Loss (mj) 2..5. E off f = MHz V AC = 25 mv.5 25 5 75 Figure 7. Typical Capacitances vs. Drain-Source Voltage ( - kv). 25 5 75 25 Drain to Source Current, I DS (A) Figure 8. Inductive Switching Energy vs. Drain Current For V DS = 6V, R G = 2 Ω 5 CCS5M2CM2,Rev. C

4.5 4. 3.5 V DD = 8 V T J = 5 C L = 2 µh R G = 2 Ohms V GS = +2V/-5V E on t on Switching Loss (mj) 3. 2.5 2..5 E off Time, t on, t r, t d(on) (ns) t r t d(on)..5. 25 5 75 25 Drain to Source Current, I DS (A) V GS : +2/-5V R G = 2 Ohms V DD = 8 V Figure 9. Inductive Switching Energy vs. Drain Current For V DS = 8 V, R G = 2 Ω Figure 2. Turn-on Timing vs. Drain Current V GS : +2/-5V R Load = 6 Ohms V DD = 8 V t on t r t d(on) Time, t off, t f, t d(off (ns) t d(off) t off Time, t on, t r, t d(on) (ns) V GS : +2/-5V R G = 2 Ohms V DD = 8 V t f Gate Resistance, R G (Ohms) Figure 2. Turn-off Timing vs. Drain Current Figure 22. Turn-on Timing vs. External Gate Resistor V GS : +2/-5V R Load = 6 Ohms V DD = 8 V t off t on Time, t off, t f, t d(off (ns) t d(off) t r Time, t on, t r, t d(on) (ns) t d(on) t r Gate Resistance, R G (Ohms) V GS : +2/-5V R G = 2 Ohms V DD = 8 V R Load = 6 Ohms 2 4 6 8 2 4 6 Junction Temperature, T J ( C) Figure 23. Turn-off Timing vs. External Gate Resistor Figure 24. Turn-on Timing vs. Junction Temperature 6 CCS5M2CM2,Rev. C

Time, t off, t f, t d(off (ns) V GS : +2/-5V R G = 2 Ohms V DD = 8 V R Load = 6 Ohms t d(off) 2 4 6 8 2 4 6 Junction Temperature, T J ( C) t f t off Drain-Source Continous Current, I DS (DC) (A) 9 8 7 6 5 4 3 2 T J 5 C -4-2 2 4 6 8 2 4 6 Case Temperature, T C ( C) Figure 25. Turn-on Timing vs. Junction Temperature Figure 26. Continous Drain Current Derating vs Case Temperature Maximum Dissipated Power, P tot (W) 35 3 25 2 5 5 T J 5 C -4-2 2 4 6 8 2 4 6 Case Temperature, T C ( C) Figure 27. Maximum Power Dissipation (MOSFET) Derating vs Case Temperature... Limited by R DS On ms µs T C = 25 C D =, Parameter: t p.. ms µs Figure 28. MOSFET Safe Operating Area µs MOSFET Junction-Case Thermal Response, Zth JC ( C/W).. D = 9% D = 7% D = 5% D = 3% D = % D = 5% D = 2% D = % D =.5% D =.2% Single Pulse. E-6 E-6 E-6 E-3 E-3 E-3 Time (s) t p D = t p / T T Diode Junction-Case Thermal Response, Zth JC ( C/W).. D = 9% D = 7% D = 5% D = 3% D = % D = 5% D = 2% D = % D =.5% D =.2% Single Pulse. E-6 E-6 E-6 E-3 E-3 E-3 Time (s) t p D = t p / T T Figure 29. MOSFET Junction to Case Thermal Impedance Figure 3. Diode Junction to Case Thermal Impedance 7 CCS5M2CM2,Rev. C

NTC Resistance (Ohms) -5 25 5 75 25 5 NTC Temperature ( C) Figure 3. NTC Resistance vs NTC Temperature Figure 32. Resistive Switching Time Description Module Application Note: The SiC MOSFET module switches at speeds beyond what is customarily associated with IGBT based modules. Therefore, special precautions are required to realize the best performance. The interconnection between the gate driver and module housing needs to be as short as possible. This will afford the best switching time and avoid the potential for device oscillation. Also, great care is required to insure minimum inductance between the module and link capacitors to avoid excessive V DS overshoots. Please Refer to application note: Design Considerations when using Cree SiC Modules Part and Part 2. [CPWR-AN2, CPWR-AN3] 8 CCS5M2CM2,Rev. C

Package Dimensions (mm) This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems. Copyright 23 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-Rec is a trademark of Cree, Inc. 9 CCS5M2CM2,Rev. C Cree, Inc. 46 Silicon Drive Durham, NC 2773 USA Tel: +.99.33.53 Fax: +.99.33.545 www.cree.com/power